高中三角函数定义
2024高中三角函数公式大全

2024高中三角函数公式大全
1、三角函数的定义
三角函数是建立在三角形中的特殊关系上,用于表示角度和边长之间的函数。
三角函数的基本定义如下:
(1)正弦函数sinθ:表示角θ的对边和斜边的比值,即sinθ = y/r。
(2)余弦函数cosθ:表示角θ的邻边和斜边的比值,即cosθ = x/r。
(3)正切函数tanθ:表示角θ的对边和邻边的比值,即tanθ = y/x。
(4)反正弦函数arcsinα:表示α对应的角度θ,即arcsinα = θ。
(5)反余弦函数arccosα:表示α对应的角度θ,即arccosα = θ。
(6)反正切函数arctanα:表示α对应的角度θ,即arctanα = θ。
2、三角函数的基本公式
(1)正弦定理:(a,b,C)为θ对应的三边,则
a/sinθ=b/sinθ=c/sinθ。
(2)余弦定理:(a,b,C)为θ对应的三边,则a^2=b^2+c^2-
2bc*cosθ。
(3)正切定理:(a,b,C)为θ对应的三边,则tanθ=b/a=c/b。
(4)反正弦定理:arcsinα=θ,其中θ的范围在(-π/2,π/2)
之间。
(5)反余弦定理:arccosα=θ,其中θ的范围在(0,π)之间。
(6)反正切定理:arctanα=θ,其中θ的范围在(-π/2,π/2)
之间。
3、三角函数的关系和性质
(1)正弦定理:sin2θ+cos2θ=1
(2)正弦定理的奇偶周期性:sin(-θ)= -sinθ;cos(-θ)= cosθ。
高中数学三角函数专题:三角函数定义

高中数学三角函数专题:三角函数定义第一部分:三角函数的定义知识点一:直角三角形中三角函数定义。
“正”的含义:“正”指的是“正对面”,在直角三角形中指的是角的“对边”。
“余”的含义:“余”指的是“余光”,只有站在相邻的位置需要用余光去看对方,在直角三角形中指的是是角的“邻边”。
“弦”的含义:“弦”指的是直角三角形中“勾、股、弦”中的“弦”,指的是“斜边”。
“切”的含义:“切”指的是“直线与圆相切”,直线与圆相切最重要的性质是:圆心和切点的连线与切线垂直,“切”指的是“垂直”。
在直角三角形ABC 中,如下图所示:||||sin AC BC A =;||||cos AC AB A =;||||tan AB BC A =。
||||sin AC AB C =;||||cos AC BC C =;||||tan BC AB C =。
知识点二:特殊角三角函数值。
第一类直角三角形:三个内角分别为:030,060,090。
性质:在直角三角形中,030的对边为斜边的一半。
如下图所示:假设:030的对边a AB =||。
根据030的对边等于斜边的一半得到:a AB AC 2||2||==。
根据勾股定理得到:a BC a a a a a AB AC BC 3||34)2(||||||22222222=⇒=-=-=-=。
根据三角函数的定义得到:212||||30sin 0===a a AC AB ,2323||||30cos 0===a a AC BC ,33313||||30tan 0====a a BC AB 。
根据三角函数的定义得到:2323||||60sin 0===a a AC BC ,212||||60cos 0===a a AC AB ,33||||60tan 0===aaAB BC 。
第二类直角三角形:三个内角分别为:045,045,090。
性质:等腰直角三角形,两条直角边相等。
如下图所示:假设:a BC AB ==||||。
高中数学-三角函数知识点总结

三角函数知识点一、三角函数知识点 1.角的定义:(1)00~0360角的定义:从一点O 出发的两条射线OB OA ,所形成的图形叫做角,这点O 叫做角的顶点,射线OB OA ,叫做角的两边(2)任意角的定义:角可以看成是平面内一条射线绕着它的端点从一个位置OA 旋转到另一个位置OB 所形成的图形,端点O 叫做角的顶点,射线OA 叫做角的始边,射线OB 叫做角的终边2.规定:(1)正角:按逆时针方向旋转形成的角叫正角 (2)负角:按顺时针方向旋转形成的角叫负角 (3)零角:一条射线不作任何旋转形成的角叫零角这样,我们就把角的概念推广到了任意角,包括正角,负角,零角 注:角的度量需注意:既要考虑旋转方向,又要考虑旋转量3.终边相同的角:所有与α终边相同的角连同α在内组成的集合{}Z k k S ∈⋅+==,3600αββ 4.象限角和轴线角:将角放在直角坐标系中,让角的顶点与原点重合,角的始边与x 轴非负半轴重合,则(1)象限角:角的终边落在第几象限,则称该角为第几象限角 (2)轴线角:角的终边落在坐标轴上,则称该角为轴线角 5.1º的角的定义:规定周角的3601为1度的角,记作:01,这种用度作为单位来度量角的单位制叫做角度制6.1弧度角的定义:我们把长度等于半径长的弧所对的圆心角叫做1弧度的角,记作1rad ,读作:1弧度,这种以弧度为单位来度量角的制度叫做弧度制7.弧度数(1)我们规定,正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零 (2)半径为R 的圆的圆心角α所对的弧长为l ,则角α的弧度数为Rl=α,角α的正负由α终边的旋转方向决定注:弧度制与角度制区别:(1)弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制,1弧度≠1度(2)1弧度是弧长等于半径长的圆弧所对的圆心角的大小,而1度是周角的3601所对的圆心角的大小(3)弧度制是十进制,它的表示是用一个实数表示,而角度制是六十进制; (4)以弧度和度为单位的角,都是一个与半径无关的定值 8.弧度制与角度制的换算(1)弧度制与角度制下的一些特殊角①角度制下零度的角:00,弧度制下零度的角:0rad , 区别数值相同,单位不同 ②角度制下平角:0180,弧度制下平角:πrad ③角度制下周角:0360,弧度制下平角:2πrad (2)弧度制与角度制的换算①角度化成弧度:=0360 π2 ,0180 π2 ,01 01745.0 ②弧度化成角度:π2 0360 ,π 0180 ,rad 1 '01857 注:角度和弧度互化9.扇形的弧长公式和面积公式(1)角度制下扇形的弧长公式:180Rn l π=;扇形的面积公式:3602R n S π=(2)弧度制下扇形的弧长公式:R l α=;扇形的面积公式:Rl R S 21212==α10.角度制下和弧度制下轴线角和象限角的集合 (1)轴线角的集合①终边在x 轴的非负半轴上{}Z k k x x ∈⋅=,3600={}Z k k x x ∈=,2π②终边在x 轴的非正半轴上{}Z k k x x ∈+⋅=,18036000={}Z k k x x ∈+=,2ππ ③终边在x 轴上{}Z k k x x ∈⋅=,1800={}Z k k x x ∈=,π④终边在y 轴的非负半轴上{}Z k k x x ∈+⋅=,9036000={}Z k k x x ∈=,2π ⑤终边在y 轴的非正半轴上{}Z k k x x ∈-⋅=,9036000={}Z k k x x ∈+=,2ππ⑥终边在y 轴上{}Z k k x x ∈+⋅=,9018000=⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,2ππ⑦终边在坐标轴上{}Z k k x x ∈⋅=,900=⎭⎬⎫⎩⎨⎧∈=Z k k x x ,2π (2)象限角的集合①第一象限角的集合{}Z k k x k x ∈+⋅<<⋅,90360360000=⎭⎬⎫⎩⎨⎧∈+<<Z k k x k x ,222πππ②第二象限角的集合{}Z k k x k x ∈+⋅<<+⋅,180360903600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,222ππππ③第三象限角的集合{}Z k k x k x ∈+⋅<<+⋅,2703601803600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,2322ππππ④第四象限角的集合{}Z k k x k x ∈+⋅<<+⋅,3603602703600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,22232ππππ ={}Z k k x k x ∈⋅<<-⋅,36090360000=⎭⎬⎫⎩⎨⎧∈<<-Z k k x k x ,222πππ11.两角的终边对称结论(1)α与β的终边关于x 轴对称Z k k ∈=+,2πβα (2)α与β的终边关于y 轴对称Z k k ∈+=+,2ππβα (3)α与β的终边关于原点轴对称Z k k ∈++=,2ππβα (4)α与β的终边共线Z k k ∈+=,πβα(5)α与β的终边关于直线x y =对称Z k k ∈+=+,22ππβα(6)α与β的终边关于直线x y -=对称Z k k ∈+=+,232ππβα (7)α与β的终边互相垂直Z k k ∈++=,2ππβα12.三角函数定义:(1)任意角的三角函数定义1:设角α的顶点与原点重合,始边与x 轴的非负半轴重合,角α的终边上任意一点P 的坐标为),(y x ,它到原点的距离022>+=y x r ,则 ①比值r y 叫做角α的正弦,记作αsin ,即=αsin r y ②比值r x 叫做角α的余弦,记作αcos ,即=αcos r x ③比值x y 叫做角α的正切,记作αtan ,即=αtan x y ④比值y x 叫做角α的余切,记作αcot ,即=αcot yx (2)任意角的三角函数定义2:设角α的顶点与原点重合,始边与x 轴的非负半轴重合,角α的终边与单位圆的交点为P ),(y x ,则 ①=αsin y ②αcos x ③=αtan xy④=αcot y x三角函数都是以角为自变量,以比值为函数值的函数,又由于角与实数是一一对应的,所以三角函数也可以看作是以实数为自变量的函数13.三角函数的定义域和值域三角函数定义域值域αsin =yR ]1,1[- αcos =y R]1,1[-αtan =y⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππR αcot =y{}Z k k x x ∈≠,πR14.三角函数值在各象限的符号αsin αcos αtan记法1:正弦上正,余弦右正,正切一三正 记法2:一全正,二正弦,三正切,四余弦 15.诱导公式:公式一:终边相同的角的同一三角函数值相等角度制下 弧度制下=+⋅)360sin(0αk αsin =+)2sin(απk αsin =+⋅)360cos(0αk αcos =+)2cos(απk αcos =+⋅)360tan(0αk αtan =+)2tan(απk αtan =+⋅)360cot(0αk αcot =+)2cot(απk αcot公式二:角度制下 弧度制下=+)180sin(0ααsin - =+)sin(απαsin - =+)180cos(0ααcos - =+)cos(απαcos - =+)180tan(0ααtan =+)tan(απαtan =+)180cot(0ααcot =+)cot(απαcot公式三:角度制下 弧度制下=-)180sin(0ααsin =-)sin(απαsin =-)180cos(0ααcos - =-)cos(απαcos - =-)180tan(0ααtan - =-)tan(απαtan - =-)180cot(0ααcot - =-)cot(απαcot -公式四:角度制下 弧度制下=-)sin(ααsin - =-)sin(ααsin - =-)cos(ααcos =-)cos(ααcos =-)tan(ααtan - =-)tan(ααtan - =-)cot(ααcot - =-)cot(ααcot -公式五:角度制下 弧度制下=-)90sin(0ααcos =-)2sin(απαcos=-)90cos(0ααsin =-)2cos(απαsin-)90tan(0ααcot =-)2tan(απαcot=-)90cot(0ααtan =-)2cot(απαtan公式六:角度制下 弧度制下=+)90sin(0ααcos =+)2sin(απαcos=+)90cos(0ααsin - =+)2cos(απαsin -=+)90tan(0ααtan - =+)2tan(απαtan -=+)90cot(0ααcot - =+)2cot(απαcot -公式七:角度制下 弧度制下=+)270sin(0ααcos - =+)23sin(απαcos -=+)270cos(0ααsin =+)23cos(απαsin=+)270tan(0ααcot - =+)23tan(απαcot -=+)270cot(0ααtan - =+)23cot(απαtan -公式八:角度制下 弧度制下=-)270sin(0ααcos - =-)23sin(απαcos -=-)270cos(0ααsin - =-)23cos(απαsin -=-)270tan(0ααcot =-)23tan(απαcot=-)270cot(0ααtan - =-)23cot(απαtan -记忆口诀:奇变偶不变符号看象限 16.部分特殊角的三角函数:αcos21 22 23 1αtan/3-1-33- 017.三角函数线:(1)有向线段:当角α的终边不在坐标轴上时,我们把MP 、OM 、AT 都看成带有方向的线段,这种带方向的线段叫有向线段规定:与坐标轴相同的方向为正方向(2)这几条与单位圆有关的有向线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线注:(1)正弦线、余弦线、正切线分别解释了正弦函数x y sin =,余弦函数x y cos =、正切函数x y tan =的几何意义(2)正弦线、余弦线、正切线的方向与坐标轴正方向相同时,对应的三角函数值为正,与坐标轴正方向相反时,对应的三角函数值为负 18.同角三角函数的关系:(1)平方关系:1cos sin 22=+αα (2)商数关系:=αtan ααcos sin 、=αcot ααsin cos (3)倒数关系:1cot tan =αα 注意公式的变形:(1)1cos sin 22=+x x ⇒x x 22cos 1sin -=、x x 22sin 1cos -= (2)⇒=αααcos sin tan =αsin ααcos tan 、⇒=αααsin cos cot =αcos ααsin cot (3)ααααααcos sin ,cos sin ,cos sin -+的关系:①=+2)cos (sin ααααcos sin 21+ ②=-2)cos (sin ααααcos sin 21- ③=-++22)cos (sin )cos (sin αααα219.正弦函数x y sin =、余弦函数x y cos =、正切函数x y tan =的图像和性质 函数x y sin = x y cos = x y tan =图形定义域 RR⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππ值域]1,1[-]1,1[-R最值当Z k k x ∈+=,22ππ时,有最大值当Z k k x ∈-=,22ππ时,有最大值当Z k k x ∈=,2π时,有最大值当Z k k x ∈+=,22ππ时,有最大值无最大值无最小值单调性在Zk k k ∈+-],22,22[ππππ上递增在Zk k k ∈++],232,22[ππππ上递减在Z k k k ∈-],2,2[πππ上递增在Z k k k ∈+],2,2[πππ上递减在Zk k k ∈+-),2,2(ππππ上递增奇偶性 奇函数偶函数奇函数周期性π2=Tπ2=Tπ=T 对称性关于Z k k x ∈+=,2ππ对称关于点Z k k ∈),0,(π中心对称关于Z k k x ∈=,π对称 关于点Zk k ∈+),0,2(ππ中心对称关于点Z k k ∈),0,2(π中心对称20.三角函数周期结论(1)函数B x A y ++=)sin(ϕω(其中0,≠ωA )的周期=T ωπ2函数B x A y ++=)cos(ϕω(其中0,≠ωA )的周期=T ωπ2函数)tan(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ (2)函数)sin(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ 函数)cos(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ 函数)tan(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ (3)函数B x A y ++=)sin(ϕω(其中0,,≠B A ω)的周期=T ωπ2函数B x A y ++=)cos(ϕω(其中0,,≠B A ω)的周期=T ωπ221.函数B x A y ++=)sin(ϕω)0,0(>>ωA 的图像的作法(1)图像变换法:函数B x A y ++=)sin(ϕω的图像可由正弦函数x y sin =经过一系列的变换得到:①先平移变换,再周期变换:x y sin =———————————→)sin(ϕ+=x y —————————→)sin(ϕω+=x y——————————→)sin(ϕω+=x A y ——————————→B x A y ++=)sin(ϕω ②先周期变换,再平移变换:x y sin =———————————→)sin(x y ω=——————————→)sin(ϕω+=x y——————————→)sin(ϕω+=x A y ——————————→B x A y ++=)sin(ϕω (2)五点作图法:函数B x A y ++=)sin(ϕω的图像画法:一个周期内起关键作用的五个点的横坐标可由=+ϕωx ππππ2,23,,2,0得到 22.函数变换结论: (1)平移变换01左右平移:①将函数)(x f y =的图象向左移a 个单位得函数)(a x f y +=的图象 ②将函数)(x f y ω=的图象向左移a 个单位得函数))((a x f y +=ω的图象02上下平移:将函数)(x f y =的图象向上移b 个单位得函数b x f y +=)(的图象(2)伸缩变换①函数)(x f y ω=的图象可由函数)(x f y =的图象上每一点的纵坐标不变,横坐标变为原来的ω1倍得到 ②函数)(x Af y =的图象可由函数)(x f y =的图象上每一点的横坐标不变,纵坐标变为原来的A 倍得到 (3)翻折变换①函数)(x f y =的图象可将函数)(x f y =的图像y 轴右侧的图像保留,y 轴左侧的图像由y 轴右侧的图像沿y 轴翻折得到②函数)(x f y =的图象可将函数)(x f y =的图像在x 轴上方的图像保留,x 轴下方的图像沿x 轴翻折到x 轴上方得到 23.两个函数的对称性结论(1)函数)(x f y -=与)(x f y =的图象关于x 轴对称 (2)函数)(x f y -=与)(x f y =的图象关于y 轴对称 (3)函数)(x f y --=与)(x f y =的图象关于原点对称 (4)函数)(1x fy -=与)(x f y =的图象关于x y =对称(5)函数)2(x a f y -=与)(x f y =的图象关于a x =对称(6)函数)2(x a f y --=与)(x f y =的图象关于点)0,(a 对称24.函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y )0,0(>>ωA 的奇偶性结论 (1)函数)sin(ϕω+=x A y 为奇函数⇔Z k k ∈=,πϕ(2)函数)sin(ϕω+=x A y 为偶函数⇔Z k k ∈+=,2ππϕ(3)函数)cos(ϕω+=x A y 为奇函数⇔Z k k ∈+=,2ππϕ(4)函数)cos(ϕω+=x A y 为偶函数⇔Z k k ∈=,πϕ 二、三角变换25.两角和与差的正弦余弦正切公式:(1)=+)sin(βαβαβαsin cos cos sin +,记作)(βα+ S (2)=-)sin(βαβαβαsin cos cos sin -,记作)(βα- S (3)=+)cos(βαβαβαsin sin cos cos -,记作)(βα+C (4)=-)cos(βαβαβαsin sin cos cos +,记作)(βα-C (5)=+)tan(βαβαβαtan tan 1tan tan -+,记作)(βα+T(6)=-)tan(βαβαβαtan tan 1tan tan +-,记作)(βα-T26.二倍角的正弦、余弦、正切公式 (1)=α2sin ααcos sin 2(2)=α2cos αα22sin cos -=1cos 22-α=α2sin 21-(3)=α2tan αα2tan 1tan 2- 注:二倍角公式的变形:(1)=+2)cos (sin ααααcos sin 21+;=-2)cos (sin ααααcos sin 21-(2)升幂缩角公式:=+αcos 12cos 22α;=-αcos 12sin 22α(3)降幂扩角公式:=α2sin 22cos 1α-;=α2cos 22cos 1α+ =α2sin 2α2cos 1-;=α2cos 2α2cos 1+27.半角公式:(1) =2sinα22cos 1α-±=2cosα22cos 1α+±=2tanααα2cos 12cos 1+-±(2)=2tanαααsin cos 1-=ααcos 1sin +28.辅助角公式: (1)=+θθcos sin b a )sin(22ϕ++x b a ,其中=ϕsin 22b a b +,=ϕcos 22b a a +(2)=+θθcos sin b a )cos(22ϕ-+x b a ,其中=ϕsin 22ba a +,=ϕcos 22ba b +29.万能公式=α2sin αα2tan 1tan 2+ =α2cos αα22tan 1tan 1+- =α2tan αα2tan 1tan 2- 30.积化和差公式=βαcos sin )]sin()[sin(21βαβα-++=βαsin cos )]sin()[sin(21βαβα--+ =βαcos cos )]cos()[cos(21βαβα-++ =βαsin sin )]cos()[cos(21βαβα--+-31.和差化积公式=+βαsin sin 2cos2sin2βαβα-+=-βαsin sin 2sin2cos2βαβα-+=+βαcos cos 2cos2cos2βαβα-+=-βαcos cos 2sin2sin2βαβα-+-。
三角函数的定义与性质

三角函数的定义与性质三角函数是数学中的重要概念之一,它在几何学、物理学、工程学等领域具有广泛的应用。
本文将探讨三角函数的定义与性质,帮助读者更好地理解和应用这一概念。
一、三角函数的定义三角函数是用于描述角度与弧长之间关系的函数。
常见的三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)、余切函数(cot)、正割函数(sec)和余割函数(csc)。
1. 正弦函数(sin):在一个直角三角形中,正弦函数定义为对边与斜边之比。
用数学符号表示为:sinθ = 对边 / 斜边。
2. 余弦函数(cos):在一个直角三角形中,余弦函数定义为邻边与斜边之比。
用数学符号表示为:cosθ = 邻边 / 斜边。
3. 正切函数(tan):在一个直角三角形中,正切函数定义为对边与邻边之比。
用数学符号表示为:tanθ = 对边 / 邻边。
4. 余切函数(cot):在一个直角三角形中,余切函数定义为邻边与对边之比。
用数学符号表示为:cotθ = 邻边 / 对边。
5. 正割函数(sec):在一个直角三角形中,正割函数定义为斜边与邻边之比。
用数学符号表示为:secθ = 斜边 / 邻边。
6. 余割函数(csc):在一个直角三角形中,余割函数定义为斜边与对边之比。
用数学符号表示为:cscθ = 斜边 / 对边。
二、三角函数的性质三角函数具有一系列的性质,这些性质在解决三角函数相关问题时起着重要的作用。
1. 周期性:所有的三角函数都是周期函数,即函数值在一定区间内重复出现。
其中,正弦函数和余弦函数的周期为2π,而正切函数和余切函数的周期为π。
2. 奇偶性:正弦函数和正切函数是奇函数,余弦函数和余切函数是偶函数。
奇函数满足f(-x) = -f(x),偶函数满足f(-x) = f(x)。
3. 值域:正弦函数和余弦函数的值域是[-1, 1],而正切函数和余切函数的值域是实数全集。
4. 互余关系:正弦函数和余弦函数满足互余关系,即sinθ = cos(π/2 - θ),cosθ = sin(π/2 - θ)。
高中数学 三角函数

高中数学:三角函数一、概述三角函数是高中数学的一个重要组成部分,是解决许多数学问题的关键工具。
它涉及的角度、边长、面积等,都是几何和代数的核心元素。
通过学习三角函数,我们可以更好地理解图形的关系,掌握数学的基本概念。
二、三角函数的定义三角函数是以角度为自变量,角度对应的边长为因变量的函数。
常用的三角函数包括正弦函数(sine)、余弦函数(cosine)和正切函数(tangent)。
这些函数的定义如下:1、正弦函数:sine(θ) = y边长 / r (其中,θ是角度,r是从原点到点的距离)2、余弦函数:cosine(θ) = x边长 / r3、正切函数:tangent(θ) = y边长 / x边长三、三角函数的基本性质1、周期性:正弦函数和余弦函数都具有周期性,周期为 2π。
正切函数的周期性稍有不同,为π。
2、振幅:三角函数的振幅随着角度的变化而变化。
例如,当角度增加时,正弦函数的值也会增加。
3、相位:不同的三角函数具有不同的相位。
例如,正弦函数的相位落后余弦函数相位π/2。
4、奇偶性:正弦函数和正切函数是奇函数,余弦函数是偶函数。
5、导数:三角函数的导数与其自身函数有关。
例如,正弦函数的导数是余弦函数,余弦函数的导数是负的正弦函数。
四、三角函数的实际应用三角函数在现实生活中有着广泛的应用,包括但不限于以下几个方面:1、物理:在物理学中,三角函数被广泛应用于描述波动、振动、电磁场等物理现象。
例如,简谐振动可以用正弦或余弦函数来描述。
2、工程:在土木工程和机械工程中,三角函数被用于计算角度、长度等物理量。
例如,在桥梁设计、建筑设计等过程中,需要使用三角函数来计算最佳的角度和长度。
3、计算机科学:在计算机图形学中,三角函数被用于生成二维和三维图形。
例如,使用正弦和余弦函数可以生成平滑的渐变效果。
4、金融:在金融学中,三角函数被用于衍生品定价和风险管理。
例如,Black-Scholes定价模型就使用了正态分布(一种特殊的三角函数)。
高中数学《任意角三角函数的定义》课件

二 用有向线段表示三角函数
例3求出的各三角函数在各象限内的符号可用图5.2-6来直观表示:
(1)
(2)
图5.2-6
(3)
请用三角函数的定 义说明正弦、余弦、正 切在各个象限内的符号.
二 用有向线段表示三角函数
例 4 设sin θ <0且tan θ >0,确定θ是第几象限的角. 解 因为sin θ<0,
过点P作x轴的垂线,垂足为D,则在
Rt△OPD中,三边OP,OD,DP之长分别
为r,x,y.
由锐角三角函数的定义有:
sin y ,cos x ,tan y .
r
r
x
图5.2-1
一
用比值定义三角函数
若在角α的终边OM上另取一点P′(x′,y′),按照同样的方法构造直角三角形, 由相似三角形的知识可以知道:对于确定的角α,上述三个比值不会随点P在α的 终边上的位置的变化而变化.因此,把锐角放在直角坐标系中,锐角的三角函数 (正弦、余弦、正切)可以用终边上不同于原点的任意一点的坐标来表示.
将DP看作有方向的线段,D为起点,P为终点:当它指向y轴的正方向时,取
正实数值y;当它指向y轴的负方向时,取负实数值y;当它的长度为0时,取零
值.在所有的情况下都有
DP=y=sin α.
由于直角坐标系内点的 坐标与坐标轴的方向有关, 以坐标轴的方向来规定有向 线段的方向,使得它们的取 值与点P的坐标一致.
解 x=4,y=-3,则r= 42 32 =5,
所以 sin y 3 3 ,
r5 5
cos x 4 ,
r5
tan y 3 3 .
x4 4
图5.2-3
一
用比值定义三角函数
高中数学必修一课件:三角函数的概念

【分析】 先确定所给角的象限,再确定有关的三角函数值的符号.
【解析】 (1)∵105°,-230°均为第二象限角, ∴sin 105°>0,cos(-230°)<0.于是sin 105°cos(-230°)<0. (2)∵π2 <78π<π,∴78π是第二象限角, 则sin 78π>0,tan 78π<0.∴sin 78πtan 78π<0.
1
2
4.sin 390°=____2____;cos(-315°)=____2____;tan
8π 3 =__-___3___.
5.判断sin 3cos 4tan-234π的符号. 解析 ∵π2 <3<π,π<4<3π 2 ,∴sin 3>0,cos 4<0.
∵-234π=-6π+π4 ,∴tan-234π>0.
1.对三角函数概念的理解应注意什么? 答:①三角函数值是比值,是一个实数,这个实数的大小和点P(x,y)在终 边上的位置无关,只由角α的终边位置确定,即三角函数值大小只与角有关.
②符号sin α,cos α,tan α各自是一个整体,离开“α”,“sin” “cos”“tan”不表示任何意义,更不能把“sin α”当成“sin”与“α”的乘
课时学案
题型一 利用定义求值
例1 (1)求4π 3 的正弦值、余弦值和正切值.
【解析】
①sin
4π 3 =sinπ+π3 =-sin
π 3 =-
23,
②cos 4π 3 =cosπ+π3 =-cos π3 =-12,
③tan
4π 3 =tanπ+π3 =tan
5.2.1 三角函数的概念-(新教材人教版必修第一册)(36张PPT)

第二 阶段
课堂探究评价
关键能力 素养提升
类型一:利用三角函数的定义求三角函数值
典例示范
【例 1】 已知角 θ 的终边上一点 P(x,3)(x≠0),且 cos θ= 1100x, 求 sin θ,tan θ.
解:由题意知 r=|OP|= x2+9,由三角函数定义得 cos θ=xr=
x x2+9.
cos cos
xx+ttaann
xx=-2;
当
x
是第三象限角时,cos
x=-cos
x,tan
x=tan
x,∴y=ccooss
x
x
+ttaann xx=0;
当
x
是第四象限角时,cos
x=cos
x,tan
x=-tan
x,∴y=ccooss
x
x
+ttaann xx=0. 故所求函数的值域为{-2,0,2}.
类型三:诱导公式一的应用
典例示范
【例 5】计算下列各式的值: (1)sin(-1 395°)cos 1 110°+cos(-1 020°)·sin 750°; (2)sin-116π+cos152π·tan 4π.
解 : (1) 原 式 = sin( - 4×360°+ 45°)cos(3×360°+ 30°) + cos( -
(1)sin 3,cos 4,tan 5;
(2)sin(cos θ)(θ 为第二象限角). 解:(1)∵π2<3<π<4<32π<5<2π, ∴3,4,5 分别在第二、三、四象限, ∴sin 3>0,cos 4<0,tan 5<0. (2)∵θ 是第二象限角, ∴-π2<-1<cos θ<0,∴sin(cos θ)<0.
人教版高中数学必修1《三角函数的概念》PPT课件

• [方法技巧]
• 有关三角函数值符号问题的解题策略
• (1)已知角α的三角函数值(sin α,cos α,tan α)中任意两 个的符号,可分别确定出角α终边所在的可能位置,二者的 公共部分即角α的终边位置.注意终边在坐标轴上的特殊情 况.
• (2)对于多个三角函数值符号的判断问题,要进行分类讨 论.
()
• A.第一象限 二象限
B.第
• C.第三象限
D.第四象限
• (2)判断下列各式的符号:
• ①sin 2 020°cos 2 021°tan 2 022°;
• ②tan 191°-cos 191°;
• ③sin 2cos 3tan 4.
• [解析] (1)由点P(sin θ,sin θcos θ)位于第二象限,
则 sin θ+tan θ=3 1100+30;
当 θ 为第二象限角时,sin θ=31010,tan θ=-3,
则 sin θ+tan θ=3
10-30 10 .
(2)直线 3x+y=0,即 y=- 3x 经过第二、四象限. 在第二象限取直线上的点(-1, 3), 则 r= -12+ 32=2, 所以 sin α= 23,cos α=-12,tan α=- 3; 在第四象限取直线上的点(1,- 3), 则 r= 12+- 32=2, 所以 sin α=- 23,cos α=12,tan α=- 3.
• 可得sin θ<0,sin θcos θ>0,可得sin θ<0,cos θ<0,
• 所以角θ所在的象限是第三象限.
答案:C (2)①∵2 020°=1 800°+220°=5×360°+220°, 2 021°=5×360°+221°,2 022°=5×360°+222°, ∴它们都是第三象限角,∴sin 2 020°<0,cos 2 021°<0,tan 2 022°>0, ∴sin 2 020°cos 2 021°tan 2 022°>0. ②∵191°角是第三象限角,∴tan 191°>0,cos 191°<0, ∴tan 191°-cos 191°>0. ③∵π2<2<π,π2<3<π,π<4<32π, ∴2 是第二象限角,3 是第二象限角,4 是第三象限角, ∴sin 2>0,cos 3<0,tan 4>0,∴sin 2cos 3tan 4<0.
三角函数的定义

三角函数的定义三角函数是数学中一个重要的概念,它们在几何和物理问题的求解中起着重要的作用。
它们被广泛应用于三角学、天文学、物理学、工程学等领域。
在这篇文章中,我们将介绍三角函数的定义及其基本性质。
一、正弦函数的定义正弦函数是三角函数中最基本的一个函数。
它的定义如下:对于任意实数x,正弦函数sin(x)等于直角三角形中对边的长度除以斜边的长度。
即:sin(x) = opposite/hypotenuse其中opposite表示直角三角形中对边的长度,hypotenuse表示斜边的长度。
二、余弦函数的定义余弦函数是三角函数中另一个重要的函数。
它的定义如下:对于任意实数x,余弦函数cos(x)等于直角三角形中邻边的长度除以斜边的长度。
即:cos(x) = adjacent/hypotenuse其中adjacent表示直角三角形中邻边的长度,hypotenuse表示斜边的长度。
三、正切函数的定义正切函数是三角函数中另一个常用的函数。
它的定义如下:对于任意实数x,正切函数tan(x)等于直角三角形中对边的长度除以邻边的长度。
即:tan(x) = opposite/adjacent其中opposite表示直角三角形中对边的长度,adjacent表示直角三角形中邻边的长度。
四、割函数、余割函数、余切函数的定义割函数sec(x)、余割函数csc(x)和余切函数cot(x)是三角函数的倒数函数,它们的定义如下:sec(x) = 1/cos(x)csc(x) = 1/sin(x)cot(x) = 1/tan(x)其中cos(x)、sin(x)和tan(x)分别为x的相应三角函数。
五、三角函数的周期性除了定义和基本性质,三角函数还具有一个重要的特性,即周期性。
正弦函数和余弦函数周期是2π,而正切函数、割函数、余割函数和余切函数周期是π。
周期性意味着三角函数在每个周期内的值相同。
利用这个特性,我们可以简化复杂的三角函数表达式,并进行更简洁的计算。
高中全部三角函数公式

高中全部三角函数公式高中三角函数公式是高中数学中的一个重要部分,它是解决与三角函数有关的问题的基础。
下面是高中全部三角函数公式,共分为三个部分:1.正弦函数公式正弦函数公式定义如下:sinθ = 对边/斜边其中,θ表示夹角,对边表示夹角θ的对边长度,斜边表示夹角θ的斜边长度。
2.余弦函数公式余弦函数公式定义如下:cosθ = 邻边/斜边其中,θ表示夹角,邻边表示夹角θ的邻边长度,斜边表示夹角θ的斜边长度。
3.正切函数公式正切函数公式定义如下:tanθ = 对边/邻边其中,θ表示夹角,对边表示夹角θ的对边长度,邻边表示夹角θ的邻边长度。
以上三个基本三角函数公式是高中数学中最基础和最重要的一部分,通过这些公式可以计算出夹角的正弦、余弦和正切值。
二、诱导公式1.余弦-正弦诱导公式cos(α-β) = cosαcosβ + sinαsinβcos(α+β) = cosαcosβ - sinαsinβsin(α+β) = sinαcosβ + cosαsinβsin(α-β) = sinαcosβ - cosαsinβ2.二倍角公式sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θ = 2cos^2θ - 1 = 1 - 2sin^2θtan2θ = 2tanθ/1-tan^2θ3.万能公式sinθ = 2tan(θ/2)/1+tan^2(θ/2)cosθ = 1-tan^2(θ/2)/1+tan^2(θ/2)tanθ = 2tan(θ/2)/1-tan^2(θ/2)以上是诱导公式中的一部分,它们可以通过一些变换和推导得到,使用这些公式可以简化一些复杂的三角函数表达式的计算。
三、三角函数的和差化积和积化和公式1.和差化积公式sin(α+β) = cosαsinβ + sinαcosβsin(α-β) = sinαcosβ - cosαsinβcos(α+β) = cosαcosβ - sinαsinβcos(α-β) = cosαcosβ + sinαsinβ2.积化和公式sinαsinβ = (1/2)(cos(α-β) - cos(α+β))cosαcosβ = (1/2)(cos(α-β) + cos(α+β))sinαcosβ = (1/2)(sin(α+β) + sin(α-β))以上是高中全部的三角函数公式,包括基本三角函数公式、诱导公式和三角函数的和差化积和积化和公式。
高中数学第一章三角函数1.2.1.1三角函数的定义省公开课一等奖新名师优质课获奖PPT课件

探究二
探究三
(1)解析:依题意,x2+
5
3
2
3
α=± ,tan α=
2
3
答案:
5
±3
5
±3
思维辨析
2 2
=1,解得
3
5
x=± 3 ,于是
2
sin α=3,cos
2 5
.
5
=±
2 5
5
±
(2) 解析:由已知得 x=-6,y=8,
8
10
所以 r= 2 + 2 =10,于是 sin θ=
8
-6
4
4
一
二
三
3.做一做:求值
(1)sin 780°;
25
(2)cos 4 π;
(3)tan
15
-4π
.
3
2
解:(1)sin 780°=sin(2×360°+60°)=sin 60°= .
25
π
π
2
(2)cos 4 π=cos 3 × 2π + 4 =cos4 = 2 .
15
π
π
(3)tan - 4 π =tan -2 × 2π + 4 =tan4=1.
第27页
探究一
探究二
探究三
思维辨析
忽视对参数的分类讨论致误
【典例】 角 α 的终边过点 P(-3a,4a),a≠0,则 cos
α=
.
错解因为 x=-3a,y=4a,所以 r= (-3)2 + (4)2 =5a,于是 cos
-3 3
α= 5 =-5.
错解错在什么地方?你能发现吗?怎样避免这类错误呢?
高一数学必修4三角函数的定义讲义

三角函数的定义知识梳理1、任意角三角函数的定义(1)单位圆:在直角坐标系中,以原点O 为圆心,以单位长度为半径的圆称为单位圆. (2)单位圆中任意角的三角函数的定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么y 叫做α的正弦,记作sin α,即sin α=y ;x 叫做α的余弦,记作cos α,即cos α=x ;y x 叫做α的正切,记作tan α,即tan α=yx (x ≠0).2、三角函数正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,它们统称为三角函数.3、三角函数的定义域三角函数 定义域 sin α R cos α Rtan α⎩⎨⎧⎭⎬⎫α⎪⎪α≠π2+k π,k ∈Z 4、三角函数值的符号5、终边相同的角的同一三角函数的值(1)终边相同的角的同一三角函数的值相等.(2)公式:sin(α+k ·2π)=sin_α,cos(α+k ·2π)=cos_α,tan(α+k ·2π)=tan_α,其中k ∈Z .例题精讲题型一、三角函数的定义及应用例1、(1)若角α的终边经过点P (5,-12),则sin α=________,cos α=________,tan α=________. (2)已知角α的终边落在直线3x +y =0上,求sin α,cos α,tan α的值.利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种:法一:先利用直线与单位圆相交,求出交点坐标,然后利用三角函数的定义求出相应的三角函数值. 法二:注意到角的终边为射线,所以应分两种情况来处理,取射线上任一点坐标(a ,b ),则对应角的正弦值sinα=b a 2+b 2,余弦值cos α=a a 2+b 2,正切值tan α=ba .(2)当角的终边上的点的坐标以参数的形式给出时,要根据问题的实际情况对参数进行分类讨论.变式训练已知角α的终边过点P (12,a ),且tan α=512,求sin α+cos α的值.题型二、三角函数值符号的运用例2、(1)若sin αtan α<0,且cos αtan α<0,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角(2)判断下列各式的符号:①sin 105°·cos 230°; ②cos 3·tan ⎝⎛⎭⎫-2π3.三角函数值的符号规律(1)当角θ为第一象限角时,sin θ>0,cos θ>0或sin θ>0,tan θ>0或cos θ>0,tan θ>0,反之也成立; (2)当角θ为第二象限角时,sin θ>0,cos θ<0或sin θ>0,tan θ<0或cos θ<0,tan θ<0,反之也成立; (3)当角θ为第三象限角时,sin θ<0,cos θ<0或sin θ<0,tan θ>0或cos θ<0,tan θ>0,反之也成立; (4)当角θ为第四象限角时,sin θ<0,cos θ>0或sin θ<0,tan θ<0或cos θ>0,tan θ<0,反之也成立.变式训练若sin 2α>0,且cos α<0,试确定α终边所在的象限.题型三、诱导公式一的应用例3、计算下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°; (2)sin ⎝⎛⎭⎫-11π6+cos 12π5·tan 4π.变式训练求下列各式的值:(1)sin 25π3+tan ⎝⎛⎭⎫-15π4; (2)sin 810°+cos 360°-tan 1 125°.课堂小测1、若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( )A .锐角三角形B .钝角三角形C .直角三角形D .以上三种情况都可能2、若角α的终边过点(2sin 30°,-2cos 30°),则sin α的值等于( )A.12 B .-12 C .-32 D .-33 3、sin ⎝⎛⎭⎫-196π=________. 4、已知角θ的顶点为坐标原点,始边为x 轴的非负半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.5、化简下列各式:(1)a cos 180°+b sin 90°+c tan 0°; (2)p 2cos 360°+q 2sin 450°-2pq cos 0°; (3)a 2sin π2-b 2cos π+ab sin 2π-ab cos 3π2.同步练习1、25πsin6等于( )A .12 B .2 C .12- D .2-2、若角α的终边经过点34,55P ⎛⎫- ⎪⎝⎭,则sin tan αα⋅=( )A .1615 B .1615- C .1516D .1516- 3、利用余弦线比较cos1,πcos 3,cos 1.5的大小关系是( ) A .πcos1cos cos1.53<< B .πcos1cos1.5cos 3<< C .πcos1coscos1.53>> D .πcos1.5cos1cos 3>> 4、如图,在单位圆中角α的正弦线、正切线完全正确的是( ) A .正弦线PM ,正切线A T '' B .正弦线MP ,正切线A T '' C .正弦线MP ,正切线ATD .正弦线PM ,正切线AT5、角α的终边经过点(),4P b -且3cos 5α=-,则b 的值为( ) A .3 B .3- C .3± D .5 6、已知x 为终边不在坐标轴上的角,则函数()|sin |cos |tan |sin |cos |tan x x x x f x x x=++的值域是( ) A .{}3,1,1,3-- B .{}3,1-- C .{}1,3 D .{}1,3- 7、在[]0,2π上,满足3sin 2x ≥的x 的取值范围为( ) A .π0,3⎡⎤⎢⎥⎣⎦B .π2π,33⎡⎤⎢⎥⎣⎦ C .π2π,63⎡⎤⎢⎥⎣⎦ D .5π,π6⎡⎤⎢⎥⎣⎦8、若θ为第一象限角,则能确定为正值的是 ( ) A .sin2θB .cos2θC .tan2θD .cos 2θ9、已知α的终边经过点()36,2a a -+,且sin 0,cos 0,αα>≤则α的取值范围为________.10、若角α的终边与直线3y x =重合且sin 0α<,又(),P m n 是α终边上一点,且10OP =,则m n -=_____. 11、已知点()sin cos ,tan P ααα-在第一象限,则在[]0,2π内α的取值范围为__________. 12、(1)23π17πcos tan 34⎛⎫-+ ⎪⎝⎭; (2)sin 630tan 1 125tan 765cos 540︒+︒+︒+︒.13、当π0,2α⎛⎫∈ ⎪⎝⎭时,求证:sin tan ααα<<.14、已知角α的终边落在直线2y x =上,求sin α,cos α,tan α的值.。
三角函数公式大全(很详细)

高中三角函数公式大全[图]1 三角函数的定义三角形中的定义图1 在直角三角形中定义三角函数的示意图在直角三角形ABC,如下定义六个三角函数:正弦函数余弦函数正切函数余切函数正割函数余割函数直角坐标系中的定义图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数:正弦函数r余弦函数正切函数余切函数正割函数余割函数2 转化关系倒数关系平方关系2 和角公式3 倍角公式、半角公式倍角公式半角公式万能公式4 积化和差、和差化积积化和差公式证明过程首先,sin(α+β)=sinαcosβ+sinβcosα(已证。
证明过程见《和角公式与差角公式的证明》)因为sin(α+β)=sinαcosβ+sinβcosα(正弦和角公式)则sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα于是sin(α-β)=sinαcosβ-sinβcosα(正弦差角公式)将正弦的和角、差角公式相加,得到sin(α+β)+sin(α-β)=2sinαcosβ则sinαcosβ=sin(α+β)/2+sin(α-β)/2(“积化和差公式”之一)同样地,运用诱导公式cosα=sin(π/2-α),有cos(α+β)=sin[π/2-(α+β)]=sin(π/2-α-β)=sin[(π/2-α)+(-β)]=sin(π/2-α)cos(-β)+sin(-β)cos(π/2-α)=cosαcosβ-sinαsinβ于是cos(α+β)=cosαcosβ-sinαsinβ(余弦和角公式)那么cos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβcos(α-β)=cosαcosβ+sinαsinβ(余弦差角公式)将余弦的和角、差角公式相减,得到cos(α+β)-cos(α-β)=-2sinαsinβ则sinαsinβ=cos(α-β)/2-cos(α+β)/2(“积化和差公式”之二)将余弦的和角、差角公式相加,得到cos(α+β)+cos(α-β)=2cosαcosβ则cosαcosβ=cos(α+β)/2+cos(α-β)/2(“积化和差公式”之三)这就是积化和差公式:sinαcosβ=sin(α+β)/2+sin(α-β)/2sinαsinβ=cos(α-β)/2-cos(α+β)/2cosαcosβ=cos(α+β)/2+cos(α-β)/2和差化积公式部分证明过程:sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosαcos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)=cosαcosβ-sinαs inβcos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβtan(α+β)=sin(α+β)/cos(α+β)=(sinαcosβ+sinβcosα)/(cosαcosβ-sinαsinβ)=(cosαtanαcosβ+cosβtanβcosα)/(cosαcosβ-cosαtanαcosβtanβ)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=tan[α+(-β)]=[tanα+tan(-β)]/[1-tanαtan(-β)]=(tanα-tanβ)/(1+tanαtanβ)诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(pi/2-a)=cos(a)cos(pi/2-a)=sin(a)sin(pi/2+a)=cos(a)cos(pi/2+a)=-sin(a)sin(pi-a)=sin(a)cos(pi-a)=-cos(a)sin(pi+a)=-sin(a)cos(pi+a)=-cos(a)tgA=tanA=sinA/cosA两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b))三角函数和差化积公式sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2)sin(a)−sin(b)=2cos((a+b)/2)sin((a-b)/2)cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2)cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)积化和差公式sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]二倍角公式sin(2a)=2sin(a)cos(a)cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a)sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))其它公式a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]1+sin(a)=(sin(a/2)+cos(a/2))^21-sin(a)=(sin(a/2)-cos(a/2))^2其他非重点三角函数csc(a)=1/sin(a)sec(a)=1/cos(a)sinh(a)=(e^a-e^(-a))/2 cosh(a)=(e^a+e^(-a))/2 tgh(a)=sinh(a)/cosh(a)常用公式表(一)1。
三角函数公式大全很详细

高中三角函数公式大全图1 三角函数的定义三角形中的定义图1 在直角三角形中定义三角函数的示意图在直角三角形ABC,如下定义六个三角函数:•正弦函数•余弦函数•正切函数•余切函数•正割函数•余割函数直角坐标系中的定义图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数:•正弦函数r •余弦函数•正切函数•余切函数•正割函数•余割函数2 转化关系倒数关系平方关系2 和角公式3 倍角公式、半角公式倍角公式半角公式万能公式4 积化和差、和差化积积化和差公式证明过程首先,sinα+β=sinαcosβ+sinβcosα已证;证明过程见因为sinα+β=sinαcosβ+sinβcosα正弦和角公式则sinα-β=sinα+-β=sinαcos-β+sin-βcosα=sinαcosβ-sinβcosα于是sinα-β=sinαcosβ-sinβcosα正弦差角公式将正弦的和角、差角公式相加,得到sinα+β+sinα-β=2sinαcosβ则sinαcosβ=sinα+β/2+sinα-β/2“积化和差公式”之一同样地,运用诱导公式cosα=sinπ/2-α,有cosα+β=sinπ/2-α+β=sinπ/2-α-β=sinπ/2-α+-β=sinπ/2-αcos-β+sin-βcosπ/2-α=cosαcosβ-sinαsinβ于是cosα+β=cosαcosβ-sinαsinβ余弦和角公式那么cosα-β=cosα+-β=cosαcos-β-sinαsin-β=cosαcosβ+sinαsinβcosα-β=cosαcosβ+sinαsinβ余弦差角公式将余弦的和角、差角公式相减,得到cosα+β-cosα-β=-2sinαsinβ则sinαsinβ=cosα-β/2-cosα+β/2“积化和差公式”之二将余弦的和角、差角公式相加,得到cosα+β+cosα-β=2cosαcosβ则cosαcosβ=cosα+β/2+cosα-β/2“积化和差公式”之三这就是积化和差公式:sinαcosβ=sinα+β/2+sinα-β/2sinαsinβ=cosα-β/2-cosα+β/2cosαcosβ=cosα+β/2+cosα-β/2和差化积公式部分证明过程:sinα-β=sinα+-β=sinαcos-β+sin-βcosα=sinαcosβ-sinβcosαcosα+β=sin90-α+β=sin90-α-β=sin90-αcosβ-sinβcos90-α=cosαcosβ-sinαsinβcosα-β=cosα+-β=cosαcos-β-sinαsin-β=cosαcosβ+sinαsinβtanα+β=sinα+β/cosα+β=sinαcosβ+sinβcosα/cosαcosβ-sinαsinβ=cosαtanαcosβ+cosβtanβcosα/cosαcosβ-cosαtanαcosβtanβ=tanα+tanβ/1-tanαtanβtanα-β=tanα+-β=tanα+tan-β/1-tanαtan-β=tanα-tanβ/1+tanαtanβ•sin-a=-sina•cos-a=cosa•sinpi/2-a=cosa•cospi/2-a=sina•sinpi/2+a=cosa•cospi/2+a=-sina•sinpi-a=sina•cospi-a=-cosa•sinpi+a=-sina•cospi+a=-cosa•tgA=tanA=sinA/cosA两角和与差的三角函数•sina+b=sinacosb+cosαsinb•cosa+b=cosacosb-sinasinb•sina-b=sinacosb-cosasinb•cosa-b=cosacosb+sinasinb•tana+b=tana+tanb/1-tanatanb•tana-b=tana-tanb/1+tanatanb 三角函数和差化积公式•sina+sinb=2sina+b/2cosa-b/2•sina−sinb=2cosa+b/2sina-b/2•cosa+cosb=2cosa+b/2cosa-b/2•cosa-cosb=-2sina+b/2sina-b/2 积化和差公式•sinasinb=-1/2cosa+b-cosa-b•cosacosb=1/2cosa+b+cosa-b•sinacosb=1/2sina+b+sina-b•sin2a=2sinacosa•cos2a=cos^2a-sin^2a=2cos^2a-1=1-2sin^2a半角公式•sin^2a/2=1-cosa/2•cos^2a/2=1+cosa/2•tana/2=1-cosa/sina=sina/1+cosa万能公式•sina= 2tana/2/1+tan^2a/2•cosa= 1-tan^2a/2/1+tan^2a/2•tana= 2tana/2/1-tan^2a/2其它公式•asina+bcosa=sqrta^2+b^2sina+c 其中,tanc=b/a•asina-bcosa=sqrta^2+b^2cosa-c 其中,tanc=a/b•1+sina=sina/2+cosa/2^2•1-sina=sina/2-cosa/2^2其他非重点三角函数•csca=1/sina•seca=1/cosa双曲函数•sinha=e^a-e^-a/2•cosha=e^a+e^-a/2•tgha=sinha/cosha常用公式表一1;乘法公式1a+b ²=a 2+2ab+b 22a-b ²=a ²-2ab+b ² 3a+ba-b=a ²-b ²4a ³+b ³=a+ba ²-ab+b ² 5a ³-b ³=a-ba ²+ab+b ²2、指数公式:1a 0=1 a ≠0 2a P -=P a 1a ≠0 3a mn=m n a 4a m a n =a n m + 5a m ÷a n =n ma a =a n m - 6a m n =a mn7ab n =a n b n8b an =n nb a 9a 2=a102a =|a| 3、指数与对数关系:1若a b =N,则N b a log = 2若10b=N,则b=lgN3若b e =N,则b=㏑N 4、对数公式:1b a b a =log , ㏑e b=b 2N a aN =log ,e Nln =N3aNN a ln ln log =4a b b e a ln = 5N M MN ln ln ln += 6N M N M ln ln ln -= 7M n M nln ln = 8㏑n M =M nln 15、三角恒等式:1Sin α²+Cos α²=1 21+tan α²=sec α²31+cot α²=csc α² 4αααtan cos sin = 5αααcot sin cos =6ααtan 1cot = 7ααcos 1csc = 8ααcos 1sec =1αααcos sin 22sin = 2ααα2tan 1tan 22tan -=3ααααα2222sin 211cos 2sin cos 2cos -=-=-=8.半角公式降幂公式:12sin α2=2cos 1a - 22cos α2=2cos 1a +32tan α=a a sin cos 1+=a a cos 1sin +9、三角函数与反三角函数关系:1若x=siny,则y=arcsinx 2若x=cosy,则y=arccosx 3若x=tany,则y=arctanx 4若x=coty,则y=arccotx10、函数定义域求法:1分式中的分母不能为0, a 1α≠02负数不能开偶次方, a α≥0 3对数中的真数必须大于0, N a log N>0 4反三角函数中arcsinx,arccosx 的x 满足:--1≤x ≤1 5上面数种情况同时在某函数出现时,此时应取其交集;11、直线形式及直线位置关系:1直线形式:点斜式:()00x x k y y -=-斜截式:y=kx+b两点式:121121x x x x y y y y --=--2直线关系:111:b x k y l += 222:b x k y l +=平行:若21//l l ,则21k k = 垂直:若21l l ⊥,则121-=⋅k k常用公式表二1、求导法则:1u+v /=u /+v / 2u-v /=u /-v /3cu /=cu /4uv /=uv /+u /v 52v v u v u v u '-'='⎪⎭⎫ ⎝⎛ 2、基本求导公式:1c /=0 2xa /=ax1-a 3ax /=a xlna4e x /=e x 5㏒a x /=a x ln 1 6lnx /=x 17sinx /=cosx 8cosx /=-sinx9tanx /=2)(cos 1x =secx 210cotx /=-2)(sin 1x =-cscx 211secx /=secxtanx 12cscx /=-cscxcotx13arcsinx /=211x - 14arccosx /=-211x -15arctanx /=211x + 16()211cot x x arc +-='3、微分1函数的微分:dy=y /dx2近似计算:|Δx|很小时,f ()x x ∆+0=fx 0+f/x 0x ∆4、基本积分公式1kdx=kx+c 2C x a dx x a a ++=+⎰111 3c x dx x +=⎰ln 14C aa dx a x x+=⎰ln 5⎰+=c e dx e xx 6⎰+-=C x xdx cos sin7⎰+=C x xdx sin cos 8C x dx xxdx +==⎰⎰tan cos 1sec 22 9c x dx x xdx +-==⎰⎰cot sin 1csc 2210⎰+=-cx dx x arcsin 11211c x dx x +=+⎰arctan 1125、定积分公式:1⎰⎰=babadtt f dx x f )()( 2⎰=aadx x f 0)(3()()dx x f dx x f abb a⎰⎰-= 4⎰⎰⎰+=bacabcdxx f dx x f dx x f )()()(5若fx 是-a,a 的连续奇函数,则⎰-=aadx x f 0)(6若fx 是-a,a 的连续偶函数,则:6、积分定理:1()()x f dt t f x a ='⎥⎦⎤⎢⎣⎡⎰ ⎰⎰- = aa a dx x f dx x f 02()()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='⎥⎦⎤⎢⎣⎡⎰2 3若Fx 是fx 的一个原函数,则)()()()(a F b F x F dx x f bab a -==⎰7.积分表()C x x xdx ++=⎰tan sec ln sec 1 ()C x x xdx +-=⎰cot csc ln csc 2 ()C a xa dx x a +=+⎰arctan 11322 ()C a x dx xa +=-⎰arcsin 1422 ()C a x ax a dx a x ++-=-⎰ln 2115228.积分方法()()b ax x f +=1;设:t b ax =+()()222x a x f -=;设:t a x sin =()22a x x f -=;设:t a x sec = ()22x a x f +=;设:t a x tan =()3分部积分法:⎰⎰-=vdu uv udv。
高中数学人教B版 必修第三册 三角函数的定义 课件1

1
π
π
∴S△OPA+S△POB<S 扇形 OAB,∴2sin α+2cos α<4 ,即 sin α+cos α<2 .
π
∴1<sin α+cos α< .
2
方法点睛 要证明一个问题是正确的,我们必须把它所包含的所有
情况逐一说明.若漏掉一种情况,整个证明过程就是不严密的.
π
变式训练利用三角函数线证明 α∈ 0, 2 时,sin α-cos α≤1.
大小顺序排列为
.
解析由如图的三角函数线知,|1 1 |=||<||,
2
2
π
7
8
2π
4
因为 π> π= ,所以||>||,
5π
2π
所以 cos 7 <sin 7 <tan 7 ,所以 b<a<c.
答案b<a<c
数形结合思想在三角不等式证明中的应用
三角函数线是利用数形结合思想解决有关问题的重要工具.作三角
如何?
解析 直线y=2x经过第一、三象限,当角的终边在第一象限时,在角的终边上
取点P(1,2),则r= 12 22 = 5 ,
所以sin α=
2
2 2 5
1
5
=
,cos α= = ,tan α= =2.
1
5
5
5 5
当角的终边在第三象限时,在角的终边上取点Q(-1,-2),则r= (-1) 2 (-2) 2 = 5 ,
7.2.1三角函数的定义
最新课程标准:(1)理解任意角的正弦、余弦、正切的定义,了
解任意角余切、正割、余割的定义.(重点)
高中三角函数公式

高中三角函数公式高中三角函数公式三角函数是数学中非常重要的一类函数,它们常常被应用于各类科学计算和工程技术中。
高中数学中的三角函数主要包括正弦函数、余弦函数和正切函数。
下面我们将介绍这些函数的基本定义、性质和主要公式。
1. 正弦函数正弦函数是一种以周期为2π 的正弦曲线为图像的函数。
它的定义如下:y = sin x其中,x 为自变量,y 为因变量。
正弦函数的定义域为实数集 R,值域为 [-1,1]。
正弦函数的主要性质如下:(1)奇偶性:sin(-x) = -sinx,sin(x+π) = -sinx,sin(x+2π) = sinx。
所以,正弦函数是奇函数。
(2)周期性:sin(x+mπ) = sinx,其中 m 是整数。
所以,正弦函数是周期函数。
(3)对称性:sin(π/2-x) = cosx,sin(π/2+x) = cosx。
(4)求导公式:sin'x = cosx。
(5)积分公式:∫sinxdx = -cosx + C2. 余弦函数余弦函数是一种以周期为2π 的余弦曲线为图像的函数。
它的定义如下:y = cos x余弦函数的定义域为实数集 R,值域为 [-1,1]。
余弦函数的主要性质如下:(1)奇偶性:cos(-x) = cosx,cos(x+π) = -cosx,cos(x+2π) = cosx。
所以,余弦函数是偶函数。
(2)周期性:cos(x+mπ) = cosx,其中 m 是整数。
所以,余弦函数是周期函数。
(3)对称性:cos(π/2-x) = sinx,cos(π/2+x) = -sinx。
(4)求导公式:cos'x = -sinx。
(5)积分公式:∫cosxdx = sinx + C3. 正切函数正切函数是一种以周期为π 的正切曲线为图像的函数。
它的定义如下:y = tan x正切函数的定义域为一切使得 tanx 有意义的实数,即x ≠ (k+1/2)π,其中 k 是整数。
高中数学 第一章 三角函数 1.2.三角函数的定义课件

12/12/2021
第二十页,共五十页。
(2)因为角 α 的终边过点(a,2a)(a≠0), 所以 r= 5|a|,x=a,y=2a.
当
a>0
时,sinα=yr=
2a =2 5a
5 5,cosα=xr=
a= 5a
55,tanα
=yx=2aa=2;
当
a<0
时,sinα=yr=-2a5a=-2 5
5,cosα=xr=- a
原点的距离为 r,则 sinα=
y r ,cosα=
x r ,tanα=
y x.
12/12/2021
第八页,共五十页。
[答一答] 1.三角函数值的大小与点 P 在终边上的位置是否有关?
提示:三角函数值是比值,是一个实数,这个实数的大小与 点 P(x,y)在终边上的位置无关,只与角 α 的终边位置有关,即 三角函数值的大小只与角有关.
12/12/2021
第六页,共五十页。
12/12/2021
第七页,共五十页。
知识点一 三角函数的定义
[填一填] (1)单位圆:圆心是 原点 ,半径长为
单位长度 .
(2)定义:设任意角 α 的终边与单位圆交于点 P(x,y),则 sinα
=
y ,cosα=
x ,tanα= yx(x≠0) .
(3)一般地,设角 α 终边上任意一点 P 的坐标为(x,y),它与
12/12/2021
第二十三页,共五十页。
[变式训练 1] (1)如果角 α 的终边经过点 P- 23,12,则 sinα
=
1 2
,cosα=
-
3 2
,tanα=
-
3 3
高中三角函数知识点总结

高中三角函数知识点总结一、三角函数的定义在平面直角坐标系中,设角α的顶点在坐标原点,始边与 x 轴正半轴重合,终边上任取一点 P(x,y),它与原点的距离为 r(r =√(x²+ y²),r > 0),则角α的正弦、余弦、正切分别定义为:正弦:sinα = y / r余弦:cosα = x / r正切:tanα = y / x (x ≠ 0)二、特殊角的三角函数值要熟练记住以下特殊角的三角函数值:|角度| 0°| 30°| 45°| 60°| 90°||||||||| sin | 0 | 1/2 |√2/2 |√3/2 | 1 || cos | 1 |√3/2 |√2/2 | 1/2 | 0 || tan | 0 |√3/3 | 1 |√3 |不存在|三、同角三角函数的基本关系1、平方关系:sin²α +cos²α = 12、商数关系:tanα =sinα /cosα (cosα ≠ 0)四、诱导公式诱导公式可以将任意角的三角函数转化为锐角三角函数。
1、sin(α) =sinα,cos(α) =cosα,tan(α) =tanα2、sin(π +α) =sinα,cos(π +α) =cosα,tan(π +α) =tanα3、sin(π α) =sinα,cos(π α) =cosα,tan(π α) =tanα4、sin(2π α) =sinα,cos(2π α) =cosα,tan(2π α) =tanα5、sin(π/2 +α) =cosα,cos(π/2 +α) =sinα6、sin(π/2 α) =cosα,cos(π/2 α) =sinα五、两角和与差的正弦、余弦、正切公式1、两角和的正弦:sin(α +β) =sinαcosβ +cosαsinβ2、两角差的正弦:sin(α β) =sinαcosβ cosαsinβ3、两角和的余弦:cos(α +β) =cosαcosβ sinαsinβ4、两角差的余弦:cos(α β) =cosαcosβ +sinαsinβ5、两角和的正切:tan(α +β) =(tanα +tanβ) /(1 tanαtanβ)6、两角差的正切:tan(α β) =(tanα tanβ) /(1 +tanαtanβ)六、二倍角的正弦、余弦、正切公式1、二倍角的正弦:sin2α =2sinαcosα2、二倍角的余弦:cos2α =cos²α sin²α =2cos²α 1 =1 2sin²α3、二倍角的正切:tan2α =2tanα /(1 tan²α)七、三角函数的图像和性质1、正弦函数 y = sinx定义域:R值域:-1, 1周期性:T =2π奇偶性:奇函数单调性:在π/2 +2kπ, π/2 +2kπ (k∈Z)上单调递增,在π/2 +2kπ, 3π/2 +2kπ (k∈Z)上单调递减2、余弦函数 y = cosx定义域:R值域:-1, 1周期性:T =2π奇偶性:偶函数单调性:在π +2kπ, 2kπ (k∈Z)上单调递增,在2kπ, π +2kπ (k∈Z)上单调递减3、正切函数 y = tanx定义域:{ x |x ≠ π/2 +kπ, k∈Z }值域:R周期性:T =π奇偶性:奇函数单调性:在( π/2 +kπ, π/2 +kπ )(k∈Z)上单调递增八、函数 y =Asin(ωx +φ) 的图像和性质1、 A 叫做振幅,决定了函数的值域为A, A2、ω 叫做角频率,决定了函数的周期 T =2π/ω3、φ 叫做初相,决定了函数图像的左右平移函数 y =Asin(ωx +φ) 的图像可以通过“五点法”作图得到,也可以由 y = sinx 的图像经过平移、伸缩变换得到。
高中三角函数定义

高中三角函数定义 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN三角函数定义把角度θ作为自变量,在直角坐标系里画个半径为1的圆(单位圆),然后角的一边与X轴重合,顶点放在圆心,另一边作为一个射线,肯定与单位圆相交于一点。
这点的坐标为(x,y)。
sin(θ)=y;cos(θ)=x;tan(θ)=y/x;三角函数公式大全两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)倍角公式tan2A = 2tanA/(1-tan² A)Sin2A=2SinA•CosACos2A = Cos^2 A--Sin² A=2Cos² A—1=1—2sin^2 A三倍角公式sin3A = 3sinA-4(sinA)³;cos3A = 4(cosA)³ -3cosAtan3a = tan a • tan(π/3+a)• tan(π/3-a)半角公式sin(A/2) = √{(1--cosA)/2}cos(A/2) = √{(1+cosA)/2}tan(A/2) = √{(1--cosA)/(1+cosA)}cot(A/2) = √{(1+cosA)/(1-cosA)}tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]tanA+tanB=sin(A+B)/cosAcosB积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA万能公式sin(a) = [2tan(a/2)] / {1+[tan(a/2)]²}cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]²}tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}其它公式a•sin(a)+b•cos(a) = [√(a²+b²)]*sin(a+c) [其中,tan(c)=b/a] a•sin(a)-b•cos(a) = [√(a²+b²)]*cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]²;1-sin(a) = [sin(a/2)-cos(a/2)]²;其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -s inαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A•sin(ωt+θ)+ B•sin(ωt+φ) =√{(A² +B² +2ABcos(θ-φ)} • sin{ ωt + arcsin[ (A•sinθ+B•sinφ) / √{A² +B²; +2ABcos(θ-φ)} }√表示根号,包括{……}中的内容三角函数知识点汇总1.特殊角的三角函数值:2.角度制与弧度制的互化:3.弧长及扇形面积公式弧长公式:扇形面积公式:----是圆心角且为弧度制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数定义
把角度θ作为自变量,在直角坐标系里画个半径为1的圆(单位圆),然后角的一边与X轴重合,顶点放在圆心,另一边作为一个射线,肯定与单位圆相交于一点。
这点的坐标为(x,y)。
sin(θ)=y;
cos(θ)=x;
tan(θ)=y/x;
三角函数公式大全
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A = 2tanA/(1-tan² A)
Sin2A=2SinA•Co sA
Cos2A = Cos^2 A--Sin² A
=2Cos² A—1
=1—2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)³;
cos3A = 4(cosA)³ -3cosA
tan3a = tan a • tan(π/3+a)• tan(π/3-a)
半角公式
sin(A/2) = √{(1--cosA)/2}
cos(A/2) = √{(1+cosA)/2}
tan(A/2) = √{(1--cosA)/(1+cosA)}
cot(A/2) = √{(1+cosA)/(1-cosA)} ?
tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)
和差化积
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
tanA+tanB=sin(A+B)/cosAcosB
积化和差
sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]
诱导公式
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tgA=tanA = sinA/cosA
万能公式
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]²}
cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]²}
tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}
其它公式
a•sin(a)+b•cos(a) = [√(a²+b²)]*sin(a+c) [其中,tan(c)=b/a] a•sin(a)-b•cos(a) = [√(a²+b²)]*cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]²;
1-sin(a) = [sin(a/2)-cos(a/2)]²;
其他非重点三角函数
csc(a) = 1/sin(a)
sec(a) = 1/cos(a)
双曲函数
sinh(a) = [e^a-e^(-a)]/2
cosh(a) = [e^a+e^(-a)]/2
tg h(a) = sin h(a)/cos h(a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
tan(π/2+α)= -cotα
cot(π/2+α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
tan(π/2-α)= cotα
cot(π/2-α)= tanα
sin(3π/2+α)= -cosα
cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα
cot(3π/2+α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)= cotα
cot(3π/2-α)= tanα
(以上k∈Z)
这个物理常用公式我费了半天的劲才输进来,希望对大家有用
A•sin(ωt+θ)+ B•sin(ωt+φ) =
√{(A² +B² +2ABcos(θ-φ)} • sin{ ωt + arcsin[ (A•sinθ+B•sinφ) / √{A² +B²; +2ABcos(θ-φ)} }
√表示根号,包括{……}中的内容
三角函数知识点汇总
1.特殊角的三角函数值:
2.角度制与弧度制的互化:
3.弧长及扇形面积公式
弧长公式:扇形面积公式:
----是圆心角且为弧度制。
r-----是扇形半径
4.任意角的三角函数
设是一个任意角,它的终边上一点p(x,y),
(1)正弦余弦正切
(2)各象限的符号:
5.同角三角函数的基本关系:
(1)平方关系:
(2)商数关系:
6.诱导公式:记忆口诀:把的三角函数化为的三角函数,概括为:奇变偶不变,符号看象限。
口诀:函数名称不变,符号看象限.
8、三角函数公式:
两角和与差的三角函数关系
倍角公式
降幂公式:
升幂公式:
9.解三角形
正弦定理:
余弦定理:
三角形面积定理.
15、正弦函数、余弦函数和正切函数的图象与性质:。