正比例函数一次函数练习题

合集下载

一次函数与正比例函数练习题

一次函数与正比例函数练习题

一次函数与正比例函数练习题一、选择题1.下列关于x的函数中,是一次函数的是()A.y=3(x﹣1)2+1 B.y=x+C.y=﹣x D.y=(x+3)2﹣x22.下列函数中,正比例函数是()A.y=﹣8x B.y=﹣8x+1 C.y=8x2+1 D.y=3.已知四条直线y=kx﹣3,y=﹣1,y=3和x=1所围成的四边形的面积是12,则k的值为()A.1或﹣2 B.2或﹣1 C.3 D.44.若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值()A.增加4 B.减小4 C.增加2 D.减小25.若直线y=x+k,x=1,x=4和x轴围成的直角梯形的面积等于9,则k的值等于()A.B.C.或D.或6.已知点A(,1),B(0,0),C(,0),AE平分∠BAC,交BC于点E,则直线AE对应的函数表达式是()A.y=x﹣B.y=x﹣2 C.y=x﹣1 D.y=x﹣27.若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2)B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)8.已知A(0,0),B(3,2)两点,经过A、B两点的图象的解析式为()A.y=3x B.y=x C.y=x D.y=x+19.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣3 10.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2 B.y=2 C.x=﹣1 D.y=﹣1二、填空题11.已知正比例函数的图象经过点(﹣1,3),那么这个函数的解析式为.12.函数是y关于x的正比例函数,则m=.13.下列函数(1)y=3πx;(2)y=8x﹣6;(3)y=;(4)y=﹣8x;(5)y=5x2﹣4x+1中,是一次函数的有.14.如图,在平面直角坐标系xOy中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则直线l的函数表达式是.15.如图,将含45°角的直角三角尺放置在平面直角坐标系中,其中A(﹣2,0),B(0,1),则直线BC的函数表达式为.16.如图,点A,B分别在一次函数y=x,y=8x的图象上,其横坐标分别为a,b(a>0,b>0).设直线AB的解析式为y=kx+m,若是整数时,k也是整数,满足条件的k 值共有个.17.矩形ABCO在平面直角坐标系中,且顶点O为坐标原点,已知点B(3,2),则对角线AC所在的直线l对应的解析式为.18.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,则关于x的方程3x+b =ax﹣2的解为x=.三、解答题19.已知一次函数y=2x﹣3.(1)当x=﹣2时,求y.(2)当y=1时,求x.(3)当﹣3<y<0时,求x的取值范围.20.已知y=(k﹣1)x|k|+(k2﹣4)是一次函数.(1)求k的值;(2)求x=3时,y的值;(3)当y=0时,x的值.21.当m,n为何值时,y=(m﹣1)+n.(1)是一次函数;(2)是正比例函数.22.当m,n为何值时,y=(m﹣3)x|m|﹣2+n﹣2.(1)是一次函数;(2)是正比例函数.。

一次函数与正比例函数 练习题

一次函数与正比例函数 练习题

一次函数与正比例函数班级:___________姓名:___________得分:__________一. 填空选择题(每小题8分,40分)1.下列函数中,是一次函数的是( ).A .y =7x 2B .y =x -9C .y =6xD .y =1x +12.下列函数中,是正比例函数的是( ).A .y =-2xB .y =-2x +1C .y =-2x 2D .y =-2x3.乌鲁木齐至库尔勒的铁路长约600千米,火车从乌鲁木齐出发,其平均速度为58千米/时,则火车离库尔勒的距离s (千米)与行驶时间t (时)之间的函数关系式是 .4.某物体从上午7时至下午4时的温度M (℃)是时间t (时)的函数:M=t 2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃.5.已知y 与x+1成正比例,当x=5时,y=12,则y 关于x 的函数关系式是 .二、解答题(每小题10分,60分)1.在弹性限度内,弹簧的长度y (厘米)是所挂物体质量x (千克)的一次函数.当所挂物体的质量为1千克时弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y 与x 之间的函数关系式,并求当所挂物体的质量为4千克时弹簧的长度.2.当m 为何值时,函数y=-(m-2)x 32 m +(m-4)是一次函数?3.已知y-3与x成正比例,且x=2时,y=7.(1)写出y与x之间的函数关系式;(2)当x=4时,求y的值;(3)当y=4时,求x的值.4.现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.(1)设A地到甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨) 运往乙地(单位:吨)A xB(2)设总运费为W元,请写出W与x的函数关系式.(3)怎样调运蔬菜才能使运费最少?5.已知正比例函数中自变量每增加一个单位,函数值就减少2个单位,求函数的解析式.6.某蒜薹生产基地喜获丰收收蒜薹200吨。

初中数学《一次函数、正比例函数》典型例题及答案解析

初中数学《一次函数、正比例函数》典型例题及答案解析

初中数学《一次函数、正比例函数》典型例题及答案解析1.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是()A.y=x﹣3. B.y=2x+3. C.y=﹣x+3. D.y=2x﹣3.【答案】C【解析】【分析】根据正比例函数图象确定B点坐标再根据图象确定A点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出.【详解】∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=−x+3,故选:C.【点睛】本题主要考查一次函数的解析式和一次函数的图象与性质,熟悉掌握是关键.2.下列式子中,表示y是x的正比例函数的是()A.y=. B.y=x+2. C.y=x2. D.y=2x.根据正比例函数的定义条件:k为常数且,自变量次数为1,判断各选项,即可得出答案.【详解】A、,自变量次数不为1,故本选项错误;B、. y=x+2,是和的形式,故本选项错误;C、y=x2,自变量次数不为1,故本选项错误;D、y=2x ,符合正比例函数的含义,故本选项正确;所以D选项是正确的.【点睛】本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数的定义条件是:k为常数且,自变量次数为1.3.定义(p,q)为一次函数y=px+q的特征数.若特征数是(2,k-2)的一次函数为正比例函数,则k的值是()A.0 B.-2 C.2 D.任何数【答案】C【解析】【分析】根据新定义写出一次函数的表达式;由正比例函数的定义确定k的值.【详解】解:根据题意,特征数是(2,k-2)的一次函数表达式为:y=2x+(k-2).因为此一次函数为正比例函数,所以k-2=0,解得:k=2.故选C.【点睛】本题主要考查一次函数、正比例函数的定义,有新意,但难度不大.4.一个正比例函数的图象经过(2,-1),则它的表达式为A.y=-2x B.y=2x C.D.设该正比例函数的解析式为,再把点代入求出的值即可.【详解】设该正比例函数的解析式为,正比例函数的图象经过点,,解得,这个正比例函数的表达式是.故选:.【点睛】考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.5.在平面直角坐标系中,记直线与两坐标围成的面积为,则最接近( )A.B.C.D.【答案】C【解析】令x=0,y=,令y=0,x=,则直线(k为正整数)与x轴的交点坐标为(,0),与y轴的交点坐标为(0,),∴直线与两坐标轴所围成的图形的面积为S k=,当k为正整数时,S k=当k=1,S1=;当k=2,S2=,,=,=,=,故选C.6.已知等腰三角形周长为,则底边长关于腰长的函数图象是( )A.B.C.D.【答案】D【解析】根据题意得y+2x=20,y=-2x+20,∵y>0且2x>y,∴-2x+20>0且2x>-2x+20,∴5<x<10,∴底边长y关于腰长x的函数关系为y=-2x+20(5<x<10),∵k=-2<0,∴y随x的增大而减小,故选D.7.如果是的正比例函数,是的一次函数,那么是的( )A.正比例函数B.一次函数C.正比例函数或一次函数D.不构成函数关系【答案】B【解析】由题意得:y=kx,x=k1z+b,则y=kk1z+kb,当b≠0时,y是z的一次函数,②当b=0时,y是z的正比例函数,综上所述,y是z的一次函数,故选B.A.B.C.D.【答案】A【解析】因为一次函数y=-2x+4的图像与x轴交点坐标是(2,0)与y轴交点坐标是(0,4),故选A.9.若点在函数的图象上,则下列各点在此函数图象上的是( )A.B.C.D.【答案】A【解析】∵点A(2,4)在函数y=kx的图象上,∴4=2k,解得k=2,∴一次函数的解析式为y=2x,A选项,∵当x=1时,y=2,∴此点在函数图象上,故A选项正确,B选项,∵当x=-2时,y=-4≠-1,∴此点不在函数图象上,故B选项错误,C选项,∵当x=-1时,y=-2≠2,∴此点不在函数图象上,故C选项错误,D选项,∵当x=2时,y=4≠-4,∴此点不在函数图象上,故D选项错误,故选A.10.一辆汽车以平均速度千米/时的速度在公路上行驶,则它所走的路程(千米)与所用的时间(时)的关系表达式为( )A.B.C.D.【答案】D【解析】根据路程=速度×时间得:汽车所走的路程s(千米)与所用的时间t(时)的关系表达式为:s=60t,故选D.11.正比例函数y=3x的大致图像是( )A.B.C.D.【答案】B【解析】∵3>0,∴图像经过一、三象限.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kx的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.12.已知函数y=k1x和,若常数k1,k2异号,且k1>k2,则它们在同一坐标系内的图象大致是(如图所示)()A.B.C.D.【答案】C【解析】首先由已知条件常数k1,k2异号,且k1>k2,得出k1,k2与0的关系,然后根据正比例函数及反比例函数的图象性质作答.解:因为k1,k2异号,且k1>0,k2<0,所以函数y=k1x的图象经过第一、三象限,函数的图象在第二、四象限,故选C.13.如图,在平面直角坐标系中,将△OAB沿直线y=-x平移后,点O′的纵坐标为6,则点B平移的距离为()A.4.5 B.6 C.8 D.10【答案】D【解析】根据题意得出O′点的纵坐标进而得出其横坐标,再得出O点到O′的距离,最后得出点B与其对应点B′之间的距离.解:∵点O的坐标为(0,0),△OAB沿x轴向右平移后得到△O′A′B′,点O的对应点O′在直线y=-x上,且O′点纵坐标为:6,故6=-x,解得:x=−8,即O到O′的距离为10,则点B与其对应点B′之间的距离为10.故选:D点睛:本题考查了函数图象上的点及平移的性质.根据函数解析式求出点的坐标是解题的关键.14.经过以下一组点可以画出函数y=2x图象的是()A.(0,0)和(2,1) B.(0,0)和(1,2)C.(1,2)和(2,1) D.(-1,2)和(1,2)【答案】B【解析】分别把各点坐标代入函数y=2x进行检验即可.解答:A. ∵当x=2时,y=4≠1,∴点(2,1)不符合,故本选项错误;B. ∵当x=1时,y=2;当x=0时,y=0,∴两组数据均符合,故本选项正确;C. ∵当x=2时,y=4≠1,∴点(2,1)不符合,故本选项错误;D. ∵当x=−1时,y=−2≠2;∴点(-1,2)不符合,故本选项错误.故选B.15.某正比例函数的图象如图所示,则此正比例函数的表达式为()A.y=x B.y=x C.y=-2x D.y=2x【答案】A【解析】【分析】本题可设该正比例函数的解析式为y=kx,然后结合图象可知,该函数图象过点A(-2,1),由此可利用方程求出k的值,进而解决问题.【详解】正比例函数的图象过点M(−2,1),∴将点(−2,1)代入y=kx,得:1=−2k,∴k=﹣,∴y=﹣x,故选:A.【点睛】本题考查了待定系数法求正比例函数解析式,牢牢掌握该法求函数解析式是解答本题的关键.16.已知在正比例函数y=(a-1)x的图像中,y随x的增大而减小,则a的取值范围是()A.a<1 B.a>1 C.a≥1 D.a≤1【答案】A【解析】∵y随x的增大而减小,∴a-1<0,∴a<1.故选A.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kxb的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.17.正比例函数y=x的大致图像是()A.A B.B C.C D.D【答案】C【解析】∵1>0,∴正比例函数y=x的大致图像经过一、三象限.故选C.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kxb的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.18.已知函数y=(k-1)为正比例函数,则()A.k≠±1 B.k=±1 C.k=-1 D.k=1【答案】C【解析】由题意得k2=1且k-1≠0,∴k=-1.故选C.19.6月份以来,猪肉价格一路上涨.为平抑猪肉价格,某省积极组织货源,计划由A、B、C三市分别组织10辆、10辆和8辆运输车向D、E两市运送猪肉,现决定派往D、E两地的运输车分别是18辆、10辆,已知一辆运输车从A市到D、E两市的运费分别是200元和800元,从B市到D、E两市的运费分别是300元和700元,从C市到D、E两市的运费分别是400元和500元.若设从A、B两市都派x辆车到D市,则当这28辆运输车全部派出时,总运费W(元)的最小值和最大值分别是()A.8000,13200 B.9000,10000 C.10000,13200 D.13200,15400【答案】C【解析】由题意可知A、B、C三市派往D市的运输车的辆数分别是x、x、(18-2x)辆,派往E市的运输车的辆数为10-x,10-x,2x-10,则总运费W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.依题意有0≤x≤10,0≤18-2x≤8,解得:5≤x≤9,当x=9时,W 最小 =10000元.故选C.点睛:选择方案问题的方法(1)从不同的角度感知问题中的数量关系,对实际问题中的数量关系既可以用函数的图像表示,也可以用方程和不等式表示,构建不同的模型,用不同的方法解决问题.(2)在解决问题中,能适时调整思路,解决问题后,能对解决问题步骤、程序和方法进行总结提炼.20.若m<-1,有下列函数:①(x>0);②y=-mx+1;③y=mx;④y=(m+1)x.其中y随x的增大而增大的是( )A.①②B.②③C.①③D.③④【答案】A【解析】对于反比例函数,当k<0,在每个象限内,y随x的增大而增大,故①正确;根据一次函数的性质,y随x的增大而增大,得出k>0,故④正确.故选A.21.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则函数y=kx-k的图象大致是()A.A B.B C.C D.D【答案】D【解析】y=kx-k=k(x-1),恒过(1,0);根据正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则k<0,易得D.故选D.22.如果通过平移直线得到的图象,那么直线必须().A.向上平移5个单位B.向下平移5个单位C.向上平移个单位D.向下平移个单位【解析】根据“上加下减常数项”,=+.看做由直线向上平移个单位得到.故选C.23.已知一次函数与的图象都经过A(,0),且与y轴分别交于B、C两点,则△ABC的面积为().A.4 B.5 C.6 D.7【答案】C【解析】根据题意得:a=4,b=-2,所以B(0,4),C(0,-2),则△ABC的面积为故选C.24.在糖水中继续放入糖x(g)、水y(g),并使糖完全溶解,如果甜度保持不变,那么y与x的函数关系一定是()A.正比例函数B.反比例函数C.图象不经过原点的一次函数D.二次函数【答案】A【解析】设原来溶液中有糖ag,水bg,则=,即y=x,为正比例函数.故选A.点睛:本题关键根据甜度不变列比例式求解.25.一次函数y=-x的图象平分()A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限【答案】D【解析】y=-x的图像平分第二、四象限.故选D.点睛:y=x的图像平分第一、三象限.26.已知正比例函数y=kx(k≠0),当x=–1时,y=–2,则它的图象大致是()A.B.C.D.【答案】C【解析】将x=-1,y=-2代入y= kx(k≠0)中得,k=2>0,∴函数图像经过原点,且经过第一、三象限.故选C.27.已知正比例函数y=(m+1)x,y随x的增大而减小,则m的取值范围是()A.m<-1 B.m>-1 C.m≥-1 D.m≤-1【答案】A【解析】∵y随着x的增大而减小,∴m+1<0,即m<-1.故选A.28.已知正比例函数y=kx(k≠0),点(2,–3)在函数上,则y随x的增大而()A.增大B.减小C.不变D.不能确定【答案】B【解析】将(2,-3)代入函数解析式得:2k=-3,解得k=-<0,∴y随着x的增大而减小.故选B.29.在正比例函数y=–3mx中,函数y的值随x值的增大而增大,则P(m,5)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵y随着x的增大而增大,∴-3m>0,解得m<0.∴P(m,5)在第二象限.故选B.点睛:正比例函数y=kx(k≠0),若y随着x的增大而增大,那么k>0;若y随着x的增大而减小,那么k<0.30.若正比例函数y=kx的图象在第一、三象限,则k的取值可以是()A.1 B.0或1C.±1 D.–1【答案】A【解析】∵函数图像经过一、三象限,∴k>0.故选A.31.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0【答案】C【解析】A:当x=2时,y=4≠1,∴函数图像不经过(2,1),故错误;B:k=2>0,∴函数图像经过一、三象限,故错误;C:k>0,y随着x的增大而增大,故正确;D:当x<0时,y<0,故错误.故选C.点睛:掌握正比例函数图像的性质.32.若一个正比例函数的图象经过点(2,-3),则这个图象一定也经过点()A.(-3,2)B.(,-1)C.(,-1)D.(-,1)【答案】C【解析】∵正比例函数y=kx经过点(2,−3),∴−3=2k,解得k=−;∴正比例函数的解析式是y=−x;A. ∵当x=−3时,y≠2,∴点(−3,2)不在该函数图象上;故本选项错误;B. ∵当x=时,y≠−1,∴点(,−1)不在该函数图象上;故本选项错误;C. ∵当x=时,y=−1,∴点(,−1)在该函数图象上;故本选项正确;D. ∵当x=时,y≠1,∴点(1,−2)不在该函数图象上;故本选项错误。

(word完整版)一次函数、正比例函数的定义 练习题

(word完整版)一次函数、正比例函数的定义 练习题

17.3 一次函数、正比例的定义 练习题班级______________ 姓名___________一、填空题: 1. 如图(1),在直角坐标系中,直线l 所表示的函数是_______2. 函数21-+=x x y 中,自变量x 的取值范围是__________。

3. 函数82)3(-+=m x m y 是正比例函数,则=m __________,y 随x 的增大而__________。

4. 正比例函数图象经过两点A (2-,4)B (4,m ),则=m __________.5. (1)已知函数4)36(-+-=n x m y ,若它是一次函数,则应满足条件____________________;若它是正比例函数,则它应满足条件______________。

(2)设函数1)2(||2++-=-m x m y m ,当m =____________时,它是一次函数;当m=________时它是正比例函数。

6. 如图2直线ABC为甲地向乙地打长途电话所需付的话费y(元)与通话时间t(分钟)之间的函数关系的图象,当t≥3时,该图象的解析式为 ;从图象可知,通话2分钟需付电话费为 元;通话7分钟需付电话费 元.7、y -2与x 成正比例,当x=2 时,y=4 ,则x= _______时,y=-4 .8、已知y 与3x 成正比例,且当x=8 时,y=12 则y 与x 的函数解析式 9、已知一次函数y=kx+5的图象经过点(-1,2),则k= 。

10、某商店出售一种瓜子,其售价y (元)与瓜子质量x (千克)之间的关系如下表由上表得y与x之间的关系式是 .220y x图111、已知y —2与x 成正比例,当x =3时,y =1,则y 与x 之间的函数关系式为_____________. 12、正方形ABCD 的边长为5,P 为BC 边上一动点,设BP 长x ,△PCD 的面积y 与x 的函数关系式为_________________________,自变量x 的取值范围是_________________________。

中考数学-一次函数正比例函数的图像及性质(含答案)专题练习

中考数学-一次函数正比例函数的图像及性质(含答案)专题练习

中考数学-一次函数正比例函数的图像及性质(含答案)专题练习一、单选题1.已知正比例函数y=kx(k≠0),点(2,-3)在函数上,则y随x的增大而()A. 增大B. 减小C. 不变D. 不能确定2.已知函数y=x+k+1是正比例函数,则k的值为()A.1B.﹣1C.0D.±13.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A. k>﹣B. k<﹣C. k=D. k=04.若正比例函数y=kx的图象经过点A(k,9),且经过第一、三象限,则k的值是()A. ﹣9B. ﹣3C. 3D. ﹣3或35.若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1< x2时,y1>y2,则m的取值范围是()A. m<0B. m>0C.D.6.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A. (2,﹣3),(﹣4,6)B. (﹣2,3),(4,6)C. (﹣2,﹣3),(4,﹣6)D. (2,3),(﹣4,6)7.正比例函数y=kx(k≠0)的图像在第二、四象限,则一次函数y=x+k的图像大致是()A. B. C. D.8.下列点不在正比例函数y=﹣2x的图象上的是()A. (5,﹣10)B. (0,0)C. (2,﹣1)D. (1,﹣2)9.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A. k>﹣B. k<﹣C. k=D. k=010.关于函数y=﹣x,下列结论正确的是()A. 函数图象必过点(﹣2,﹣1)B. 函数图象经过第1、3象限C. y随x的增大而减小D. y随x的增大而增大11.下列式子中,表示y是x的正比例函数的是()A.y=x﹣1B.y=2xC.y=2x2D.y2=2x12.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A. 正方形的面积S随着边长x的变化而变化B. 正方形的周长C随着边长x的变化而变化C. 水箱有水10L,以0.5L/min的流量往外放水,水箱中的剩水量V(L)随着放水时间t(min)的变化而变化D. 面积为20的三角形的一边a随着这边上的高h的变化而变化13.P1(x1,y1),P2(x2,y2)是正比例函数图象上的两点,下列判断中,正确的是A. y1>y2B. y1<y2C. 当x1<x2时,y1<y2D. 当x1<x2时,y1>y214.下列四个点中,在正比例函数的图象上的点是()A. (2,5)B. (5,2)C. (2,—5)D. (5,—2)15.若正比例函数的图象经过点(2,﹣3),则这个图象必经过点()A. (﹣3,﹣2)B. (2,3)C. (3,﹣2)D. (﹣2,3)16.下列关系中,是正比例关系的是()A. 当路程s一定时,速度v与时间tB. 圆的面积S与圆的半径RC. 正方体的体积V与棱长aD. 正方形的周长C与它的一边长a17.下列问题中,两个变量成正比例关系的是()A. 等腰三角形的面积一定,它的底边和底边上的高B. 等边三角形的面积与它的边长C. 长方形的长确定,它的周长与宽D. 长方形的长确定,它的面积与宽18.下列各点中,在正比例函数y=-2x图象上的是()A. (-2,-1)B. (1,2)C. (2,-1)D. (1,-2)19.一次函数y=4x,y=﹣7x,y=的共同特点是()A. 图象位于同样的象限B. y随x增大而减小C. y随x增大而增大D. 图象都过原点二、填空题20.已知正比例函数y=kx(k是常数,k≠0),y随x的增大而减小,写出一个符合条件的k的值为________.21.写出一个正比例函数,使其图象经过第二、四象限:________.22.若函数y=(2m+6)x+(1﹣m)是正比例函数,则m的值是________.23.写一个图象经过第二、四象限的正比例函数:________24.将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第________象限.答案解析部分一、单选题1.已知正比例函数y=kx(k≠0),点(2,-3)在函数上,则y随x的增大而()A. 增大B. 减小C. 不变D. 不能确定【答案】B【考点】正比例函数的图象和性质【解析】【解答】∵点(2,-3)在正比例函数y=kx(k≠0)上,∴函数图象经过二四象限,∴y随着x的增大而减小,故选B【分析】首先根据函数的图象经过的点的坐标确定函数的图象经过的象限,然后确定其增减性即可2.已知函数y=x+k+1是正比例函数,则k的值为()A.1B.﹣1C.0D.±1【答案】B【考点】正比例函数的图象和性质【解析】【解答】解:由题意,得k+1=0,解得k=﹣1,故选:B.【分析】根据正比例函数的定义,可得答案.3.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A. k>﹣B. k<﹣C. k=D. k=0 【答案】B【考点】正比例函数的图象和性质【解析】【解答】解:∵正比例函数y=(2k+1)x中,y的值随自变量x的值增大而减小,∴2k+1<0,解得,k<﹣;故选B.【分析】根据正比例函数图象与系数的关系列出关于k的不等式2k+1<0,然后解不等式即可.4.若正比例函数y=kx的图象经过点A(k,9),且经过第一、三象限,则k的值是()A. ﹣9B. ﹣3C. 3D. ﹣3或3 【答案】C【考点】正比例函数的图象和性质【解析】【解答】解:∵正比例函数y=kx(k≠0)的图象经过第一、三象限∴k>0,把(k,9)代入y=kx得k2=9,解得k1=﹣3,k2=3,∴k=3,故选C.【分析】根据正比例函数的性质得k>0,再把(k,9)代入y=kx得到关于k的一元二次方程,解此方程确定满足条件的k的值.5.若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1< x2时,y1>y2,则m的取值范围是()A. m<0B. m>0C.D.【答案】D【考点】正比例函数的图象和性质【解析】【分析】由题目所给信息“当x1<x2时,y1>y2”可以知道,y随x的增大而减小,则由一次函数性质可以知道应有:1-2m<0,进而可得出m的取值范围.【解答】由题目分析可知:在正比例函数y=(1-2m)x中,y随x的增大而减小由一次函数性质可知应有:1-2m<0,即-2m<-1,解得:m>.【点评】此题主要考查了一次函数的图象性质,只有掌握它的性质才能灵活运用.6.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A. (2,﹣3),(﹣4,6)B. (﹣2,3),(4,6)C. (﹣2,﹣3),(4,﹣6)D. (2,3),(﹣4,6)【答案】A【考点】正比例函数的图象和性质【解析】【分析】根据正比例函数关系式y=kx,可得k=,再依次分析各选项即可判断。

正比例函数与一次函数常见题型

正比例函数与一次函数常见题型

复习旧知正比例函数一次函数例题讲解1、根据概念求解例1、。

若关于x 的函数1(1)m y n x -=+是一次函数,则m = ,n 。

2、根据函数性质求解例2、正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大。

3、结合图像性质求解例3、当00><b ,a 时,函数y =a x+b 与a bx y +=在同一坐标系中的图象大致是( )A. B 。

C. D 。

4、实际问题中的图像关系例4、小明的父亲饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小明父亲离家的时间与距离之间的关系是( )5、待定系数法求解析式例5、已知直线y kx b =+经过点(1,2)和点(1-,4),求这条直线的解析式。

6、实际问题中的一次函数例6、甲市到乙市的包裹邮资为每千克0。

9元,每件另加手续费0.2元.求总邮资y (元)与包裹重量x (千克)之间的函数解析式,并计算5千克重的包裹的邮资.巩固练习0 3 4 0.7 1y(元)x(分) 1、若函数(1)3y m x =++图象经过点(1,2),则m = .2、已知函数43y x =-,当 x << 时,函数图象在第四象限.3、.已知点P (3a – 1,a + 3)是第二象限内坐标为整数的点,则整数a 的值是_______.4、若直线a x y +-=和直线b x y +=的交点坐标为(8,m ),则=+b a ____________.C. D.5、下列图形中,表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 为常数,且mn ≠0)的图象的是( )6.在某公用电话亭打电话时,需付电话费y (元)与通话时间 x (分钟)之间的函数关系用图象表示如图.小明打了2分钟需付费______元;小莉打了8分钟需付费_______元。

7、将函数y =2x +3的图象平移,使它经过点(2,-1).求平移后得到的直线的解析式.8、已知直线21y x =+。

一次函数的图像和性质练习题

一次函数的图像和性质练习题

一次函数的图像和性质练习题一、填空题1.正比例函数一定经过 点,经过,一次函数(0)y kx k =≠(1), 经过点,点. (0)y kx b k =+≠(0), (0) ,2.直线与轴的交点坐标是 ,与y 轴的交点26y x =-+x 坐标是。

与坐标轴围成的三角形的面积是。

3.若一次函数的图象过原点,则的值为 .(44)y mx m =--m4.如果函数的图象经过点,则它经过轴上的点的坐标为 y x b =-(01)P ,x .5.一次函数的图象经过点( ,5)和(2,)3+-=x y 6.已知一次函数y=x+m 和y=-x+n 的图像都经过点A(-2,0), 且与y 轴分别2321交于B,C 两点,求△ABC 的面积。

7.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)随的增大而减小.请你写出一个满足上述条件的函数 y x 8.在同一坐标系内函数y=2x 与y=2x+6的图象的位置关系是 .9.若直线y=2x+6与直线y=mx+5平行,则m=____________.10.在同一坐标系内函数y=ax+b 与y=3x+2平行,则a, b 的取值范围是 .11.将直线y= -- 2x 向上平移3个单位得到的直线解析式是 ,将直线y= -- 2x 向下移3个单得到的直线解析式是 .将直线y= -- 2x+3向下移2个单得到的直线解析式是 .12.一次函数的图象经过一、三、四象限,则的取值范围是 (2)4y k x k =-+-k .13.已知点A(-4, a),B(-2,b)都在一次函数y=x+k(k 为常数)的图像上,则a21与b 的大小关系是a____b(填”<””=”或”>”)14.直线经过一、二、三象限,则 0, 0,经过二、三、四象y kx b =+k b 限,则有 0, 0,经过一、二、四象限,则有 0, 0.k b k b 15.如果直线与轴交点的纵坐标为,那么这条直线一定不经过第 3y x b =+y 2-------------象限.16、直线与轴的交点坐标是_______,与轴的交点坐标是_______.152y x =-17、直线可以由直线沿轴_______而得到;直线可以23y x =-2y x =32y x =-+由直线轴_______而得到.3y x =-18、已知一次函数.()()634y m x n =++-(1)当m______时,y 随x 的增大而减小;(2)当m______,n______时,函数图象与y 轴的交点在x 轴的下方;(3)当m______,n______时,函数图象过原点.二、选择题1.已知函数,要使函数值随自变量的增大而减小,则的取(3)2y m x =+-y x m 值范围是( )A.B.C.D.3m -≥3m >-3m -≤3m <-2.一次函数中,的值随的减小而减小,则的取值范围是( (1)5y m x =++y x m )A.B.C.D.1m >-1m <-1m =-1m <3.已知直线,经过点和点,若,且,y kx b =+11()A x y ,22()B x y ,0k <12x x <则与的大小关系是( )1y 2y A.B.C.D.不能确定12y y >12y y <12y y =4. 若直线经过第二、三、四象限,则的取值范围是( )23y mx m =--m A.B.C.D.32m <32m -<<32m >0m >5.一次函数的图象不经过( )31y x =-A.第一象限B.第二象限 C.第三象限D.第四象限6.如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若一次函数y=kx+b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.(m 9.两个一次函数与,它们在同一直角坐标系中的图象可能1y ax b =+2y bx a =+D.C.B .A .是( )10、下列一次函数中,y 的值随x 值的增大而减小的是( )A 、y=x -8 B 、y=-x+3 C 、y=2x+5D 、y=7x -63211、在一次函数中,的值随值的增大而减小,则的取值范围是( ()15y m x =++)A 、B 、C 、D 、1m <-1m >-1m =-1m <12、若一次函数的图象经过一、二、三象限,则应满足的条件是:( b kx y +=b k ,)A.B.C.D.0,0>>b k 0,0<>b k 0,0><b k 0,0<<b k 13、将直线y=2x 向上平移两个单位,所得的直线是 ( )A 、y=2x+2B 、y=2x -2C 、y=2(x -2)D 、y=2(x+2)14.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )15.李老师骑自行车上班,最初以某一速度匀速行进, 中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )三、解答题1、在同一个直角坐标系中,画出函数与的图象,并判断点21y x =-34y x =-+A (1,1)、B (-2,10)是否在所画的图象上?在哪一个图象上?2.已知一次函数y=(3-k)x-2k+18,(1) k 为何值时,它的图像经过原点; (2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方;(4) k 为何值时,它的图像平行于直线y=-x;(5) k 为何值时,y 随x 的增大而减小.3、已知一次函数y=kx+b (k 、b 为常数且k≠0)的图象经过点A (0,﹣2)和点B (1,0),求此函数的解析式4、求函数与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成323-=x y 的三角形的面积.5、根据下列条件,确定函数关系式:(1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).6、某摩托车的油箱最多可存油5升,行驶时油箱内的余油量y (升)与行驶的路程x(km)成一次函数关系,其图象如图。

一次函数与正比例函数练习题

一次函数与正比例函数练习题

一次函数、正比例函数练习题一、选择题1、下面哪个点不在函数32+-=x y 的图像上( )A.(-5,13)B.(0.5,2) C (3,0) D (1,1)2、下列变量之间的变化关系不是一次函数的是( )A 圆的周长和它的半径B 等腰三角形的面积与它的底边长C 2x +y =5中的y 与xD 菱形的周长P 与它的一边长a3、下列函数中,y 随x 的增大而减小的有( )①12+-=x y ②x y -=6③31x y +-=④x y )21(-= A.1个 B.2个 C.3个 D.4个4、一次函数y =x +1不经过的象限是( )A 第一象限B 第二象限C 第三象限D 第四象限5、已知函数 y =2x -1与y =3x +2的图象交于点P ,则点P 在( )A 第一象限B 第二象限C 第三象限D 第四象限二、填空题1、已知函数35+-=x y ,当x =_________时,函数值为0;2、点M 是直线31y x =-上的一点,且横坐标是 —1,则M 点的坐标是 ;3、关于x 的一次函数35-+=m x y ,若要使其成为正比例函数,则m= ;4、若点(3,a )在一次函数13+=x y 的图像上,则=a ;一次函数1-=kx y 的图像经过点(-3,0),则k= 。

5、一次函数34-=x y 的图象经过第 象限,Y 随X 的增大而 ; 一次函数32+-=x y 的图像不经过第 象限。

6、函数(2)4y m x m =+++中y 随x 的增大而减小,且图象交y 轴于正半轴,则m 的取值范围是 。

7、若m 是整数,且一次函数2)4(+++=m x m y 的图象不过第二象限,则m=8、将直线y =3x 向下平移2个单位,得到直线___________;将直线y =-x -5向上平移5个单位,得到直线________________.9、函数25+-=x y 与x 轴的交点是 ,与y 轴的交点是 ;10、①正比例函数的图像经过点(-3,5),则函数的关系式是 ; ②线y =kx +5经过点(-2,-1),则该直线的函数关系式是 ;③写出两个一次函数,使它们的图象都经过点(-2,3): .三、解答题1、已知一次函数y =-2x +2的图象与x 轴交于点A ,与 y 轴交于点B ,求△AOB 面积2、已知一次函数y =kx +b 的图象经过点(-1,1)和点(1,-5),求当x =5时,函数y 的值.3、如图是某长途汽车站旅客携带行李收费示意图.试说明收费方法,求出行李费y (元)与行李重量x (千克)之间的函数关系.(第3题)。

正比例函数与一次函数练习

正比例函数与一次函数练习

正比例函数与一次函数练习 1、若函数82)3(--=m x m y 是正比例函数,则常数m 的值是 。

2、下列各曲线中不能表示y 是x 的函数是【 】3、下列关于x 的函数中,是正比例函数的是【 】A 、23y x =--B 、3y x =C 、7y x =-D 、213y x =4、若函数y=(k+1)x+k 2﹣1是正比例函数,则k 的值为【 】A .0B .1C .±1 D.﹣15、已知正比例函数y=3x 的图象经过点(1,m ),则m 的值为【 】A .31B .3C .31-D .﹣3 6、若函数12)3(2++-=-a xa y a 是一次函数,则a =_______。

7、函数y=(k+1)x+k 2﹣1中,当k 满足 时,它是一次函数。

8、若函数m x m y )1(-=是正比例函数,则该函数的图象经过第 象限。

9、已知y 与x 成正比,当x=﹣3时,y=2,则y 与x 之间的函数关系式为 .10、等腰三角形的周长是20,底边长y 与腰长x 的函数关系式是 (同时写出x 的取值范围)11、如图所示,某同学在玩火柴拼图游戏时,拼出下面一列图形,其中第n 个图形是由n 个正方形组成的.通过观察分析填写下表.图形序号n1 2 3 4 5 … 第n 个图形火柴根数y …这个问题中有________个变量,可以将其中的变量________看成变量________的函数.12、某校组织八年级的学生到动画城游乐.动画城集体门票的收费标准有两种:①50人以内(含50人),每人15元,超过50人的,超出部分,每人10元②80人以内(含80人),每人13元,超过80人的,超出部分,每人10.50元(1)分别写出两种收费标准的应收门票费y (元)与游乐人数x (人)()80 x 之间的函数关系;(2)若该年级有220名学生去动画城游乐,如何组合才使购门票费较少?。

一次函数之正比例函数的习题

一次函数之正比例函数的习题

一次函数之正比例函数的习题一.选择题(共13小题)1.(2016•蓝田县一模)已知正比例函数y=(m+1)x,y随x的增大而减小,则m的取值范围是()A.m<﹣1 B.m>﹣1 C.m≥﹣1 D.m≤﹣12.(2016春•龙海市期中)下列图形中的图象不表示y是x的函数的是()A.B.C.D.3.(2016春•武城县校级月考)函数y=(a+1)x a﹣1是正比例函数,则a的值是()A.2 B.﹣1 C.2或﹣1 D.﹣24.(2015•内江)函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠15.(2015•百色)已知函数y=,当x=2时,函数值y为()A.5 B.6 C.7 D.86.(2015•上海)下列y关于x的函数中,是正比例函数的为()A.y=x2 B.y=C.y=D.y=7.(2015•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.﹣2 C.4 D.﹣48.(2015•北海)正比例函数y=kx的图象如图所示,则k的取值范围是()A.k>0 B.k<0 C.k>1 D.k<19.(2015•伊宁市校级一模)下列关于正比例函数y=﹣5x的说法中,正确的是()A.当x=1时,y=5B.它的图象是一条经过原点的直线C.y随x的增大而增大D.它的图象经过第一、三象限10.(2015•江西校级模拟)关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>011.(2015•杭州模拟)若正比例函数的图象经过点(2,﹣3),则这个图象必经过点()A.(﹣3,﹣2)B.(2,3)C.(3,﹣2)D.(﹣2,3)12.(2015•陕西模拟)若正比例函数y=kx的图象经过点(2,1),则k的值为()A.﹣2 B.2 C.﹣D.13.(2015•苏州校级二模)将直线y=﹣2x向下平移两个单位,所得到的直线为()A.y=﹣2(x+2) B.y=﹣2(x﹣2)C.y=﹣2x﹣2 D.y=﹣2x+2二.填空题(共8小题)14.(2016春•安定区校级月考)在函数y=+(x﹣1)0中,自变量x的取值范围是.15.(2016春•丰台区校级月考)一个正比例函数的图象经过点(2,﹣4),则这个正比例函数的表达式是.16.(2015•凉山州)已知函数y=2x2a+b+a+2b是正比例函数,则a=,b=.17.(2015•大庆模拟)写出一个函数,使得满足下列两个条件:①经过点(﹣1,1);②在x>0时,y随x的增大而增大.你写出的函数是.18.(2015•铁力市二模)函数中,自变量x的取值范围是.19.(2015•梅列区校级质检)已知,函数y=(k﹣1)x+k2﹣1,当k时,它是一次函数.20.(2015•路北区一模)已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1y2(填“>”或“<”或“=”).21.(2015•武汉模拟)点P(3,1﹣a)在y=2x﹣1上,点Q(b+2,3)在y=2﹣x上,则a+b=.三.解答题(共9小题)22.(2016春•武城县校级月考)如图反映的是小刚从家里跑步去体育馆,在哪里锻炼了一阵后又走到文具店去买笔,然后走回家,其中x表示时间,y表示小刚离家的距离.根据图象回答下列问题:(1)体育场离陈欢家千米,小刚在体育场锻炼了分钟.(2)体育场离文具店千米,小刚在文具店停留了分钟.(3)小刚从家跑步到体育场、从体育场走到文具店、从文具店散步回家的速度分别是多少?23.(2016春•南京校级月考)小明同学骑自行车去郊外春游,如图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需小时,(2)小明出发两个半小时离家千米.(3)小明出发小时离家12千米.24.(2016春•石家庄校级月考)如图,在靠墙(墙长为18m)的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为35m,(1)鸡场的长y(m)与宽x(m)的函数关系式为.(2)并求自变量的取值范围为.25.(2016•黄冈校级自主招生)如图,直线OB是一次函数y=2x的图象,点A的坐标是(0,2),点C在直线OB上且△ACO为等腰三角形,求C点坐标.26.(2016•无锡一模)某酒厂生产A、B两种品牌的酒,每天两种酒共生产600瓶,每种酒y元,每天生产A种品牌的酒x瓶.(2)如果该厂每天至少投入成本25000元,且生产B种品牌的酒不少于全天产量的55%,那么共有几种生产方案?并求出每天至少获利多少元?27.(2016•长春模拟)甲、乙两名自行车运动员在同一条直线公路上进行骑自行车训练,他们同时同地同向出发,乙在行驶过程中改变了一次速度,甲、乙两人各自在公路上训练时行驶路程y(千米)与行驶时间x(时)(0≤x≤4)之间的函数图象如图所示.(1)求甲行驶的速度.(2)求直线AB所对应的函数表达式.(3)直接写出甲、乙相距5千米时x的值.28.(2016春•南江县校级月考)在如图平面直角坐标系中画出函数y=﹣x+3的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)若此图象向上平移三个单位长度,得到的函数是.29.(2016春•武城县校级月考)已知,函数y=(1﹣3k)x+2k﹣1,试回答:(1)k为何值时,图象过原点?(2)k为何值时,y随x增大而增大?30.(2015•义乌市)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?一次函数之正比例函数的习题参考答案与试题解析一.选择题(共13小题)1.(2016•蓝田县一模)已知正比例函数y=(m+1)x,y随x的增大而减小,则m的取值范围是()A.m<﹣1 B.m>﹣1 C.m≥﹣1 D.m≤﹣1【解答】解:∵正比例函数y=(m+1)x中,y的值随自变量x的值增大而减小,∴m+1<0,解得,m<﹣1;故选A.2.(2016春•龙海市期中)下列图形中的图象不表示y是x的函数的是()A.B.C.D.【解答】解:A、根据图象知给自变量一个值,有且只有一个函数值与其对应,故A是函数,B、根据图象知给自变量一个值,有且只有1个函数值与其对应,故B是函数,C、根据图象知给自变量一个值,有的有3个函数值与其对应,故C不是函数,D、根据图象知给自变量一个值,有且只有1个函数值与其对应,故D是函数,故选C.3.(2016春•武城县校级月考)函数y=(a+1)x a﹣1是正比例函数,则a的值是()A.2 B.﹣1 C.2或﹣1 D.﹣2【解答】解:∵函数y=(a+1)x a﹣1是正比例函数,∴a﹣1=1,且a+1≠0.解得a=2.故选:A.4.(2015•内江)函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠1【解答】解:根据二次根式有意义,分式有意义得:2﹣x≥0且x﹣1≠0,解得:x≤2且x≠1.故选:B.5.(2015•百色)已知函数y=,当x=2时,函数值y为()A.5 B.6 C.7 D.8【解答】解:∵x≥0时,y=2x+1,∴当x=2时,y=2×2+1=5.故选:A.6.(2015•上海)下列y关于x的函数中,是正比例函数的为()A.y=x2 B.y=C.y=D.y=【解答】解:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选C.7.(2015•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.﹣2 C.4 D.﹣4【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选B8.(2015•北海)正比例函数y=kx的图象如图所示,则k的取值范围是()A.k>0 B.k<0 C.k>1 D.k<1【解答】解:由图象知:∵函数y=kx的图象经过第一、三象限,∴k>0.故选A.9.(2015•伊宁市校级一模)下列关于正比例函数y=﹣5x的说法中,正确的是()A.当x=1时,y=5B.它的图象是一条经过原点的直线C.y随x的增大而增大D.它的图象经过第一、三象限【解答】解:A、当x=1时,y=﹣5,错误;B、正比例函数的图象是一条经过原点的直线,正确;C、根据k<0,得图象经过二、四象限,y随x的增大而减小,错误;D、图象经过二四象限,错误;故选B.10.(2015•江西校级模拟)关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0【解答】解:A、函数图象经过点(2,4),错误;B、函数图象经过第一、三象限,错误;C、y随x的增大而增大,正确;D、当x>0时,才有y>0,错误;故选C.11.(2015•杭州模拟)若正比例函数的图象经过点(2,﹣3),则这个图象必经过点()A.(﹣3,﹣2)B.(2,3)C.(3,﹣2)D.(﹣2,3)【解答】解:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(2,﹣3),所以﹣3=2k,解得:k=﹣,所以y=﹣x,把这四个选项中的点的坐标分别代入y=﹣x中,等号成立的点就在正比例函数y=﹣x的图象上,所以这个图象必经过点(﹣2,3).故选D.12.(2015•陕西模拟)若正比例函数y=kx的图象经过点(2,1),则k的值为()A.﹣2 B.2 C.﹣D.【解答】解:∵函数y=kx的图象过点(2,1),∴把点的坐标代入函数解析式可得1=2k,解得k=,故选D.13.(2015•苏州校级二模)将直线y=﹣2x向下平移两个单位,所得到的直线为()A.y=﹣2(x+2) B.y=﹣2(x﹣2)C.y=﹣2x﹣2 D.y=﹣2x+2【解答】解:由“上加下减”的原则可知,直线y=﹣2x向下平移2个单位,得到直线是:y=﹣2x﹣2.故选C.二.填空题(共8小题)14.(2016春•安定区校级月考)在函数y=+(x﹣1)0中,自变量x的取值范围是x >﹣2且x≠1.【解答】解:根据题意得:x+2≥0且x﹣1≠0,解得:x>﹣2且x≠1.故答案是:x>﹣2且x≠1.15.(2016春•丰台区校级月考)一个正比例函数的图象经过点(2,﹣4),则这个正比例函数的表达式是y=﹣2x.【解答】解:设该正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(2,﹣4),∴﹣4=2k,解得k=﹣2,∴这个正比例函数的表达式是y=﹣2x.故答案为:y=﹣2x.16.(2015•凉山州)已知函数y=2x2a+b+a+2b是正比例函数,则a=,b=﹣.【解答】解:根据题意可得:2a+b=1,a+2b=0,解得:a=,b=﹣.故答案为:;﹣.17.(2015•大庆模拟)写出一个函数,使得满足下列两个条件:①经过点(﹣1,1);②在x>0时,y随x的增大而增大.你写出的函数是y=x2.【解答】解:y=x2经过点(﹣1,1);在x>0时,y随x的增大而增大,故答案为:y=x2.18.(2015•铁力市二模)函数中,自变量x的取值范围是3≤x≤5.【解答】解:根据题意,得,解得3≤x≤5.19.(2015•梅列区校级质检)已知,函数y=(k﹣1)x+k2﹣1,当k≠1时,它是一次函数.【解答】解:根据一次函数定义得,k﹣1≠0,解得k≠1.故答案为:≠1.20.(2015•路北区一模)已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1<y2(填“>”或“<”或“=”).【解答】解:当x=1时,y1=x=1;当x=2时,y2=x=2,所以y1<y2.故答案为<.21.(2015•武汉模拟)点P(3,1﹣a)在y=2x﹣1上,点Q(b+2,3)在y=2﹣x上,则a+b=﹣7.【解答】解:∵点P(3,1﹣a)在y=2x﹣1上,点Q(b+2,3)在y=2﹣x上,∴1﹣a=6﹣1,3=2﹣(b+2),∴a=﹣4,b=﹣3,∴a+b=﹣7.故答案为:﹣7.三.解答题(共9小题)22.(2016春•武城县校级月考)如图反映的是小刚从家里跑步去体育馆,在哪里锻炼了一阵后又走到文具店去买笔,然后走回家,其中x表示时间,y表示小刚离家的距离.根据图象回答下列问题:(1)体育场离陈欢家 2.5千米,小刚在体育场锻炼了15分钟.(2)体育场离文具店1千米,小刚在文具店停留了20分钟.(3)小刚从家跑步到体育场、从体育场走到文具店、从文具店散步回家的速度分别是多少?【解答】解:(1)由纵坐标看出体育场离陈欢家2.5千米,由横坐标看出小刚在体育场锻炼了15分钟;(2)由纵坐标看出体育场离文具店2.5﹣1.5=1(千米),由横坐标看出小刚在文具店停留了65﹣45=20(分).故答案为:2.5,15,1,20;(3)由纵坐标看出文具店距张强家1.5千米,由横坐标看出从文具店回家用了100﹣65=35(分钟),张强从文具店回家的平均速度是1.5÷35=(千米/分).答:张强从文具店回家的平均速度是千米/分钟.23.(2016春•南京校级月考)小明同学骑自行车去郊外春游,如图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需3小时,(2)小明出发两个半小时离家22.5千米.(3)小明出发小时或小时小时离家12千米.【解答】解:(1)由图象可知小明到达离家最远的地方需3小时;(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),代入得:y=15x﹣15,(2≤x≤3)当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米;(3)设过E、F两点的直线解析式为y=k2x+b2,由E(4,30)、F(6,0),代入得y=﹣15x+90,(4≤x≤6)过A、B两点的直线解析式为y=k3x,∵B(1,15)∴y=15x(0≤x≤1)分别令y=12,得x=(小时),x=(小时)答:小明出发小时或小时距家12千米.故答案为:3;22.5;小时或小时.24.(2016春•石家庄校级月考)如图,在靠墙(墙长为18m)的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为35m,(1)鸡场的长y(m)与宽x(m)的函数关系式为y=﹣2x+35.(2)并求自变量的取值范围为8.5≤x<.【解答】解:(1)根据题意得:鸡场的长y(m)与宽x(m)有y+2x=35,即y=﹣2x+35;(2)题中有18≥y>0,∴﹣2x+35≤18,∴x≥8.5,又y>x,∴﹣2x+35>x,解得x<,则自变量的取值范围为8.5≤x<;故答案为:(1)y=﹣2x+35;(2)8.5≤x<.25.(2016•黄冈校级自主招生)如图,直线OB是一次函数y=2x的图象,点A的坐标是(0,2),点C在直线OB上且△ACO为等腰三角形,求C点坐标.【解答】解:若此等腰三角形以OA为一腰,且以A为顶点,则AO=AC1=2.设C1(x,2x),则得x2+(2x﹣2)2=22,解得,得C1(),若此等腰三角形以OA为一腰,且以O为顶点,则OC2=OC3=OA=2,设C2(x′,2x′),则得x′2+(2x′)2=22,解得=,∴C2(),又由点C3与点C2关于原点对称,得C3(),若此等腰三角形以OA为底边,则C4的纵坐标为1,从而其横坐标为,得C4(),(),(),(),所以,满足题意的点C有4个,坐标分别为:C4().26.(2016•无锡一模)某酒厂生产A、B两种品牌的酒,每天两种酒共生产600瓶,每种酒y元,每天生产A种品牌的酒x瓶.(2)如果该厂每天至少投入成本25000元,且生产B种品牌的酒不少于全天产量的55%,那么共有几种生产方案?并求出每天至少获利多少元?【解答】解:(1)由题意,每天生产A种品牌的酒x瓶,则每天生产B种品牌的酒(600﹣x)瓶,∴y=20x+15(600﹣x)=9000+5x.(2)根据题意得:,解得:266≤x≤270,∵x为整数,∴x=267、268、269、270,该酒厂共有4种生产方案:①生产A种品牌的酒267瓶,B种品牌的酒333瓶;②生产A种品牌的酒268瓶,B种品牌的酒332瓶;③生产A种品牌的酒269瓶,B种品牌的酒331瓶;④生产A种品牌的酒270瓶,B种品牌的酒330瓶;∵每天获利y=9000+5x,y是关于x的一次函数,且随x的增大而增大,∴当x=267时,y有最小值,y最小=9000+5×267=10335元.27.(2016•长春模拟)甲、乙两名自行车运动员在同一条直线公路上进行骑自行车训练,他们同时同地同向出发,乙在行驶过程中改变了一次速度,甲、乙两人各自在公路上训练时行驶路程y(千米)与行驶时间x(时)(0≤x≤4)之间的函数图象如图所示.(1)求甲行驶的速度.(2)求直线AB所对应的函数表达式.(3)直接写出甲、乙相距5千米时x的值.【解答】解:(1)120÷3=40(千米/时).∴甲行驶的速度为40千米/时.(2)设直线AB所对应的函数表达式为y=kx+b,把A(1,50)、B(3,120)代入,得,解得:.故直线AB所对应的函数表达式为y=35x+15(1<x≤4).(3)设直线OA所对应的函数表达式为y=k1x,把A(1,50)代入,得50=k1,故直线OA所对应的函数表达式为y=50x(0≤x≤1),设直线OB所对应的函数表达式为y=k2x,把B(3,120)代入,得120=3k2,解得:k2=40.故直线OB所对应的函数表达式为y=40x(0≤x≤4).当0≤x≤4时,令50x﹣40x=5,解得x=0.5;当1<x≤3时,令35x+15﹣40x=5,解得x=2;当3<x≤4时,令40x﹣(35x+15)=5,解得x=4.综上可知:甲、乙相距5千米时x的值为0.5,2和4.28.(2016春•南江县校级月考)在如图平面直角坐标系中画出函数y=﹣x+3的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)若此图象向上平移三个单位长度,得到的函数是y=﹣x+6.【解答】解:函数y=﹣x+3与坐标轴的交点的坐标为(6,0),(0,3),经过点(6,0),(0,3)画直线,得到函数y=﹣x+3的图象,如图所示:(1)点A的坐标是(﹣4,5);(2)将y=﹣x+3向上平移三个单位后即可得到y=﹣x+6.故答案为y=﹣x+6.29.(2016春•武城县校级月考)已知,函数y=(1﹣3k)x+2k﹣1,试回答:(1)k为何值时,图象过原点?(2)k为何值时,y随x增大而增大?【解答】解:(1)∵函数y=(1﹣3k)x+2k﹣1的图象过原点,∴,解得k=;(2)∵y随x增大而增大,∴1﹣3k>0,解得k<.30.(2015•义乌市)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?【解答】解:(1)小敏去超市途中的速度是:3000÷10=300(米/分),在超市逗留了的时间为:40﹣10=30(分).(2)设返回家时,y与x的函数解析式为y=kx+b,把(40,3000),(45,2000)代入得:,解得:,∴函数解析式为y=﹣200x+11000,当y=0时,x=55,∴返回到家的时间为:8:55.。

初二数学一次函数正比例与一次函数基础常考题与提高练习和与压轴难题(含解析)

初二数学一次函数正比例与一次函数基础常考题与提高练习和与压轴难题(含解析)

初二数学一次函数正比例与一次函数基础常考题与提高练习和与压轴难题(一)(含解析)一.选择题(共12小题)1.已知y=(m﹣3)x|m|﹣2+1是一次函数,则m的值是()A.﹣3 B.3 C.±3 D.±22.一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.3.关于一次函数y=﹣2x+3,下列结论正确的是()A.图象过点(1,﹣1)B.图象经过一、二、三象限C.y随x的增大而增大D.当x>时,y<04.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.5.已知直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,则直线的解析式为()A.y=﹣x﹣4 B.y=﹣2x﹣4 C.y=﹣3x+4 D.y=﹣3x﹣46.在下列各图象中,表示函数y=﹣kx(k<0)的图象的是()A.B.C.D.7.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是()A.B.C.D.8.下列函数(1)y=3πx;(2)y=8x﹣6;(3)y=;(4)y=﹣8x;(5)y=5x2﹣4x+1中,是一次函数的有()A.4个B.3个C.2个D.1个9.直线y=kx+b经过一、三、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.10.下列函数中,是一次函数但不是正比例函数的是()A.y=2x B.y=+2 C.y=﹣x D.y=2x2﹣111.函数y=(2﹣a)x+b﹣1是正比例函数的条件是()A.a≠2 B.b=1C.a≠2且b=1 D.a,b可取任意实数12.当x>0时,y与x的函数解析式为y=2x,当x≤0时,y与x的函数解析式为y=﹣2x,则在同一直角坐标系中的图象大致为()A.B. C. D.二.填空题(共11小题)13.已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=.14.若函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,则a=.15.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是.16.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x=3时,kx+b=x+a;④当x<3时,y1<y2中,正确的序号有.17.如图,在直角坐标系中,已知矩形ABCD的两个顶点A(3,0)、B(3,2),对角线AC 所在的直线L,那么直线L对应的解析式是.18.一次函数y=kx+b的图象如图所示,当y<5时,x的取值范围是.19.已知,一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c﹣d)﹣b(c﹣d)的值为.20.如图,该直线是某个一次函数的图象,则此函数的解析式为.21.若一次函数y=kx+b(k≠0)与函数y=x+1的图象关于x轴对称,且交点在x轴上,则这个函数的表达式为:.22.已知点A(3,y1)、B(2,y2)在一次函数y=﹣x+3的图象上,则y1,y2的大小关系是y1y2.(填>、=或<)23.一次函数y=kx+b,当﹣3≤x≤1时,1≤y≤9,则k+b=.三.解答题(共17小题)24.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.25.已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.26.如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.27.已知正比例函数y=(m﹣1)的图象在第二、四象限,求m的值.28.如图,已知:A、B分别是x轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,此时,S△AOP=6.(1)求P的值;(2)若S△BOP =S△DOP,求直线BD的函数解析式.29.在平面直角坐标系xOy中,将直线y=2x向下平移2个单位后,与一次函数y=﹣x+3的图象相交于点A.(1)将直线y=2x向下平移2个单位后对应的解析式为;(2)求点A的坐标;(3)若P是x轴上一点,且满足△OAP是等腰直角三角形,直接写出点P的坐标.30.已知y与x+2成正比例,且当x=1时,y=﹣6.(1)求y与x的函数关系式.(2)若点(a,2)在此函数图象上,求a的值.31.已知把直线y=kx+b(k≠0)沿着y轴向上平移3个单位后,得到直线y=﹣2x+5.(1)求直线y=kx+b(k≠0)的解析式;(2)求直线y=kx+b(k≠0)与坐标轴围成的三角形的周长.32.如图,已知一条直线经过点A(5,0)、B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,请问直线y=﹣x+4是否也经过点C?33.如图,一次函数的图象分别与x轴、y轴交于A、B,已线段AB为边在第一象限内作等腰Rt△ABC,使∠BAC=90°.(1)分别求点A、C的坐标;(2)在x轴上求一点P,使它到B、C两点的距离之和最小.34.如图,直线y=kx+6与x轴y轴分别相交于点E,F.点E的坐标(8,0),点A的坐标为(6,0).点P(x,y)是第一象限内的直线上的一个动点(点P不与点E,F重合).(1)求k的值;(2)在点P运动的过程中,求出△OPA的面积S与x的函数关系式.(3)若△OPA的面积为,求此时点P的坐标.35.课本P152有段文字:把函数y=2x的图象分别沿y轴向上或向下平移3个单位长度,就得到函数y=2x+3或y=2x﹣3的图象.【阅读理解】小尧阅读这段文字后有个疑问:把函数y=﹣2x的图象沿x轴向右平移3个单位长度,如何求平移后的函数表达式?老师给了以下提示:如图1,在函数y=﹣2x的图象上任意取两个点A、B,分别向右平移3个单位长度,得到A′、B′,直线A′B′就是函数y=﹣2x的图象沿x轴向右平移3个单位长度后得到的图象.请你帮助小尧解决他的困难.(1)将函数y=﹣2x的图象沿x轴向右平移3个单位长度,平移后的函数表达式为.A.y=﹣2x+3;B.y=﹣2x﹣3;C.y=﹣2x+6;D.y=﹣2x﹣6【解决问题】(2)已知一次函数的图象与直线y=﹣2x关于x轴对称,求此一次函数的表达式.【拓展探究】(3)一次函数y=﹣2x的图象绕点(2,3)逆时针方向旋转90°后得到的图象对应的函数表达式为.(直接写结果)36.已知正比例函数y=kx的图象经过点P(1,2),如图所示.(1)求这个正比例函数的解析式;(2)将这个正比例函数的图象向右平移4个单位,求出平移后的直线的解析式.37.如图,直线y=x+2分别与x轴、y轴交于点A、B,将直线AB沿y轴向下平移至点C(0,﹣1),与x轴交于点D,过点B作BE⊥CD,垂足为E.(1)求直线CD的解析式;.(2)求S△BEC38.(1)点(0,7)向下平移2个单位后的坐标是,直线y=2x+7向下平移2个单位后的解析式是.(2)直线y=2x+7向右平移2个单位后的解析式是.(3)如图,已知点C(a,3)为直线y=x上在第一象限内一点,直线y=2x+7交y轴于点A,交x轴于点B,将直线AB沿射线OC方向平移|OC|个单位,求平移后的直线解析式.39.某人从离家18千米的地方返回,他离家的距离s(千米)与时间t(分钟)的函数图象如图所示:(1)求线段AB的解析式;(2)求此人回家用了多长时间?40.如图,矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(3,0)、(0,5).(1)直接写出B点坐标;(2)若过点C的一条直线把矩形OABC的周长分为3:5两部分,求这条直线的解析式.初二数学一次函数正比例与一次函数基础常考题与提高练习和与压轴难题(含解析)参考答案与试题解析一.选择题(共12小题)1.(2015春•期末)已知y=(m﹣3)x|m|﹣2+1是一次函数,则m的值是()A.﹣3 B.3 C.±3 D.±2【分析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.【解答】解;由y=(m﹣3)x|m|﹣2+1是一次函数,得,解得m=﹣3,m=3(不符合题意的要舍去).故选A.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为12.(2016春•昌江县校级期末)一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.【分析】由于m、n的符号不确定,故应先讨论m、n的符号,再根据一次函数的性质进行选择.【解答】解:(1)当m>0,n>0时,mn>0,一次函数y=mx+n的图象一、二、三象限,正比例函数y=mnx的图象过一、三象限,无符合项;(2)当m>0,n<0时,mn<0,一次函数y=mx+n的图象一、三、四象限,正比例函数y=mnx的图象过二、四象限,C选项符合;(3)当m<0,n<0时,mn>0,一次函数y=mx+n的图象二、三、四象限,正比例函数y=mnx的图象过一、三象限,无符合项;(4)当m<0,n>0时,mn<0,一次函数y=mx+n的图象一、二、四象限,正比例函数y=mnx的图象过二、四象限,无符合项.故选C.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.3.(2016春•期末)关于一次函数y=﹣2x+3,下列结论正确的是()A.图象过点(1,﹣1)B.图象经过一、二、三象限C.y随x的增大而增大D.当x>时,y<0【分析】A、把点的坐标代入关系式,检验是否成立;B、根据系数的性质判断,或画出草图判断;C、根据一次项系数判断;D、可根据函数图象判断,亦可解不等式求解.【解答】解:A、当x=1时,y=1.所以图象不过(1,﹣1),故错误;B、∵﹣2<0,3>0,∴图象过一、二、四象限,故错误;C、∵﹣2<0,∴y随x的增大而减小,故错误;D、画出草图.∵当x>时,图象在x轴下方,∴y<0,故正确.故选D.【点评】本题主要考查了一次函数的性质以及一次函数与方程、不等式的关系.常采用数形结合的方法求解.4.(2016春•十堰期末)已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选:B.【点评】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k >0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x 的增大而减小;图象与y轴的交点坐标为(0,b).5.(2015秋•期末)已知直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,则直线的解析式为()A.y=﹣x﹣4 B.y=﹣2x﹣4 C.y=﹣3x+4 D.y=﹣3x﹣4【分析】首先求出直线y=kx﹣4(k<0)与两坐标轴的交点坐标,然后根据三角形面积等于4,得到一个关于k的方程,求出此方程的解,即可得到直线的解析式.【解答】解:直线y=kx﹣4(k<0)与两坐标轴的交点坐标为(0,﹣4)(,0),∵直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,∴4×(﹣)×0.5=4,解得k=﹣2,则直线的解析式为y=﹣2x﹣4.故选B.【点评】主要考查了用待定系数法求一次函数的解析式.根据三角形面积公式及已知条件,列出方程,求出k的值,即得一次函数的解析式.6.(2015春•期末)在下列各图象中,表示函数y=﹣kx(k<0)的图象的是()A.B.C.D.【分析】由于正比例函数的图象是一条经过原点的直线,由此即可确定选择项.【解答】解:∵k<0,∴﹣k>0,∴函数y=﹣kx(k<0)的值随自变量x的增大而增大,且函数为正比例函数,故选:C.【点评】此题比较简单,主要考查了正比例函数的图象特点:是一条经过原点的直线.7.(2014秋•深圳期末)两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是()A.B.C.D.【分析】由于a、b的符号均不确定,故应分四种情况讨论,找出合适的选项.【解答】解:A、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a<0,b>0,两结论不矛盾,故正确;B、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误;C、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a<0,b<0,两结论相矛盾,故错误;D、如果过第二三四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b<0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误.故选:A.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.8.(2014春•临沂期末)下列函数(1)y=3πx;(2)y=8x﹣6;(3)y=;(4)y=﹣8x;(5)y=5x2﹣4x+1中,是一次函数的有()A.4个B.3个C.2个D.1个【分析】根据一次函数的定义求解.【解答】解:(1)y=3πx (2)y=8x﹣6 (4)y=﹣8x是一次函数,因为它们符合一次函数的定义;(3)y=,自变量次数不为1,而为﹣1,不是一次函数,(5)y=5x2﹣4x+1,自变量的最高次数不为1,而为2,不是一次函数.故选B.【点评】解题关键是掌握一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1.注意正比例函数是特殊的一次函数,不要漏掉(1)y=3πx,它也是一次函数.9.(2015秋•西安校级期末)直线y=kx+b经过一、三、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.【分析】根据直线y=kx+b经过第一、三、四象限可以确定k、b的符号,则易求b的符号,由b,k的符号来求直线y=bx﹣k所经过的象限.【解答】解:∵直线y=kx+b经过第一、三、四象限,∴k>0,b<0,∴﹣k<0,∴直线y=bx﹣k经过第二、三、四象限.故选C.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.10.(2015春•期末)下列函数中,是一次函数但不是正比例函数的是()A.y=2x B.y=+2 C.y=﹣x D.y=2x2﹣1【分析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.【解答】解:A、y=2x是正比例函数,故A错误;B、y=+2是反比例函数的变换,故B错误;C、y=﹣x是一次函数,故C正确;D、y=2x2﹣1是二次函数,故D错误;故选:C.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.11.(2015秋•期末)函数y=(2﹣a)x+b﹣1是正比例函数的条件是()A.a≠2 B.b=1C.a≠2且b=1 D.a,b可取任意实数【分析】根据正比例函数的意义得出2﹣a≠0,b﹣1=0,求出即可.【解答】解:根据正比例函数的意义得出:2﹣a≠0,b﹣1=0,∴a≠2,b=1.故选C.【点评】本题主要考查对正比例函数的定义的理解和掌握,能根据正比例函数的意义得出2﹣a ≠0和b﹣1=0是解此题的关键.12.(2015春•期末)当x>0时,y与x的函数解析式为y=2x,当x≤0时,y与x的函数解析式为y=﹣2x,则在同一直角坐标系中的图象大致为()A.B. C. D.【分析】利用正比例函数图象的性质结合自变量的取值范围得出符合题意的图象.【解答】解:∵当x>0时,y与x的函数解析式为y=2x,∴此时图象则第一象限,∵当x≤0时,y与x的函数解析式为y=﹣2x,∴此时图象则第二象限,故选:C.【点评】此题主要考查了正比例函数的图象,正确根据自变量取值范围得出图象是解题关键.二.填空题(共11小题)13.(2016秋•期末)已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=﹣1.【分析】由正比例函数的定义可得m2﹣1=0,且m﹣1≠0.【解答】解:由正比例函数的定义可得:m2﹣1=0,且m﹣1≠0,解得:m=﹣1,故答案为:﹣1.【点评】本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.14.(2016春•罗平县期末)若函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,则a=﹣3.【分析】根据一次函数的定义得到a=±3,且a≠3即可得到答案.【解答】解:∵函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,∴a=±3,又∵a≠3,∴a=﹣3.故答案为:﹣3.【点评】本题考查了一次函数的定义:对于y=kx+b(k、b为常数,k≠0),y称为x的一次函数.15.(2011秋•期末)如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是k>m>n.【分析】根据函数图象所在象限可判断出k>0,m>0,n<0,再根据直线上升的快慢可得k>m,进而得到答案.【解答】解:∵正比例函数y=kx,y=mx的图象在一、三象限,∴k>0,m>0,∵y=kx的图象比y=mx的图象上升得快,∴k>m>0,∵y=nx的图象在二、四象限,∴n<0,∴k>m>n,故答案为:k>m>n.【点评】此题主要考查了正比例函数图象,关键是掌握正比例函数图象的性质:它是经过原点的一条直线,当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.16.(2013秋•校级期末)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a >0;③当x=3时,kx+b=x+a;④当x<3时,y1<y2中,正确的序号有①③.【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.【解答】解:根据图示及数据可知:①k<0正确;②a>0错误;③方程kx+b=x+a的解是x=3,正确;④当x<3时,y1<y2错误.故正确的判断是①③.【点评】本题考查一次函数的图象,考查学生的分析能力和读图能力,次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.17.(2015春•上海校级期末)如图,在直角坐标系中,已知矩形ABCD的两个顶点A(3,0)、B(3,2),对角线AC所在的直线L,那么直线L对应的解析式是y=﹣x+2.【分析】根据矩形的性质及B点坐标可求C点坐标,设直线L的解析式为y=kx+b,根据“两点法”列方程组,可确定直线L的解析式.【解答】解:∵矩形ABCD中,B(3,2),∴C(0,2),设直线L的解析式为y=kx+b,则,解得∴直线L的解析式为:y=﹣x+2.故答案为:y=﹣x+2.【点评】本题考查用待定系数法确定函数的解析式,是常用的一种解题方法.18.(2013秋•长校级期末)一次函数y=kx+b的图象如图所示,当y<5时,x的取值范围是x>0.【分析】直接根据一次函数的图象即可得出结论.【解答】解:由函数图象可知,当y<5时,x>0.故答案为:x>0.【点评】本题考查的是一次函数的图象,能利用数形结合求出不等式的解集是解答此题的关键.19.(2016春•简阳市校级期中)已知,一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c﹣d)﹣b(c﹣d)的值为25.【分析】根据一次函数图象上点的坐标特征,将点P(a,b)和Q(c,d)分别代入函数解析式,求得a﹣b、c﹣d的值;然后将其代入所求的代数式求值即可.【解答】解:∵一次函数y=x+5的图象经过点P(a,b)和Q(c,d),∴点P(a,b)和Q(c,d)满足一次函数解析式y=x+5,∴b=a+5,d=c+5,∴a﹣b=﹣5,c﹣d=﹣5,∴a(c﹣d)﹣b(c﹣d)=(a﹣b)(c﹣d)=(﹣5)×(﹣5)=25.故答案是:25.【点评】本题考查了一次函数图象上点的坐标特征.求代数式的值时,要先将其变形为含有a ﹣b、c﹣d的因式的形式,然后求值.20.(2014秋•源城区校级期末)如图,该直线是某个一次函数的图象,则此函数的解析式为y=2x+2.【分析】根据图象写出该直线所经过的点的坐标,然后将其代入函数的解析式y=kx+b,列出关于k、b的一元二次方程,然后解方程求得k、b的值;最后将它们代入函数解析式即为所求.【解答】解:设该直线方程是:y=kx+b(k>0).根据图象知,该直线经过点(﹣1,0)、(0,2),则,解得,,∴此函数的解析式为y=2x+2.故答案是:y=2x+2.【点评】本题考查了待定系数法求一次函数的解析式.一次函数图象上的点的坐标都满足该函数的解析式.21.(2015秋•期末)若一次函数y=kx+b(k≠0)与函数y=x+1的图象关于x轴对称,且交点在x轴上,则这个函数的表达式为:y=﹣x﹣1.【分析】先求出这两个函数的交点,然后根据一次函数y=kx+b(k≠0)与函数y=x+1的图象关于x轴对称,解答即可.【解答】解:∵两函数图象交于x轴,∴0=x+1,解得:x=﹣2,∴0=﹣2k+b,∵y=kx+b与y=x+1关于x轴对称,∴b=﹣1,∴k=﹣∴y=﹣x﹣1.故答案为:y=﹣x﹣1.【点评】本题考查的是一次函数的图象与几何变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.22.(2015秋•期末)已知点A(3,y1)、B(2,y2)在一次函数y=﹣x+3的图象上,则y1,y2的大小关系是y1<y2.(填>、=或<)【分析】首先判断一次函数一次项系数为负,然后根据一次函数的性质当k<0,y随x的增大而减小即可作出判断.【解答】解:∵一次函数y=﹣x+3中k=﹣<0,∴y随x增大而减小,∵3>2,∴y1<y2.故答案为<.【点评】本题主要考查了一次函数图象上点的坐标特征的知识,解答本题要掌握一次函数的性质当k<0,y随x的增大而减小,此题难度不大.23.(2015春•淮南期末)一次函数y=kx+b,当﹣3≤x≤1时,1≤y≤9,则k+b=1或9.【分析】因为该一次函数y=kx+b,当﹣3≤x≤1时,对应y的值为1≤y≤9,由一次函数的增减性可知,若该一次函数的y值随x的增大而增大,则有x=﹣3时,y=1,x=1时,y=9;若该一次函数的y值随x的增大而减小,则有x=﹣3时,y=9,x=1时,y=1;然后结合题意利用方程组解决问题.【解答】解:∵因为该一次函数y=kx+b,当﹣3≤x≤1时,对应y的值为1≤y≤9,由一次函数的增减性可知若该一次函数的y值随x的增大而增大,则有x=﹣3时,y=1,x=1时,y=9;则有,解之得,∴k+b=9.若该一次函数的y值随x的增大而减小,则有x=﹣3时,y=9,x=1时,y=1;则有,解之得,∴k+b=1,综上:k+b=9或1.故答案为1或9.【点评】本题考查了一次函数与一次不等式的关系,此类题目需利用y随x的变化规律,确定自变量与函数的对应关系,然后结合题意,利用方程组解决问题.三.解答题(共17小题)24.(2016春•期末)已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.【分析】(1)利用待定系数法把点A(5,0),B(1,4)代入y=kx+b可得关于k、b得方程组,再解方程组即可;(2)联立两个函数解析式,再解方程组即可;(3)根据C点坐标可直接得到答案.【解答】解:(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴,解得,∴直线AB的解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C,∴.解得,∴点C(3,2);(3)根据图象可得x>3.【点评】此题主要考查了待定系数法求一次函数解析式,以及一次函数的交点,一次函数与一元一次不等式的关系,关键是正确从函数图象中获得正确信息.25.(2015春•校级期末)已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.【分析】(1)根据函数图象经过原点可得m﹣3=0,且2m+1≠0,再解即可;(2)根据题意可得m﹣3=﹣2,解方程即可;(3)根据两函数图象平行,k值相等可得2m+1=3;(4)根据一次函数的性质可得2m+1<0,再解不等式即可.【解答】解:(1)∵函数图象经过原点,∴m﹣3=0,且2m+1≠0,解得:m=3;(2)∵函数图象在y轴的截距为﹣2,∴m﹣3=﹣2,且2m+1≠0,解得:m=1;(3)∵函数的图象平行直线y=3x﹣3,∴2m+1=3,解得:m=1;(4)∵y随着x的增大而减小,∴2m+1<0,解得:m<﹣.【点评】此题主要考查了一次函数的性质,关键是掌握与y轴的交点就是y=kx+b中,b的值,k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.26.(2016春•潮南区期末)如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.=OA•y,然后把y转换成x,即可求得△OPA的面【分析】(1)根据三角形的面积公式S△OPA积S与x的函数关系式;(2)把s=10代入S=﹣4x+40,求得x的值,把x的值代入y=﹣x+10即可求得P的坐标.【解答】解(1)∵A(8,0),∴OA=8,S=OA•|y P|=×8×(﹣x+10)=﹣4x+40,(0<x<10).(2)当S=10时,则﹣4x+40=10,解得x=,当x=时,y=﹣+10=,∴当△OPA的面积为10时,点P的坐标为(,).【点评】本题考查了一次函数图象上点的坐标特征和一次函数的性质,把求三角形的面积和一次函数的图象结合起来,综合性比较强.27.(2014春•期末)已知正比例函数y=(m﹣1)的图象在第二、四象限,求m的值.【分析】当一次函数的图象经过二、四象限可得其比例系数为负数,据此求解.【解答】解:∵正比例函数y=(m﹣1),函数图象经过第二、四象限,∴m﹣1<0,5﹣m2=1,解得:m=﹣2.【点评】此题主要考查了正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.28.(2015春•荔城区期末)如图,已知:A、B分别是x轴上位于原点左、右两侧的点,点P (2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,此时,S△AOP=6.(1)求P的值;(2)若S△BOP =S△DOP,求直线BD的函数解析式.【分析】(1)过点P作PF⊥y轴于点F,则PF=2.求出S△COP 和S△COA,即OA×2=4,则A(﹣4,0),则|p|=3,由点P在第一象限,得p=3;(2)根据S△BOP =S△DOP,得DP=BP,即P为BD的中点,作PE⊥x轴,设直线BD的解析式为y=kx+b(k≠0),求得k,b.得出直线BD的函数解析式.【解答】解:(1)过点P作PF⊥y轴于点F,则PF=2.∵C(0,2),∴CO=2.∴S△COP=×2×2=2.∵S△AOP =6,S△COP=2,∴S△COA=4,∴OA×2=4∴OA=4,∴A(﹣4,0),∴S△AOP=×4|p|=6,∴|p|=3∵点P在第一象限,∴p=3;(2)过点O作OH⊥BD,则OH为△BOP△DOP的高,∵S△BOP =S△DOP,且这两个三角形同高,∴DP=BP,即P为BD的中点,作PE⊥x轴于点E(2,0),F(0,3).∴OB=2PF=4,OD=2PE=6,∴B(4,0),D(0,6).设直线BD的解析式为y=kx+b(k≠0),则,解得k=﹣,b=6.∴直线BD的函数解析式为y=﹣x+6.【点评】本题考查了用待定系数法求一次函数的解析式,三角形面积的求法以及相交线、平行线的性质.29.(2016春•期末)在平面直角坐标系xOy中,将直线y=2x向下平移2个单位后,与一次函数y=﹣x+3的图象相交于点A.(1)将直线y=2x向下平移2个单位后对应的解析式为y=2x﹣2;(2)求点A的坐标;(3)若P是x轴上一点,且满足△OAP是等腰直角三角形,直接写出点P的坐标.【分析】(1)根据将直线y=2x向下平移2个单位后,所以所对应的解析式为y=2x﹣2;(2)根据题意,得到方程组,求方程组的解,即可解答;(3)利用等腰直角三角形的性质得出图象,进而得出答案.【解答】解:(1)根据题意,得,y=2x﹣2;故答案为:y=2x﹣2.(2)由题意得:解得:∴点A的坐标为(2,2);(3)如图所示,∵P是x轴上一点,且满足△OAP是等腰直角三角形,P点的坐标为:(2,0)或(4,0).【点评】此题主要考查了一次函数平移变换以及等腰直角三角形的性质等知识,得出A点坐标是解题关键.30.(2015春•期末)已知y与x+2成正比例,且当x=1时,y=﹣6.(1)求y与x的函数关系式.(2)若点(a,2)在此函数图象上,求a的值.【分析】用待定系数法求出函数的关系式,再把点(a,2)代入即可求得a的值.【解答】解:(1)∵y与x+2成正比例∴可设y=k(x+2),把当x=1时,y=﹣6.代入得﹣6=k(1+2).解得:k=﹣2.故y与x的函数关系式为y=﹣2x﹣4.(2)把点(a,2)代入得:2=﹣2a﹣4,解得:a=﹣3【点评】本题要注意利用一次函数的特点,列出方程,求出未知数从而求得其解析式.把所求点代入即可求出a的值.31.(2015春•期末)已知把直线y=kx+b(k≠0)沿着y轴向上平移3个单位后,得到直线y=﹣2x+5.(1)求直线y=kx+b(k≠0)的解析式;(2)求直线y=kx+b(k≠0)与坐标轴围成的三角形的周长.【分析】(1)根据题意求出平移后解析式;(2)根据解析式进而得出图象与坐标轴交点,再利用勾股定理得出斜边长,进而得出答案.【解答】解:(1)直线y=kx+b(k≠0)沿着y轴向上平移3个单位后,得到直线y=﹣2x+5,可得:直线y=kx+b的解析式为:y=﹣2x+5﹣3=﹣2x+2;(2)在直线y=﹣2x+2中,当x=0,则y=2,当y=0,则x=1,∴直线l与两条坐标轴围成的三角形的周长为:2+1+=3+.【点评】此题主要考查了一次函数图象与几何变换以及一次函数与坐标轴交点求法,得出各边。

完整版)正比例函数练习题及答案

完整版)正比例函数练习题及答案

完整版)正比例函数练习题及答案XXX正比例函数题姓名:____________________ 家长签字:____________________ 得分:____________________ 一.选择题(每小题3分,共30分。

)1.下列函数表达式中,y是x的正比例函数的是()A。

y=﹣2x2B。

y=1/xC。

y=x+2D。

y=x﹣22.若y=x+2b是正比例函数,则b的值是()A。

0B。

﹣2C。

2D。

1/23.若函数y=mx是关于x的正比例函数,则常数m的值等于()A。

±2B。

﹣2C。

0.5D。

24.下列说法正确的是()A。

圆面积公式S=πr2中,S与r成正比例关系B。

三角形面积公式S=ah中,当S是常量时,a与h成反比例关系C。

y=x2中,y与x成反比例关系D。

y=x+1中,y与x成正比例关系5.下列各选项中的y与x的关系为正比例函数的是()A。

正方形周长y(厘米)和它的边长x(厘米)的关系B。

圆的面积y(平方厘米)与半径x(厘米)的关系C。

如果直角三角形中一个锐角的度数为x,那么另一个锐角的度数y与x间的关系D。

一棵树的高度为60厘米,每个月长高3厘米,x月后这棵的树高度为y厘米6.若函数y=(m﹣3)|x|﹣2是正比例函数,则m值为()A。

3B。

﹣3C。

±3D。

不能确定7.已知正比例函数y=(k﹣2)x+k+2的k的取值正确的是()A。

k=2B。

k≠2C。

k=﹣2D。

k≠﹣28.已知正比例函数y=kx(k≠0)的图象如图所示,则在下列选项中k值可能是()A。

1B。

2C。

3D。

49.如图所示,在同一直角坐标系中,一次函数y=k1x、y=k2x、y=k3x、y=k4x的图象分别为l1、l2、l3、l4,则下列关系中正确的是()A。

k1<k2<k3<k4B。

k2<k1<k4<k3C。

k1<k2<k4<k3D。

k2<k1<k3<k410.在直角坐标系中,既是正比例函数y=kx,又是y的值随x的增大而减小的图象是()A。

一次函数例题及答案

一次函数例题及答案

一次函数例题及答案例1、已知正比例函数y=kx(k≠0)的图象过第二、四象限,则()A.y随x的增大而减小B.y随x的增大而增大C.当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小D.不论x如何变化,y不变分析:根据正比例函数的性质可知,当k<0时,图象过第二、四象限,y随x的增大而减小,故选A.答案:A例2(1)若函数y=(k+1)x+k2-1是正比例函数,则k的值为()A.0B.1C.±1D.-1(2)已知是正比例函数,且y随x的增大而减小,则m的值为_____________.(3)当m=_______时,函数是一次函数.分析:(1)要使函数y=(k+1)x+k2-1是正比例函数,k需满足条件(2)根据正比例函数的定义和性质,是正比例函数且y随x的增大而减小的条件是:(3)根据一次函数解析式的特征可知:x的次数2m-1为1时,合并同类项后,一次项系数[(m+3)+4]不能为0;x的次数2m-1不为1时,这项就应是0,否则不符合一次函数的条件.解:(1)由于y=(k+1)x+k2-1是正比例函数,∴,∴k=1,∴应选B.(2)是正比例函数的条件是:m2-3=1且2m-1≠0,要使y随x的增大而减小还应满足条件2m-1<0,综合这两个条件得当即m=-2时,是正比例函数且y随x的增大而减小.(3)根据一次函数的定义可知,是一次函数的条件是:解得m=1或-3,故填1或-3.例3、两个一次函数y1=mx+n,y2=nx+m,它们在同一坐标系中的图象可能是图中的()分析:若m>0,n>0,则两函数图象都应经过第一、二、三象限,故A、C错,若m<0,n>0,则y1=mx+n的图象函数过第一、二、四象限,而函数y2=nx+m的图象过第一、三、四象限,故D错.若m>0,n<0,y 1=mx+n的图象过第一、三、四象限,函数y2=nx+m的图象过第一、二、四象限,故选B.答案:B例4、列说法是否正确,为什么?(1)直线y=3x+1与y=-3x+1平行;(2)直线重合;(3)直线y=-x-3与y=-x平行;(4)直线相交.分析:判定两条直线的位置关系,关键是判断两个函数解析式中的比例系数和常数项之间的关系. 解:(1)该说法不正确,∵k1≠k2,∴两直线相交;(2)该说法不正确,∵k1=k2,但b1≠b2,∴两直线平行;(3)该说法正确,∵k1=k2,b1≠b2,∴两直线平行;(4)该说法不正确,∵k1=k2,b1=b2,∴两直线重合.例5、如果直线y=kx+b经过第一、三、四象限,那么直线y=-bx+k经过第__________象限.分析:因为直线y=kx+b经过第一、三、四象限,由一次函数图象的分布情况可知k>0,b<0,由此可知直线y=-bx+k中-b>0,k>0,故其图象经过一、二、三象限.答案:一、二、三例6、直线y=kx+b过点A(-2,0),且与y轴交于点B,直线与两坐标轴围成的三角形面积为3,求直线y=kx+b的解析式.分析:由直线与两坐标轴围成的三角形面积为3,求得点B(0,3)或(0,-3),此题直线与y轴交于B点有两种不同情况,即B点在y轴正半轴或B点在y轴负半轴.注意分类讨论求解直线的解析式.解:设点B的坐标为(0,y),则|OA|=2,|OB|=|y|,有S=·|OA|·|OB|=×2×|y|=3.所以y=±3.所以点B的坐标是(0,3)或(0,-3).(1)当直线y=kx+b过点A(-2,0)和点B(0,3)时,所以y=+3.(2)当直线y=kx+b过点A(-2,0),B(0,-3)时,所以y=-3.因此直线解析式为y=+3或y=-3.例7、如图所示,阅读函数图象,并根据你所获得的信息回答问题:(1)折线OAB表示某个实际问题的函数的图象,请你编写一道符合图象意义的应用题;(2)根据你所给出的应用题分别指出x轴、y轴所表示的意义,并写出A、B两点的坐标;(3)求出图象AB的函数解析式,并注明自变量x的取值范围.分析:这道题的难点主要集中在第(1)小题,它要求同学们自己设计一个情境,把一个数学模型还原成一个实际问题,主要考查同学们的创造性思维能力、逆向思维能力,发散思维能力和语言表达能力,给同学们留下了很大的想象空间,是一道有创意的好题.解:本题为开放题,现举一例如下:小明从家骑车去离家800米的学校,用了5分钟,之后又立即用了10分钟步行回到家中,此时x轴表示时间,y轴表示离家的距离,A(5,800),B(15,0).图象AB的解析式为y=-80x+1200(5≤x≤15).例8、某商店销售A、B两种品牌的彩色电视机,已知A、B两种彩电的进价每台分别为2000元、1600元,一月份A、B两种彩电的销售价每台为2700元、2100元,月利润为1.2万元(利润=销售价-进价).为了增加利润,二月份营销人员提供了两套销售策略:策略一:A种每台降价100元,B种每台降价80元,估计销售量分别增长30%、40%.策略二:A种每台降价150元,B种每台降价80元,估计销售量都增长50%.请你研究以下问题:(1)若设一月份A、B两种彩电销售量分别为x台和y台,写出y与x的关系式,并求出A种彩电销售的台数最多可能是多少?(2)二月份这两种策略是否能增加利润?(3)二月份该商店应该采用上述两种销售策略中的哪一种,方能使商店所获得的利润较多?请说明理由.分析:(1)中根据月利润可列出关于x、y的方程,由x、y为整数,求出A种彩电销售的台数的最大值;(2)中写出策略一、策略二的利润与x、y的关系,再和12000元比较,即可得出结论.解:(1)依题意,有(2700-2000)x+(2100-1600)y=12000,即700x+500y=12000.则因为y为整数,所以x为5的倍数,故x的最大值为15,即A种彩电销售的台数最多可能为15台.(2)策略一:利润W=(2700-100-2000)(1+30%)x+(2100-80-1600)(1+40%)y1=780x+588y;策略二:=(2700-150-2000)(1+50%)x+(2100-80-1600)(1+50%)y 利润W2=825x+630y.因为700x+500y=12000,所以780x+588y>12000,825x+630y>12000.故策略一、策略二均能增加利润.故策略二使该商店获得的利润多,应采用策略二.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正比例函数一、填空题(每小题3分,共30·分刀1、形如 的函数是正比例函数。

2、大连市区与庄河两地之间的距离是160km ,若汽车以每小时80 km 的速度匀速从庄河开往大连,则汽车距庄河的路程s(km)与行驶的时间t(h)之间的函数关系式为 .3、已知一个正比例函数的图像经过点(-2,4),则这个正比例函数的表达式是 。

4、正比例函数y kx =(k 为常数,0k <)的图像经过第 象限,函数值随自变量的增大而 。

5、已知y 与x 成正比例,且2x =时6y =-,则9y =时x = 。

6、函数1y x =-中自变量x 的取值范围是 。

7如果函数23y mx m =+-是正比例函数,则m = 。

8、已知正比例函数(12)y a x =-如果y 的值随x 的值增大而减小,那么a 的取值范圆是 。

9、结合正比例函数4y x =的图像回答:当1x >时,y 的取值范围是 。

10、若x ,y 是变量,且函数2(1)k y k x =+是正比例函数,则k = 。

二、选择题(每小题3 分,共18分)11、下列关系中的两个量成正比例的是( );A 、从甲地到乙地,所用的时间和平均速度;B 、正方形的面积与边长;C 、买同样的作业本所要的钱数和作业本的数量;D 、人的体重与身高12、下列函数中y 是x 的正比例函数的是( )A 、41y x =+;B 、22y x =;C 、y =;D 、y =13、下列说法不成立的是( )A 、在31y x =-中1y +与x 成正比例B 、在12y =-中y 与x 成正比例; C 、在中y 与1x +成正比例;D 、在3y x =+中y 与x 成正比例;14、若函数2(26)(1)y m x m x =++-是正比例函数,则m 的值是( )A 、m =-3B 、m =1C 、m =3 C 、m >-315、已知11(,)x y 和22(,)x y 是直线3y x =-上的两点,且12x x >,则1y 与2y 的大小关系是( )A 、1y >2yB 、1y <2yC 、1y =2yD 、以上都不可能16、汽车开始行驶时,油箱内有油40 L ,如果每小时耗油5 L ,则油箱内的剩余油量Q (L )与行驶时间t (h)之间的函数关系的图像应是( )A B C D三、解答题(17~I9 题各6 分,20 题7 分,21题8分,22 题9 分23 题10分,共52 分)17、写出下列各题中x 与y 的关系式,并判断y 是否是x 的正比例函数。

(1)广告设计收费标准是每个字0.1 元,广告费y (元)与字数x (个)之间的函数关系;(2)地面气温是28℃,如果每升高1km 气温下降5℃,气温x (℃)与高度y (km )的关系;(3) 圆面积y (cm 2 )与半径x (cm)的关系。

18、已知(1)1y k x k =++-是正比例函数。

求k 的值。

19、在水管放水的过程中,放水的时间x (min)与流出的水量y (m 3)是两个变量,已知水管每分钟流出的水量是0.2 m 3 ,放水的过程持续10 min ,写出y 与x 之间的函数解析式,并指出函数的定义域,再画出这个函数的图像·20、在函数3y x =-的图像上取一点P ,过P 点作PA ⊥x 轴A 为垂足,己知P 点的横坐标为- 2,求ΔPOA 的面积(O 为坐标原点)。

21、根据下列条件求函数的解析式。

(1) y 与2x 成正比例,且x =-2时,12y =。

(2)函数22(4)(1)y k x k x =-++是正比例函数。

且y 随x 的增大而减小。

22、已知12y y y =+,其中1y 与2x 成正比例,2y 与x 成反比例,并且当12x =时5y =,当1x =时1y =-,求y 与x 之间的函数关系式。

23、为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量()x kW h 与应付饱费y (元)的关系如图所示。

(1)根据图像,请求出当050x ≤≤时,y 与x 的函数关系式。

(2)请回答:当每月用电量不超过50kW ·h 时,收费标准是多少?当每月用电量超过50kW ·h 时,收费标准是多少?一次函数测试题一、相信你一定能填对!(每小题3分,共30分)1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=2x -B .y=12x - C .y=24x - D .y=2x +·2x - 2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0)3.下列函数中,y 是x 的正比例函数的是( )A .y=2x-1B .y=3x C .y=2x 2 D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( )A .一、二、三B .二、三、四C .一、二、四D .一、三、四6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k>3B .0<k ≤3C .0≤k<3D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( )A .y=-2x+3B .y=-3x+2C .y=3x-2D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________. 18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、认真解答,一定要细心哟!(共60分)21.根据下列条件,确定函数关系式:(1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).22.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零 钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?x y 1234-2-1C A -14321O23.已知一次函数(63)(4),y m x n 求: (1)m 为何值时,y 随x 的增大而减小;(2),m n 分别为何值时,函数的图象与y 轴的交点在x 轴的下方? (3),m n 分别为何值时,函数的图象经过原点?(4)当1,2m n 时,设此一次函数与x 轴交于A ,与y 轴交于B ,试求AOB面积。

24.某自来水公司为鼓励居民节约用水,采取按月用水量收费办法,若某户居民应交水费y (元)与用水量x (吨)的函数关系如图所示。

(1)写出y 与x 的函数关系式;(2)若某户该月用水21吨,则应交水费多少元?25.已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围;②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?x。

相关文档
最新文档