多元函数的极限及连续性

合集下载

多元函数的极限与连续

多元函数的极限与连续

多元函数的极限与连续在微积分学中,我们学习了一元函数的极限与连续,而对于多元函数来说,也存在着与之对应的概念。

本文将探讨多元函数的极限与连续,并分析其重要性和应用。

一、多元函数的极限与一元函数类似,多元函数的极限也是通过变量自变量趋于某一值时的函数值的极限值来定义的。

具体而言,对于二元函数f(x, y),当点(x₀, y₀)逼近某一点(x, y)时,如果对于任意给定的ε>0,存在δ>0,使得当0<√((x-x₀)²+(y-y₀)²)<δ时,有|f(x,y)-f(x₀,y₀)|<ε成立,则称f(x, y)在点(x₀, y₀)处有极限,记作lim┬(x,y)→(x₀,y₀) f(x,y) = L其中,L为函数的极限值。

需要注意的是,与一元函数不同,多元函数的极限存在多个方向,也即(x, y)可以从任意非常靠近(x₀, y₀)的点逼近。

二、多元函数的连续对于多元函数f(x, y)来说,当其在某一点(x₀, y₀)处既存在极限,且该极限等于该点的函数值f(x₀, y₀),则称函数在该点连续。

换言之,函数在该点连续意味着函数值与极限值的两者相等。

相比一元函数,多元函数的连续需要满足更多的条件。

一元函数的连续只需要满足极限存在即可,而多元函数还需要考虑极限值的一致性。

具体而言,对于任意给定的ε>0,存在δ>0,使得当0<√((x-x₀)²+(y-y₀)²)<δ时,有|f(x,y)-f(x₀,y₀)|<ε成立。

三、多元函数的极限与连续的重要性多元函数的极限与连续是微积分学中的重要概念,具有以下重要性:1. 理论基础:多元函数的极限与连续是进一步研究微分、积分以及微分方程的基础。

只有理解了多元函数的极限与连续,才能更好地理解微积分学的其他概念。

2. 应用于实际问题:多元函数的极限与连续在各个学科和领域都有广泛的应用。

例如,在物理学中,多元函数的极限与连续用于描述粒子的运动和场的变化;在经济学中,多元函数的极限与连续用于优化问题和边际分析;在工程学中,多元函数的极限与连续用于建模和优化设计等。

多元函数的极限与连续课件

多元函数的极限与连续课件

第8章 多元函数微分法及其应用
2
8.1 多元函数的极限与连续
8.1 多元函数的极限与连续
function of many variables
平面点集 多元函数的概念 多元函数的极限 多元函数的连续性 小结 思考题 作业
3
8.1 多元函数的极限与连续
一、平面点集
建立了坐标系的平面称为坐标面. 二元有序 实数组(x, y)的全体, 即
是区域吗? 是区域.
x y0 y x y0

E {( x, y) x 0, y 0}
不是区域. 因为不连通. 连结两点的任何折线都与 y轴相交, 相交点不属于E.
y
O•
x
O
x
10
8.1 多元函数的极限与连续
有界集 总可以被包围在一个以原点为中心、半径适当 大的圆内的区域, 称此区域为 有界集.否则称为 无界 集 (可伸展到无限远处的区域 ).
U (P0 , ) {( x, y) ( x x0 )2 ( y y0 )2 }
它是以P0为中心、以 为半径的开圆 (“开”意味着
不包括边界), 也称为点P0的邻域, y 几何表示
有时简记为 U (P0 ).
. P0
注 ① 将邻域去掉中心,
称之为 去心邻域. U (P0 , )
O
x
的几U全一何(②a体元表,点函也示)表称数可示之中将为:邻以与点域P点0P的为a0距邻概中离 域念心.小的: 于 某个的矩一形切内点(不x的算全周体界.)
(2) 外点 如果存在点P的某个邻域 U(P),
使U(P)∩E = ,则称P为E的 外点.(P2 )
E
• P2
(3) 边界点 如点P的任一邻域内既有属于E的点,

8.2 多元函数的极限与连续

8.2  多元函数的极限与连续
y→2 y→2
13
8.2
多元函数的极限与连续
x2 x+ y
3− x + y +9 (3) lim x→0 x2 + y2
2 2 y→0
1 (4) lim(1 + ) x →∞ x y →a
1 =− . 解: 3)原式 = lim 2 ( x→0 2 2 2 6 ( x + y )(3 + x + y + 9) y→0
9
8.2
多元函数的极限与连续
若在开区域(或闭区域) D 内某些孤立点,或者沿 D 内 若在开区域(或闭区域) 内某些孤立点, 某些曲线,函数没有定义,但在 D 内其余部分, f ( x , y ) 都 某些曲线,函数没有定义, 内其余部分, 部分 有定义, 有定义,则这些孤立点或这些曲线上的点都是函数 f ( x , y ) 的间断点。 的间断点。

y = kx 3 , 取
x3 y x 3 ⋅ kx 3 k lim 6 = lim 6 , = 2 x →0 x + y 2 x →0 x + k 2 x 6 1+ k y→ 0 y = kx 3
的不同而变化, 其值随 k 的不同而变化, 故极限不存在. 故极限不存在.
关于二元函数的极限概念, 关于二元函数的极限概念,可相应地推广到 n 元函数
2.函数 f ( x, y) 在区域 D 上的连续性
如果函数 上任意一点都连续, 如果函数 z = f ( x , y ) 在区域 D 上任意一点都连续,则称
f ( x , y ) 在区域 D 上连续。 上连续。
二元连续函数的图形是一个没有任何孔隙和裂缝的曲面。 二元连续函数的图形是一个没有任何孔隙和裂缝的曲面。 连续函数的图形是一个没有任何孔隙和裂缝的曲面

多元函数的极限与连续性

多元函数的极限与连续性

多元函数的极限与连续性在微积分学中,多元函数的极限与连续性是重要的概念和理论。

本文将介绍多元函数的极限与连续性的定义、性质和相关定理,并通过实例和推导来加深理解。

一、多元函数的极限多元函数是指自变量为多个变量的函数,例如f(x, y)。

在研究多元函数的极限时,需要先定义自变量的趋近方式。

我们定义自变量(x, y)趋近于(a, b),并记为(x, y)→(a, b),如果对于任意给定的正数ε,总存在正数δ,使得当(x, y)离开点(a, b)的距离小于δ时,对应的函数值f(x, y)与极限L的差的绝对值小于ε。

即满足以下条件:|f(x, y) - L| < ε,当0 < √((x-a)² + (y-b)²) < δ时。

二、多元函数的连续性多元函数在某个点上的连续性是指这个函数在该点的值与其极限相同。

具体地,函数f(x, y)在点(a, b)连续的定义如下:lim (x, y)→(a, b) f(x, y) = f(a, b)。

三、多元函数的极限运算法则多元函数的极限与一元函数类似,也遵循一些运算法则,如极限的唯一性、四则运算法则和复合函数的极限等。

其中,极限的唯一性法则指出:如果(x, y)→(a, b)时,f(x, y)存在极限L,则这个极限L唯一确定。

四、多元函数连续性的充分条件在一元函数中,连续函数的充分条件是极限存在。

但是在多元函数中,连续函数的充分条件有所不同。

根据多元函数的极限运算法则,可以得到以下结论:1. 一元函数的连续构成了多元函数的局部连续性;2. 极限与连续性的传递性:如果f(x, y)在点(a, b)连续,g(u, v)在点(f(a, b), c)连续,则复合函数g[f(x, y)]在点(a, b)也连续。

五、多元函数连续性的局部性质与一元函数连续性一样,多元函数的连续性也具有局部性质。

具体地,如果多元函数f(x, y)在点(a, b)连续,则在点(a, b)的任意邻域内,f(x, y)仍然连续。

41多元函数的极限与连续性

41多元函数的极限与连续性

41多元函数的极限与连续性一、函数的极限1.1极限的定义对于函数y=f(x),当自变量x无限接近其中一个确定值x0时,若因变量y有一个确定的极限值A,则称函数y=f(x)的极限为A,记作lim(x→x0)f(x)=A。

1.2函数极限的性质(1)唯一性:若函数y=f(x)极限存在,那么极限值是唯一的。

(2)局部有界性:若函数y=f(x)以x0为极限,则存在一个正数δ,当0<,x-x0,<δ时,f(x),有一个有界区间。

(3)局部保号性:若函数y=f(x)以x0为极限,且f(x0)>0,那么存在一个正数δ,当0<,x-x0,<δ时,f(x)>0;或者f(x0)<0,那么存在一个正数δ,当0<,x-x0,<δ时,f(x)<0。

(4)保不等式性:若函数y=f(x)以x0为极限,且存在一个正数δ,当0<,x-x0,<δ时,有f(x)≤g(x)≤h(x),其中g(x)和h(x)也以x0为极限,则lim(x→x0)f(x)≤lim(x→x0)g(x)≤lim(x→x0)h(x)。

1.3函数极限的运算法则(1)定理1.函数的极限的四则运算法则若函数y=f(x)以x0为极限,且g(x)、h(x)以x0为极限,那么有以下四则运算法则:①lim(x→x0)(g(x)±h(x))=lim(x→x0)g(x)±lim(x→x0)h(x)②lim(x→x0)(g(x)h(x))=lim(x→x0)g(x)·lim(x→x0)h(x)③若lim(x→x0)h(x)≠0,那么lim(x→x0)(g(x)/h(x))=lim(x→x0)g(x)/lim(x→x0)h(x)(2)定理2.复合函数的极限性质若函数y=f(g(x))以x0为极限,且lim(x→x0)g(x)=A,lim(y→A)f(y)=B,则lim(x→x0)f(g(x))=B。

多元函数的极限与连续性判定

多元函数的极限与连续性判定

多元函数的极限与连续性判定在数学分析中,多元函数的极限与连续性是重要的概念,在研究函数的性质和求解问题时起着关键作用。

本文将介绍多元函数的极限和连续性的概念、判定条件以及相关性质。

一、多元函数的极限1. 极限的定义对于二元函数$f(x,y)$,当自变量$(x,y)$无限接近于某一点$(a,b)$时,函数值$f(x,y)$是否趋近于某一确定的值$L$,即$\lim_{(x,y) \to(a,b)}f(x,y)=L$。

2. 多元函数的极限存在判定条件(1) 二元函数的极限存在:若对于给定的$\epsilon > 0$,存在一个$\delta > 0$,使得当$0 < \sqrt{(x-a)^2+(y-b)^2} < \delta$时,有$|f(x,y)−L| < \epsilon$成立,则称函数$f(x,y)$在点$(a,b)$处的二重极限存在,记作$\lim_{(x,y) \to (a,b)}f(x,y)=L$。

(2) 多元函数的极限存在:若对于给定的$\epsilon > 0$,存在一个$\delta > 0$,使得当$0 < \sqrt{(x_1−a_1)^2+...+(x_n−a_n)^2} < \delta$时,有$|f(x_1,...,x_n)−L| < \epsilon$成立,则称函数$f(x_1,...,x_n)$在点$(a_1,...,a_n)$处的$n$重极限存在,记作$\lim_{(x_1,...,x_n) \to(a_1,...,a_n)}f(x_1,...,x_n)=L$。

二、多元函数的连续性判定1. 连续性的定义对于二元函数$f(x,y)$,若在点$(a,b)$的某个邻域内,函数$f(x,y)$在该点处的极限存在且等于函数在该点处的函数值,即$\lim_{(x,y) \to (a,b)}f(x,y)=f(a,b)$,则称函数$f(x,y)$在点$(a,b)$处连续。

多元函数的极限和连续性

多元函数的极限和连续性

多元函数的极限和连续性在高等数学中,多元函数的极限和连续性是比较基础的概念,对于学习后续的微积分、偏微分方程等内容都有重要的意义,因此本文将从多元函数极限和连续性的定义、求解及其应用等方面进行探讨和阐述。

一、多元函数的极限和连续性的定义在一元函数中,极限的概念是比较容易理解和推广的,而在多元函数中,由于独立变量的个数增加,问题变得更加复杂。

因此,我们需要重新定义多元函数的极限。

1. 多元函数的极限定义设$f(\boldsymbol{x})$是定义在某点$\boldsymbol{x_0}=(x_0,y_0, z_0, ...)$的某一邻域内的多元函数,$\boldsymbol{\alpha}=(\alpha_1, \alpha_2, ..., \alpha_n)$是任一常数向量,那么当对于任意$\epsilon>0$,都存在$\delta>0$,使得当$0<\Vert \boldsymbol{x}-\boldsymbol{x_0}\Vert<\delta$时,都有$\vert f(\boldsymbol{x})-f(\boldsymbol{x_0}+\boldsymbol{\alpha})\vert<\epsilon$成立,则称$\boldsymbol{x_0}$是$f(\boldsymbol{x})$的一个极限点,记作$\lim\limits_{\boldsymbol{x}\rightarrow\boldsymbol{x_0}}f(\boldsymbol{x})=f(\boldsymbol{x_0}+\boldsym bol{\alpha})$。

可以看出,多元函数的极限与一元函数的极限相似,但是需要考虑的变量更多。

在多元函数中,只有当$\boldsymbol{x}$从任意方向趋近于$\boldsymbol{x_0}$时,$\lim\limits_{\boldsymbol{x}\rightarrow\boldsymbol{x_0}}f(\boldsymbol{x})$才存在。

多元函数的极限与连续性

多元函数的极限与连续性

多元函数的极限与连续性在数学中,多元函数的极限与连续性是重要的概念。

本文将介绍多元函数的极限和连续性的定义,并探讨它们的性质和应用。

一、多元函数的极限多元函数的极限可以类比于一元函数的极限,但其定义稍有不同。

对于一个二元函数,我们将自变量表示为(x,y),则当自变量趋近于某个点(a,b)时,函数值f(x,y)的极限记为:lim (x,y)→(a,b) f(x,y) = L其中,L为实数。

我们称函数f(x,y)在点(a,b)处具有极限L,如果对于任意给定的ε>0,存在δ>0,使得当(x,y)满足0< √((x-a)^2+(y-b)^2) < δ时,都有 |f(x,y)-L|<ε 成立。

类似地,对于一个三元函数,自变量表示为(x,y,z),其极限定义与二元函数类似。

多元函数的极限有以下性质:1. 极限存在且唯一:如果一个多元函数在某点具有极限,那么它的极限是唯一的。

2. 有界性:如果一个多元函数在某点具有极限,则它在该点附近是有界的。

但需要注意,多元函数在整个定义域内有界不一定代表在每个点处都具有极限。

3. 加法性、乘法性:如果两个多元函数在某点都具有极限,则它们的和、差、积仍在该点处具有极限。

4. 复合函数的极限性质:多元函数的复合函数在某点处具有极限的条件是,内部函数在该点处具有极限,且外部函数在内部函数极限处连续。

二、多元函数的连续性多元函数的连续性是指函数在整个定义域内的连续性。

对于一个二元函数,如果对于任意给定的ε>0,存在δ>0,使得当(x,y)满足0<√((x-a)^2+(y-b)^2) < δ时,都有 |f(x,y)-f(a,b)|<ε 成立,那么我们称函数f(x,y)在点(a,b)处连续。

类似地,对于一个三元函数,连续性的定义也类似。

多元函数的连续性具有以下性质:1. 极限与连续性的关系:如果一个多元函数在某点处具有极限L,则它在该点处连续。

分析方法第十六章多元函数的极限与连续性概要

分析方法第十六章多元函数的极限与连续性概要

分析方法第十六章多元函数的极限与连续性概要第十六章多元函数的极限与连续性是数学分析中的重要概念之一、多元函数与一元函数不同,它们的自变量可以是多个变量。

因此,多元函数的极限与连续性的讨论需要引入多元的概念和方法。

本章主要分为三个部分:多元函数的极限、多元函数的连续性、多元函数的一致连续性。

接下来,将对这三个部分进行详细的概要分析。

1.多元函数的极限多元函数的极限是指当自变量自一些点无限接近于给定点时,函数值接近于一些常数。

与一元函数类似,多元函数的极限也需要满足极限存在性和极限唯一性两个条件。

首先,要讨论多元函数的极限,需要引入点列的概念。

点列是指给定一个序列$x_n$,其中每个$x_n$均为函数的自变量,如果$x_n$收敛于给定点$(a,b)$,则函数$f(x_n)$在点$(a,b)$处的极限就是函数在该点的极限。

此外,还需要讨论曲面函数在特殊方向上的极限。

当自变量沿着特定方向逼近给定点时,函数的极限是否存在,如果存在则是多少。

2.多元函数的连续性多元函数的连续性是指函数在其中一点处的极限等于函数在该点的函数值。

与一元函数类似,多元函数的连续性也需要满足三个条件:函数在该点处定义、函数在该点处极限存在、函数在该点处极限等于函数值。

如果函数在定义域的每一个点均满足连续性条件,则称函数在定义域连续。

为了判断多元函数的连续性,可以通过分量函数的连续性进行判断。

具体来说,若多元函数的每个分量函数都是连续的,则多元函数在该点连续。

此外,还可以通过间断点的分类来分析函数在特定点的连续性。

3.多元函数的一致连续性一致连续性是连续性的一种更强的条件。

在多元函数中,一致连续性要求函数在整个定义域内的每一点都连续。

为了判断多元函数的一致连续性,可以使用函数值在一个闭区域上的上确界和下确界的性质进行证明。

在具体分析中,多元函数的一致连续性还可以通过函数的偏导数和导数的连续性来判断。

若函数的偏导数和导数均连续,则函数是一致连续的。

第十六章 多元函数的极限与连续

第十六章  多元函数的极限与连续

数组(x, y, z)时, 三维欧氏空间3中的点集
S {( x, y, z) | z f ( x, y),( x, y) D} R3
就是二元函数 f 的图象. 通常z f (x, y)的图象是一空 间曲面, f 的定义域D便是该曲面在xOy平面上的投影.
第 十 六 章 多 元 函 数 的 极 限 与 连 续
R 2 ( x, y ) x , y .
C ( x, y) x 2 y 2 r 2 .
S ( x, y ) a x b, c y d .


第 十 六 章 多 元 函 数 的 极 限 与 连 续
§1 平面点集与多元函数
n n n
n 0. 也等价于 lim n
第 十 六 章 多 元 函 数 的 极 限 与 连 续
§1 平面点集与多元函数
定理16.1(柯西准则) 平面点列{Pn}收敛的充要条件 是: 任给正数, 存在正整数N, 使得当nN时, 对一切 正整数p, 都有
Pn , Pn p .
E U (O; r )
其中O是坐标原点, 则称E是有界点集. 否则就是 无界点集.
第 十 六 章 多 元 函 数 的 极 限 与 连 续
§1 平面点集与多元函数
点集E的直径—点集E的直径就是
d ( E) sup P 1, P 2 ,
P 1, P 2 E
其中 (P1, P2)表示P1与P2两点之间的距离, 当P1, P2的坐标分别为(x1, y1)和(x2, y2)时, 有
由于点A的任一圆邻域可以包含在点A的某一方邻域 邻域”泛指这两种形状的邻域, 并以记号U(A; )或 U(A)来表示.

多元函数微积分知识点

多元函数微积分知识点

多元函数微积分知识点
1.多元函数的极限:多元函数的极限是在多个自变量趋于一些点时函
数的极限。

多元函数的极限可以通过分量法、夹逼法等方法计算。

2.多元函数的连续性:多元函数的连续性是指函数在定义域内的任意
一点上都存在极限并与函数值相等。

可以利用多元函数的分量函数连续来
判断多元函数的连续性。

3.多元函数的偏导数:多元函数的偏导数是指多元函数对自变量的偏
导数。

求多元函数的偏导数时,只对一个自变量求导,把其他自变量视为
常数。

4.多元函数的全微分:多元函数的全微分是指函数在特定点的微分。

全微分可以理解为函数在该点的线性逼近。

5.多元函数的方向导数:方向导数是指多元函数在其中一点沿着给定
方向的变化速率。

方向导数的计算可以通过梯度来进行。

6.多元函数的梯度:梯度是多元函数在其中一点的导数,其方向与函
数在该点取得最大值的方向相同,数值上等于方向导数的最大值。

7.多元函数的积分:多元函数的积分是指对多元函数进行求和或求定
积分。

与一元函数积分类似,多元函数积分需要确定积分区域和积分方法。

8.曲线积分:曲线积分是指沿着曲线进行的积分,曲线积分可以对向
量场和标量场进行。

9.曲面积分:曲面积分是指对曲面上的函数进行积分。

曲面积分可以
对向量场和标量场进行。

10.格林定理:格林定理是指曲线与曲面积分之间的关系,即把曲面积分转化为曲线积分的定理。

11.斯托克斯定理:斯托克斯定理是格林定理的推广,是把曲线积分转化为曲面积分的定理。

72多元函数的极限与连续性

72多元函数的极限与连续性
在点 P0( x0 , y0 ) 处极限不存在.
例 证明:极限 lim xy +1 −1 不存在。 ( x, y)→(0,0) x + y
( ) 分析: ∵ xy +1 −1 =
xy
x + y ( x + y) xy +1 +1
证: P( x, y)沿任意直线 y = kx(k ≠ −1) 趋于
(0,0) 时,
则称 A 为函数 f ( x, y) 当 ( x, y) → ( x0 , y0 ) 时的
极限, 记为
lim f ( x, y) = A
( x, y )→( x0 , y0 )

f ( x, y) → A (( x, y) → ( x0 , y0 )),
也可记为
lim f (P) = A 或
P → P0
是其聚点且 P0 ∈ D,
如果 lim P → P0
f (P) =
f (P0 ),
则称 n元函数 f (P)在 点 P0处连续。
设 P0 是函数 f (P) 的定义域的聚点,如果
f (P)在点 P0 处不连续,则称 P0是函数 f (P)的
间断点。
若函数 f (P) 在 D内每一点都连续, 则称
函数 f (P)在 D上连续。
1 在(0,0)的连续性.
0 解 lim f ( x, y) =
-1 ( x, y)→(0,0)

(
x
,
lim
y )→( 0,0 )
⎜⎝
x sin
1 y
+
y sin
1 ⎞1 0x.5⎟⎠
-1
=-(0x.,5yl)i→m(0,0)

多元函数微分学

多元函数微分学
1 2 2 ( x y ) sin 2 2 例10 设 f ( x , y ) x y 0 x2 y2 0 x y 0
2 2
问在(0,0)处,f(x, y)的偏导数是否存在?偏 Biblioteka 数是否连续?f(x, y)是否可微?
5.方向导数 , 定义5 设 z f ( x , y )在 点M 0 ( x0, y0 )的 某 邻 域 内 有 定 义
xy si n x y ) ( 证 明l i m 0. 2 2 x 0 x y y 0
si n ( ) xy 求lim x 0 y y 0
例2
例3
xy 2 lim 2 是否存在? 4 x 0 x y y0
xy l n (x 2 y 2 ) x 2 y 2 0, 研 究 函 数 ( x, y) f 0 x2 y2 0 在( 0,0)处 的 连 续 性 。
(2) z x 4 y 3 2 x
在1, 2处
( 34dx 12dy)
xy x2 y2 0 2 例9 设f ( x , y ) x y 2 x2 y2 0 0 求f x (0,0), f y (0,0), 并 讨 论 f ( x , y ) 在 (0,0) 处 的 可 微 性 .
在 点M 0沿 任 一 方 向的 方 向 导 数 都 存 在 , 且 l
M0 M0
当 l 与grad f ( M 0 )同方向时,z在M 0的方向 导数取最大值,且最大 grad f ( M 0 ), 值 当 l 与grad f ( M 0 )反方向时,z在M 0的方向 导数取最小值,且最小 grad f ( M 0 ) 值
多元函数微分法
1. 多元函数的极限:

多元函数极限与连续性例题和知识点总结

多元函数极限与连续性例题和知识点总结

多元函数极限与连续性例题和知识点总结在高等数学中,多元函数的极限与连续性是一个重要的概念和知识点。

理解它们对于解决许多数学问题以及在其他学科中的应用都具有关键意义。

下面我们将通过一些例题来深入探讨这一主题,并对相关知识点进行总结。

一、多元函数极限的概念多元函数的极限是指当自变量在定义域内以任意方式趋近于某个点时,函数值趋近于一个确定的常数。

设函数$z = f(x,y)$的定义域为$D$,$P_0(x_0,y_0)$是$D$ 的聚点。

如果对于任意给定的正数$\epsilon$,总存在正数$\delta$,使得当点$P(x,y) \in D$ 且满足$0 <\sqrt{(x x_0)^2 +(y y_0)^2} <\delta$ 时,都有$|f(x,y) A| <\epsilon$ 成立,那么就称常数$A$ 为函数$f(x,y)$当$(x,y) \to (x_0,y_0)$时的极限,记作$$\lim_{(x,y) \to (x_0,y_0)} f(x,y) = A$$二、多元函数连续性的概念若函数$z = f(x,y)$在点$(x_0,y_0)$处的极限存在,且等于该点的函数值$f(x_0,y_0)$,则称函数$f(x,y)$在点$(x_0,y_0)$处连续。

三、例题分析例 1:求极限$\lim_{(x,y) \to (0,0)}\frac{x^2 + y^2}{\sqrt{x^2 + y^2 + 1} 1}$解:\\begin{align}&\lim_{(x,y) \to (0,0)}\frac{x^2 + y^2}{\sqrt{x^2 +y^2 + 1} 1}\\=&\lim_{(x,y) \to (0,0)}\frac{x^2 + y^2}{\sqrt{x^2 +y^2 + 1} 1} \cdot \frac{\sqrt{x^2 + y^2 + 1} + 1}{\sqrt{x^2 +y^2 + 1} + 1}\\=&\lim_{(x,y) \to (0,0)}\frac{(x^2 + y^2)(\sqrt{x^2 + y^2 + 1} + 1)}{(x^2 + y^2)}\\=&\lim_{(x,y) \to (0,0)}(\sqrt{x^2 + y^2 + 1} + 1)\\=&2\end{align}\例 2:讨论函数$f(x,y) =\begin{cases} \frac{xy}{x^2 + y^2},&(x,y) \neq (0,0) \\ 0, &(x,y) =(0,0) \end{cases}$在点$(0,0)$处的连续性。

多元函数极限与连续性的性质及求解方法

多元函数极限与连续性的性质及求解方法

多元函数极限与连续性的性质及求解方法在数学中,多元函数极限与连续性是非常重要的概念。

了解多元函数的极限与连续性的性质,以及相关的求解方法,对于深入理解和应用多元函数的数学知识具有重要意义。

一、多元函数极限的性质与求解方法1.1 多元函数极限的定义多元函数极限是指当自变量趋于某个确定值时,函数变量的极限。

对于一个多元函数f(x1, x2, ..., xn),如果存在常数L,对于任意给定的ε>0,总存在另一个正数δ,当0<(|x1−a1|+|x2−a2|+⋯+|xn−an|)<δ时,总有|f(x1, x2, ..., xn)−L|<ε成立,则称L是函数f在点(x1, x2, ..., xn)处的极限。

1.2 多元函数极限的性质(1) 多元函数极限存在性:如果多元函数f在点(x1, x2, ..., xn)处的极限存在,那么它是唯一的。

(2) 多元函数极限的局部性:如果多元函数f在点(x1, x2, ..., xn)处的极限存在,那么它在点(x1, x2, ..., xn)的某个邻域内必然存在。

(3) 多元函数极限与一元函数极限之间的关系:多元函数可以分解为一元函数,所以多元函数极限可以通过一元函数极限的方法来求解。

1.3 多元函数极限的求解方法(1) 代数运算法:利用多元函数的代数运算性质,如加减乘除、乘幂、复合函数等,将多元函数转化为一元函数,然后利用一元函数的极限求解方式来求解多元函数的极限。

(2) 两变量函数的二次折线法:对于两个变量的多元函数,可以采用二次折线法来求解。

具体步骤是:首先取一个路径,沿该路径逼近极限点,然后通过二次折线逼近法构造两个逼近值,如果这两个逼近值相等,则可得到极限值;如果不等,则重新选择路径再进行逼近。

(3) 极坐标法:对于特定形式的多元函数,可以采用极坐标法来求解。

具体步骤是:将自变量用极坐标表示,然后将多元函数转化为单变量极坐标函数,再利用一元函数的极限求解方法来求解。

多元函数的极限与连续性

多元函数的极限与连续性

多元函数的极限与连续性在数学分析中,多元函数的极限与连续性是十分重要的概念,它们在研究函数性质和解决实际问题时起到了关键作用。

本文将对多元函数的极限与连续性进行详细探讨,并给出相应的定义和性质。

一、多元函数的极限对于一个函数f(x1, x2, ..., xn),当自变量(x1, x2, ..., xn)接近某一点(a1, a2, ..., an)时,如果函数值f(x1, x2, ..., xn)趋于某个常数L,那么我们就说f(x1, x2, ..., xn)在点(a1, a2, ..., an)处收敛于L,记作:lim(f(x1, x2, ..., xn)) = L (当(x1, x2, ..., xn) → (a1, a2, ..., an))多元函数的极限与一元函数的极限类似,但需要考虑多个自变量同时趋于某个特定值。

在计算多元函数极限时,可以使用极限的定义、夹逼定理、两个变量夹逼定理等方法。

多元函数的极限性质包括唯一性、局部有界性、局部保号性、极限的四则运算等。

这些性质的证明与一元函数类似,但需要注意多个变量同时进行推导。

二、多元函数的连续性多元函数的连续性是指函数在某一点处的极限与函数在该点处的函数值相等。

具体而言,对于函数f(x1, x2, ..., xn)在点(a1, a2, ..., an)处连续,需要满足以下条件:1. 函数在点(a1, a2, ..., an)存在;2. 函数在点(a1, a2, ..., an)的极限存在;3. 函数在点(a1, a2, ..., an)的极限等于函数在该点的函数值。

在多元函数中,我们可以使用分量函数的连续性来判断函数的连续性。

分量函数是将多元函数中的每个自变量固定,其他自变量视为参数得到的一元函数。

如果分量函数都连续,那么多元函数在该点处连续。

多元函数的连续性性质包括局部连续性、全局连续性、复合函数的连续性等。

这些性质的证明需要使用到一元函数连续性的基本性质,并进行适当的推导和运算。

n8[1]1_多元函数的极限与连续解读

n8[1]1_多元函数的极限与连续解读

(0,0) 是聚点但不属于集合.
2 2 {( x , y ) | x y 1} 例如,
边界上的点都是聚点也都属于集合.
11
8.1 多元函数的极限与连续
(4)n维空间
n 元数组 设n 为取定的一个自然数,我们称 n 维空间,而每个 n 元数 ( x1 , x 2 , , x n ) 的全体为 n 维空间中的一个点,数 组 ( x 1 , x 2 , , x n ) 称为 x i 称为该点的第 i 个坐标.
简写
0 y y0
0, 0, 当0 PP0 , 有
f ( P ) A f ( x, y) A
8.1 多元函数的极限与连续
说明:
(1)定义中 P P0 的方式是任意的;
路径又是多种多样的. y
( x, y) ( x, y) ( x, y) ( x, y)
(3)二元函数的极限运算法则与一元函数类似.
26
8.1 多元函数的极限与连续
例2 求证
1 lim( x y ) sin 2 0 2 x 0 x y y 0
2 2

2
1 ( x y )sin 2 2 x y
2 2
1 2 2 x y sin 2 x y x y2
其值随k的不同而变化, 故极限不存在.
29
8.1 多元函数的极限与连续
确定极限不存在的方法:
(1)令 P ( x , y ) 沿 y kx 趋向于P0 ( x 0 , y0 ) ,若
k 有关,则可断言极限不存在; 极限值与
(2) 找两种不同趋近方式,使lim f ( x , y ) 存在,
x x0 y y0
z
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

返回 2
一、二重极限
定义1 设二元函数 f 定义在 D R2 上, P0 为 D 的
一个聚点, A 是一实数. 若 0, 0, 使得当
P U (P0; ) D 时, 都有 | f (P) A | ,
则称 f 在 D 上当 P P0 时以 A 为极限, 记作 lim f (P) A.
的一个聚点. 若 M 0, 0, 使得 P( x, y)U (P0; ) D, 都有 f ( x, y) M ,
则称 f 在 D 上当 P P0 时, 有非正常极限 , 记作 lim f ( x, y) ,
( x, y ) ( x0 , y0 )
2007年8月
南京航空航天大学 理学院 数学系
x2 y2 0, 而并不要求 x y 0.
(证法二) 作极坐标变换 x r cos, y r sin. 这时
( x, y) (0, 0) 等价于 r 0 ( 对任何 ). 由于
| f (x, y) 0 |
x2 y2 xy x2 y2
1 r 2 | sin 4 | 1 r 2 ,
y2 y
lim lim
lim
lim( y 1) 1,
y0 x0
x y
y0 y
y0
x2 y2 x y
x2 x
lim lim
lim
lim( x 1) 1.
x0 y0
x y
x0 x
x0
当沿斜率不同的直线 y mx, ( x, y) (0, 0) 时, 有
x2 y2 x y 1 m
x)
lim ( x 1)
x0
1,
( y x2x)
2007年8月
南京航空航天大学 理学院 数学系
16
这就达到了预期的目的.
下面再给出当 P( x, y) P0( x0 , y0 ) 时, f ( x, y) ( 非正常极限 ) 的定义.
定义2 设 D 为二元函数 f 的定义域,P0( x0 , y0 )是 D
是以任何方式趋于 ( x0 , y0 ) 的, 这种极限也称为重 极限. 下面要考察 x 与 y 依一定的先后顺序, 相继趋 于 x0 与 y0 时 f 的极限, 这种极限称为累次极限. 定义3 设 f ( x, y), ( x, y) D, D 在 x 轴、y 轴上的投
影分别为 X、Y , 即 X { x | ( x, y) D }, Y { y | ( x, y) D },
南京航空航天大学 理学院 数学系
5
所以 x2 xy y2 7 7 | x 2| 5| y 1|
7 ( | x 2 | | y 1 | ).
0, 取
min ( 1,
14
),当 |
x2|,
|
y 1|
且 ( x, y) (2, 1) 时, 就有
x2 xy y2 7 7 2 14 .
24
从而又有
xy
lim lim
y0 x0
x2
y2
0.
同理可得
xy
lim lim
x0 y0
x2
y2
0.
这说明 f 的两个累次极限都存在而且相等.
例8 设 f ( x, y) x2 y2 x y , 它关于原点的两个 x y
累次极限分别为
2007年8月
南京航空航天大学 理学院 数学系
25
x2 y2 x y
不存在, 则 lim f (P) 也不存在.
P P0 PD
推论2 若 E1, E2 D, P0 是它们的聚点,使得
lim
P P0
f (P)
A1

lim
P P0
f (P)
A2
PE1
PE2
都存在,但
A1
A2
,

lim
P P0
f
(P)
不存在.
PD
2007年8月
南京航空航天大学 理学院 数学系
,
故 lim f ( x, y) 0. ( x, y) (0, 0)
注意 不要把上2 y2 0
x2 y2 xy
2xy
1 ( x2 y2 ), 2
2007年8月
南京航空航天大学 理学院 数学系
8
因为 ( x, y) (0, 0) 的过程只要求 ( x, y) (0, 0), 即
lim
,
( x, y)(0,0)
x y
1 m
y mx
因此该函数的重极限不存在. ( 下面的定理 2 将告
诉我们, 这个结果是必然的. )
2007年8月
南京航空航天大学 理学院 数学系
26
例9

f
( x,
y)
x sin
1 y
y sin
1 x
,
它关于原点的两
个累次极限都不存在. 这是因为对任何 y 0, 而当
证 因为
x2 xy y2 7 ( x2 4) xy 2 ( y2 1)
2007年8月
南京航空航天大学 理学院 数学系
4
| ( x 2)( x 2) ( x 2) y 2( y 1) ( y 1)( y 1) |
| x2|| x y 2|| y1|| y3|. 不妨先限制在点(2, 1)的方邻域
则称此 L 为 f ( x, y) 先对 x ( x0 ) 后对 y ( y0 ) 的
累次极限, 记作
L lim lim f ( x, y). y y0 x x0
2007年8月
南京航空航天大学 理学院 数学系
23
类似地可以定义先对 y 后对 x 的累次极限:
K lim lim f ( x, y). x x0 y y0
同, 这里不再一一叙述.
2007年8月
南京航空航天大学 理学院 数学系
20
观察
z
x3 y x6 y2
图形,
lim
x0
x3 y x6 y2
不存在.
y0
2007年8月
播放
南京航空航天大学 理学院 数学系
21
二、累次极限
在上面讨论的 lim f ( x, y) 中, 自变量 ( x, y) ( x , y )( x0 , y0 )
17
或 lim f (P) . P P0
仿此可类似地定义:
lim f (P) 与 lim f (P) .
PP0
PP0
例6

f
( x,
y)
2x2
1
3 y2
. 证明
lim f ( x, y) .
( x, y) (0,0)
证 此函数的图象见后面的图.
2007年8月
南京航空航天大学 理学院 数学系
2007年8月
南京航空航天大学 理学院 数学系
14
( x, y) (0, 0) 时的极限为 0. 因为当 (x, y) 沿抛物线
y kx2(0 k 1) 趋于点 O 时, f ( x, y)将趋于1. 所
以极限 lim f ( x, y) 不存在. ( x, y) (0,0)
例5
讨论
f (x, y)
4
4
因此, 0, 只须 r x2 y2 2 , 对任何
2007年8月
南京航空航天大学 理学院 数学系
9
都有
| f ( x, y) 0 | 1 r2 , 即 lim f ( x, y) 0.
4
( x, y) (0, 0)
下述定理及其推论相当于一元函数极限的海涅归
结原则(而且证明方法也相类似).
解 当动点 (x, y) 沿着直线 y mx 而趋于定点 (0, 0)
2007年8月
南京航空航天大学 理学院 数学系
12
时,由于
f (x,
y)
m f (x, mx) 1 m2
,
因此有
m
( x,
lim
y) (0, 0)
f
( x,
y)
lim
x0
f
( x,
mx)
1
m2
.
y mx
这说明动点沿不同斜率 m 的直线趋于原点时, 对应
证 (证法一) 0, 由
x2 y2
x2 y2 x2 y2
xy x2 y2 0 2
x2 y2
2007年8月
南京航空航天大学 理学院 数学系
7
1 x2 y2 1 ( x2 y2 ),
2
2
可知 2 , 当 0 x2 y2 时, 便有
x2 y2 xy x2 y2 0
11
推论3 极限 lim f (P) 存在的充要条件是:D 中任 P P0 PD
一满足条件
Pn
P0

lim
n
Pn
P0 的点列 {Pn}, 它所
对应的函数列 { f (Pn )} 都收敛.
下面三个例子是它们的应用.
例3
讨论
f (x,
y)
xy x2 y2
当 (x,
y) (0, 0) 时是否
存在极限.( 注: 本题结论很重要, 以后常会用到. )
18
2007年8月
南京航空航天大学 理学院 数学系
19
因 2x2 3 y2 4( x2 y2 ), 故对 M 0, 只需取
1 , 当 0 x2 y2 1 时,就有
2M
2M
2x2 3y2 1 , M

1 2x2 3y2 M.
这就证得结果.
二元函数极限的四则法则与一元函数极限相仿, 特 别把 f ( x, y) 看作点函数 f (P) 时, 相应的证法也相
P P0 P D
2007年8月
相关文档
最新文档