自动控制实验报告五连续系统串联校正

合集下载

自动控制原理 系统校正实验报告

自动控制原理 系统校正实验报告

肇 庆 学 院
电子信息与机电工程 学院 模拟电路 课 实验报告
12电气(1) 班 姓名 李俊杰 学号 201224122119 实验日期2014年5月26 日 实验合作者:李奕顺 王圆圆 老师评定
实验题目:系统校正
一、实验目的
学会设计校正装置,使系统满足性能指标
二、实验原理
1. 原系统的原理方块图:见图3-1所示
图3-1 未校正系统的方块图
由闭环传函
要求设计串联校正装置,使系统满足下述性能指标:
由理论推导(可参照有关自控原理书)得,校正网络的传递函数为:
1
0.05S 10.5S (S)G C ++=
所以校正后的方块图如图3-2所示:
图3-2 校正后系统的方块图
⒉ 原系统及校正后的模拟电路图:见图3-3及图3-4
图3-3 未校正系统的模拟电路图
图3-4 校正后系统模拟电路
三、实验内容及步骤
⑴测量未校正系统的性能指标。

准备:将“信号源单元”(U1 SG)的ST插针用“短路块”短接。

实验步骤:
①按图3-3接线。

②加入阶跃电压,观察阶跃响应曲线,并测出超调量Mp和调节时间ts,将曲线及参数记录下来。

⑵测量校正系统的性能指标。

①按图3-4接线。

②加入阶跃电压,观察阶跃响应曲线,并测出超调量Mp以及调节时间ts,看是否达到期望值,若未达到,请仔细检查接线(包括阻容值)。

⑶具体参数及响应曲线请参照表3-1。

表3-1
四、实验结论与分析。

自动控制实验报告五-连续系统串联校正

自动控制实验报告五-连续系统串联校正

自动控制实验报告五-连续系统串联校正实验介绍本次实验是针对连续系统的串联校正实验,目的是使控制系统能够精确地跟踪给定输入信号。

具体地,要求通过串联校正的方式,将系统的稳态误差控制在一个很小的范围内。

为此,本次实验将对校正器进行串联配置,然后测试系统并进行基本的数据分析。

实验原理首先,需要明确串联校正的概念。

所谓串联校正,就是将校正器和系统连接起来,以提高控制系统的性能。

串联校正实现的基本思想是,先将校正器的控制信号与系统输入信号串联起来,通过对校正器进行调整,来改变系统的特性,以便使系统的输出信号与给定输入信号精确匹配。

具体来说,要完成串联校正,需要如下步骤:1.测量系统的开环特性,并进行基本的分析。

2.将校正器和系统进行串联,校正器的输出信号作为输入信号,系统的输出信号作为反馈信号。

3.根据反馈信号调整校正器的参数,使系统具有更好的稳态性能。

4.再次测量系统的闭环特性,检验串联校正后的效果。

具体的实现步骤和公式可参考连续系统校正实验报告。

实验过程实验步骤1.首先进行系统的稳态误差测量,记录输出信号与给定信号之间的稳态误差。

2.将校正器与系统进行串联,根据实验要求设定校正器的参数。

3.测试校正后的系统,记录输出信号与给定信号之间的稳态误差,与前一次进行对比。

实验结果实验结果如下表所示:测量项目原始系统校正后系统稳态误差0.2 0.02由上表可知,经过串联校正后,系统的稳态误差从0.2减少到了0.02,已经达到了实验的预期。

实验通过本次实验,我们掌握了连续系统的串联校正方法,了解了校正器与系统的串联关系,掌握了相应的实验操作和数据分析技术。

同时,我们还了解了校正器的参数调整对系统运行性能的影响,并进一步提高了自己的实际操作能力。

自动控制原理实验报告-线性系统串联校正设计

自动控制原理实验报告-线性系统串联校正设计

实验五线性系统串联校正设计实验原理:(1)串联校正环节原理串联校正环节通过改变系统频率响应特性,进而改善系统的动态或静态性能。

大致可以分为(相位)超前校正、滞后校正和滞后-超前校正三类。

超前校正环节的传递函数如下Tαs+1α(Ts+1),α>1超前校正环节有位于实轴负半轴的一个极点和一个零点,零点较极点距虚轴较近,因此具有高通特性,对正频率响应的相角为正,因此称为“超前”。

这一特性对系统的穿越频率影响较小的同时,将增加穿越频率处的相移,因此提高了系统的相位裕量,可以使系统动态性能改善。

滞后校正环节的传递函数如下Tαs+1Ts+1,α<1滞后校正环节的极点较零点距虚轴较近,因此有低通特性,附加相角为负。

通过附加低通特性,滞后环节可降低系统的幅值穿越频率,进而提升系统的相位裕量。

在使系统动态响应变慢的同时提高系统的稳定性。

(2)基于Baud图的超前校正环节设计设计超前校正环节时,意图让系统获得最大的超前量,即超前网络的最大相位超前频率等于校正后网络的穿越频率,因此设计方法如下:①根据稳态误差要求确定开环增益。

②计算校正前系统的相位裕度γ。

③确定需要的相位超前量:φm=γ∗−γ+(5°~12°) ,γ∗为期望的校正后相位裕度。

④计算衰减因子:α−1α+1= sin φm。

此时可计算校正后幅值穿越频率为ωm=−10lgα。

⑤时间常数T =ω√α。

(3)校正环节的电路实现构建待校正系统,开环传递函数为:G(s)=20s(s+0.5)电路原理图如下:校正环节的电路原理图如下:可计算其中参数:分子时间常数=R1C1,分母时间常数=R2C2。

实验记录:1.电路搭建和调试在实验面包板上搭建前述电路,首先利用四个运算放大器构建原系统,将r(t)接入实验板AO+和AI0+,C(t)接入AI1+,运算放大器正输入全部接地,电源接入±15V,将OP1和OP2间独立引出方便修改。

基于另外两运算放大器搭建校正网络,将所有电容值选为1uF,所有电阻引出方便修改。

连续系统串联校正

连续系统串联校正
波特图
单位阶跃响应图
利用单位阶跃响应波形图可以估算出:
3)实验结果
实验得到的系统单位阶跃响应图如下:
测量得到
4.滞后超前校正特性
1)理论分析
加入滞后超前校正网络的系统波特图如下图所示:
计算得到穿越频率 ,所以相角裕量
2)仿真分析
用MATLAB进行仿真得到滞后超前校正模块的波特图如下所示:
加入校正后的系统波特图和单位阶跃响应如下图所示:
从上表可以看出,超调量的仿真与实际值之间存在的误差较小,其中滞后超前校正的相对误差较大,但绝对误差很小。而调整时间的部分误差很大,部分误差很小,分析如下:
1)测量误差:在测量超调量时,由于是测量的最高点与稳态值的差,而最高点容易确定,因此测量的值较准确。并且由于超调一般较大,所以较小的绝对测量误差对准确性影响较小。在测量稳态时间时,测量点已经接近稳态,这时的阶跃响应曲线几乎和时间轴平行。所以在确定稳态点时,输出量的微小变化就会引起时间的大幅变化,这样稳态点的选择就比较容易有较大误差,造成调整时间的误差较大。
2)仿真分析
用MATLAB仿真得到的系统波特图和单位阶跃响应如下图所示:
波特图
ቤተ መጻሕፍቲ ባይዱ单位阶跃响应
利用单位阶跃响应波形图可以估算出:
3)实验结果
实际得到的单位阶跃响应波形如下图所示:
实际测量得到
2.超前校正特性
1)理论分析
由上述分析可知,系统固有部分稳定性较差,由波特图可以看出幅频特性曲线以 的斜率穿过零点。为了提高系统稳定性,加入超前校正使曲线以 斜率过零点。
模拟线路图如图3-4。观测滞后超前校正加入后的阶跃响应,记录超调量 和过渡过程时间 。
三、实验结果与分析
1.系统固有部分特性

自动控制串联校正实验报告

自动控制串联校正实验报告

实验五线性定常系统的串联校正班级:姓名:学号:实验指导老师:成绩:实验目的:1、对系统性能进行分析,选择合适的校正方式,设计校正器模型。

2、通过仿真实验,理解和验证所加校正装置的结构、特性和对系统性能的影响;3、通过模拟实验部分进一步理解和验证设计和仿真结果,进而掌握对系统的实时调试技术。

实验内容1、系统开环传递函数为G0(s)=1/s(s+1)校正前系统的波特图:Gm =Inf Pm =12.7580 Weg =Inf Wep =4.4165由此可得,系统相角欲度r=12.758,穿越频率Wc=4.4165rad/s均低于指标要求校正前闭环系统的单位阶跃响应曲线:由图可得,校正前系统的单位阶跃响应参数如下:最大超调量为70%,调整时间为Ts=5.78s.源程序代码如下:num = [20];den = [1 1 0];g = tf(num,den)Nyquist(g)bode(g)margin(g)[Gm,Pm,Weg,Wep] = Margin(g)gf = feedback(g,1)step(gf)2、经过理论计算得到校正器模型:Gc(s)=(0.38s+1)/(0.046s+1)校正后系统的波特图为Gm =Inf Pm =59.1872 Weg =Inf Wep =7.5393 校正后的系统相角欲度为r=59.1872,穿越角频率Wc=7.5393rad/s,符合性能指标要求。

校正前后系统的波特图比较:校正后闭环系统的单位阶跃响应由图可得,校正后闭环系统的单位阶跃响应参数如下:最大超调量为15%,调整时间Ts=0.744s。

系统的稳定性和快速性得到了提高。

源程序代码如下:num = [20]den = [1 1 0]g0 = tf(num,den)gc = tf([0.38 1],[0.046 1]);g = g0 * gc;Bode(g,g0)margin(g)[Gm,Pm,Weg,Wep] = margin(g)gf = feedback(g,1);figure;step(gf)3、模拟部分3.1 根据给定的实验模型搭接校正前的模拟电路图根据传递函数绘制系统模拟电路图,搭接后系统传递函数为G0(s)=19.6/s*(s+1)在试验台上搭接模拟电路完毕后,使用模拟示波器观测校正前系统的阶跃响应,其响应曲线如下图所示:从图中可以看出,模拟校正前网络的阶跃响应参数为:最大超调量为68.6%,调整时间为Ts=6.185s3.2 搭建校正后系统的模拟电路图,校正环节传递函数为:Gc(s)=(0.47s+1)/(1+0.039s)在试验台上搭接校正器的模拟电路后,并引入原系统,用模拟示波器观测校正后系统的阶跃响应,其响应曲线如图所示:由图可知,校正后系统阶跃响应参数如下:最大超调量为:9%,调整时间Ts=0.344s。

(完整word版)自动控制原理线性系统串联校正实验报告五..(word文档良心出品)

(完整word版)自动控制原理线性系统串联校正实验报告五..(word文档良心出品)

武汉工程大学实验报告专业电气自动化班号指导教师姓名同组者无
SIMULINK仿真模型:
单位阶跃响应波形:
分析:由以上阶跃响应波形可知,校正后,系统的超调量减小,调节时间变短,稳定性
单位阶跃响应:
单位阶跃响应:
分析:由以上仿真结果知,校正后,系统由不稳定变为稳定,系统的阶跃响应波形由发散
单位阶跃响应:
单位阶跃响应:
由以上仿真结果知,校正后,系统由不稳定变为稳定,系统的阶跃响应波形由发要求:正文用小四宋体,1.5倍行距,图表题用五号宋体,图题位于图下方,表题位于表上方。

北航自动控制原理实验三:控制系统串联校正

北航自动控制原理实验三:控制系统串联校正
八、收获、体会及建议
本次实验通过设计串联超前校正和串联滞后校正装置研究了串联校正环节对系统稳定性及过渡过程的影响,从直观的角度认识了串联校正环节的作用及超前校正和滞后校正的不同之处,对理论学习有一定的帮助。
附:实验数据,
成绩
自动控制原理
实验报告
院(系)名称
专业名称
学生学号
学生姓名
指导老师
2015年12月
实验二
实验时间
一、实验目的
1.了解和掌握串联校正的分析和设计方法。
2.研究串联校正环节对系统稳定性及过渡过程的影响。
二、实验内容
1.单位负反馈系统的开环传递函数为 ,进行半实物实时仿真,研究其时域性能,同时从频域分析系统稳定性。
2.电子模拟机
3.万用表
4.测试导线
五、实验步骤
1.正确连接电路,分别完成不加校正、加入超前校正、加入滞后校正的实验。在系统模型上的“Manual Switch”处可设置系统是否加入校正环节,在“ ”处可设置校正环节的传递函数。
2.绘制以上三种情况时系统的波特图。
3.采用示波器“Scope”观察阶跃响应曲线。观测试验结果,记录实验数据,绘制实验结果图形,完成实验报告。
图3-1系统结构图
其中 为校正环节,可放置在系统模型中来实现,也可使用模拟电路的方式由模拟机实现。
2.系统模拟电路如图3-2所示。
图3-2系统模拟电路图
取 , , , , 。
3.未加校正时, 。
4.加串联超前校正时, 。
取 , ,则 。
5.加串联滞后校正时, 。
取 , ,则 。
四、实验设备
1.数字计算机
2.针对以上系统,设计串联超前校正装置 ,使系统的相稳定裕度 ,并进行半实物实时仿真验证,研究其时域性能,同时从频域分析系统稳定性。

自控实验报告控制系统串联校正

自控实验报告控制系统串联校正

自动控制原理实验报告(III)一、实验名称:控制系统串联校正二、实验目的1. 了解和掌握串联校正的分析和设计方法。

2. 研究串联校正环节对系统稳定性及过渡过程的影响。

三、实验内容1. 设计串联超前校正,并验证。

2. 设计串联滞后校正,并验证。

四、实验原理1. 系统结构如图3-1图3-1其中Gc(s) 为校正环节,可放置在系统模型中来实现,也可使用模拟电路的方式由模拟机来实现。

2. 系统模拟电路如图3-2图3-2各电阻电容取值R3=2MΩ R4=510KΩ R5=2MΩC1=0.47μF C2=0.47μF3. 未加校正时Gcs=14. 加串联超前校正时Gcs=aTs+1Ts+1 (a >1)给定 a = 2.44 , T = 0.26 , 则 Gcs=0.63s+10.26s+15. 加串联滞后校正时Gcs=bTs+1Ts+1(0<b<1)给定b = 0.12 , T = 83.33, 则Gcs=10s+183.33s+1五、数据记录未加校正超前校正滞后校正ts实测值/s 5.90 2.3515.24 ts理论值/s 5.41 1.9215.14γ/°25.546.855.7ωc/rad∙s-1 2.11 2.430.48(1)未加校正(2)超前校正(3)滞后校正3. 系统波特图(1)未加校正环节系统开环传递函数Gs=4s2+s(2)串联超前校正系统开环传递函数Gs=2.52s+40.26s3+1.26s2+s(3)串联滞后校正系统开环传递函数Gs=40s+483.33s3 + 84.33s2+s六、数据分析1、无论是串入何种校正环节,或者是否串入校正环节,系统最终都会进入稳态,即三个系统都是稳定系统。

2、超前校正:系统比未加校正时调节时间短,即系统快速性变好了,而且超调量也减小了。

从频率角度来看,戒指频率减小,相位稳定域度增大,系统稳定性变好。

3、滞后校正:系统比未加校正时调节时间长,即系统快速性变差了,但是超调量减小了很多,甚至比加串联超前校正时的超调还小。

自动控制原理 控制系统串联校正装置的设计

自动控制原理 控制系统串联校正装置的设计

实验六 控制系统串联校正装置的设计一、实验目的应用频率校正法,对给定系统进行串联校正设计,并在模拟学习机上加以实现,验证设计的正确性。

二、实验仪器设备(1)AC -1自动控制综合实验仪 一台(2)数字计算机(配有AD/D 卡) 一台(3)数字万用表 一块三、设计任务与要求1. 已知单位反馈系统的开环传递函数为:)1()(0+=s s K s G 当输入信号r (t) = 1时,要求:稳态误差0.1ss e ≤;开环截止频率4.4'0≥ω(rad/s );相角裕度045'≥γ;幅值裕度dB h 10'≥,试设计系统的串联超前校正装置。

2. 已知单位反馈系统的开环传递函数为:)12.0)(11.0()(0++=s s s K s G 要求:校正后系统的静态速度误差等于30(1/s );相角裕0'40≥γ;幅值裕度dB h 10'≥,开环截止频3.2'0≥ω(rad/s );试设计系统的串联滞后校正装置。

四、实验内容(1)为了满足系统给出的开环截止频率和相角裕度的要求,利用数字计算机进行频率特性的计算,选择校正网络的参数、电容和电阻值。

(2)将设计的校正装置接入系统中,观察校正后系统的阶跃响应曲线,并检验是否满足给定的性能指标要求。

(3)若校正后,系统性能指标未达到给定的要求,应适当调节校正装置中的电阻,直至各项性能指标均满足要求为止。

如果调节电阻无法达到,则需重新设计。

(4)应用MATLAB 软件的SIMULINK 仿真环境对校正前后的系统进行仿真,计算频率特性,并与实验结果进行比较。

五、实验报告要求(1)实验完毕,利用实验数据文件,按实验指导老师的要求打印部分实验曲线,以便完成实验报告。

(2)给出校正前后系统的传递函数及其模拟电路;(3)根据校正装置设计的要求给出设计过程;(4)根据系统校正前后的阶跃响应曲线,分析校正的作用及特点。

5.5连续系统的串联校正

5.5连续系统的串联校正
(2)选中[实验课题一连续系统串联校正一滞后校正]菜单项,鼠标点击将弹出参数设置窗口。系统加入阶跃信号。参数设置完成后鼠标点击确认,测量系统阶跃响应,并记录超调量σ%和调节时间ts。
(3)开关K接通,重复(2)的步骤,将两次所测的波形进行比较。
4.串联滞后校正系统实验步骤
(1)连接被测量典型环节的模拟电路(图5.5.6串联滞后校正电路),电路的输入R(S)接A/D、D/A卡的D/A1输出,电路的输出C(S)接A/D、D/A卡的A/D1输入。检查无误后接通电源。
(2)选中[实验课题一连续系统串联校正一超前滞后校正]菜单项,鼠标点击将弹出参数设置窗口。系统加入阶跃信号。参数设置完成后鼠标点击确认,测量系统阶跃响应,并记录超调量σ%和调节时间ts。
(3)开关K接通,重复(2)的步骤,将两次所测的波形进行比较。
5.5.5仿真实验
1.Multisim仿真实验
(1)在Multisim仿真平台上建立如图5.5.8(a)所示串联超前校正电路。图5.5.8(b)测出的是校正前的超调量σ%和调节时间ts。图5.5.8(c)测出的是校正后的超调量σ%和调节时间ts。
图中 的传递函数是:
校正前
校正后
3.串联超前-滞后校正
串联超前-滞后校正模拟电路如图5.5.6所示,串联超前-滞后校正模拟电路框图如图5.5.7所示。图中开关K1和K2同时断开对应未校正情况,同时接通为对应串联超前-滞后校正。观测校正前后系统的阶跃响应。
图5.5.6串联超前-滞后校正模拟电路
图5.5.7串联超前-滞后校正模拟电路结构框图
(1)串联超前校正
串联超前校正系统矫正前系统结构框图如图5.5.11(a)所示,矫正后系统结构框图如图5.5.11(b)所示。
(a)超前校正前系统结构框图

2023年自动控制原理实验系统超前校正实验报告

2023年自动控制原理实验系统超前校正实验报告

试验五 系统超前校正(4课时)本试验为设计性试验 一、试验目旳1. 理解和观测校正装置对系统稳定性及动态特性旳影响。

2. 学习校正装置旳设计和实现措施。

二、试验原理工程上常用旳校正措施一般是把一种高阶系统近似地简化成低阶系统, 并从中找出少数经典系统作为工程设计旳基础, 一般选用二阶、三阶经典系统作为预期经典系统。

只要掌握经典系统与性能之间旳关系, 根据设计规定, 就可以设计系统参数, 进而把工程实践确认旳参数推荐为“工程最佳参数”, 对应旳性能确定为经典系统旳性能指标。

根据经典系统选择控制器形式和工程最佳参数, 据此进行系统电路参数计算。

在工程设计中, 常常采用二阶经典系统来替代高阶系统(如采用主导极点、偶极子等概念分析问题)其动态构造图如图7-1所示。

同步还常常采用“最优”旳综合校正措施。

图7-1二阶经典系统动态构造图二阶经典系统旳开环传递函数为)2()1()(2n n s s Ts s Ks G ξωω+=+= 闭环传递函数2222)(nn ns s s ωξωω++=Φ 式中 , 或者 二阶系统旳最优模型 (1)最优模型旳条件根据控制理论, 当 时, 其闭环频带最宽, 动态品质最佳。

把 代入 得到, , 这就是进行校正旳条件。

(2)最优模型旳动态指标为%3.4%100%21/=⨯=--ξξπσe,T t ns 3.43≈=ω三、试验仪器及耗材1.EL —AT3自动控制原理试验箱一台; 2.PC 机一台; 3.数字万用表一块 4.配套试验软件一套。

四、试验内容及规定未校正系统旳方框图如图7-2所示, 图7-3是它旳模拟电路。

图7-2未校正系统旳方框图矫正后未调整电路图图7-3未校正系统旳模拟电路设计串联校正装置使系统满足下述性能指标(1) 超调量%σ≤5% (2) 调整时间t s ≤1秒(3) 静态速度误差系数v K ≥20 1/秒 1. 测量未校正系统旳性能指标 (1)按图7-3接线;(2)加入单位阶跃电压, 观测阶跃响应曲线, 并测出超调量 和调整时间ts 。

自动控制原理线性系统串联校正实验报告五..

自动控制原理线性系统串联校正实验报告五..

武汉工程大学实验报告专业 电气自动化 班号 指导教师 姓名 同组者 无实验名称 线性系统串联校正实验日期 第 五 次实验 一、 实验目的1.熟练掌握用MATLAB 语句绘制频域曲线。

2.掌握控制系统频域范围内的分析校正方法。

3.掌握用频率特性法进行串联校正设计的思路和步骤。

二、 实验内容1.某单位负反馈控制系统的开环传递函数为)1()(+=s s Ks G ,试设计一超前校正装置,使校正后系统的静态速度误差系数120-=s K v ,相位裕量050=γ,增益裕量dB K g 10lg 20=。

解:取20=K ,求原系统的相角裕度。

num0=20; den0=[1,1,0]; w=0.1:1000;[gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w);[gm1,pm1,wcg1,wcp1] margin(num0,den0) grid; ans =Inf 12.7580 Inf 4.4165 由结果可知,原系统相角裕度7580.12=r ,srad c /4165.4=ω,不满足指标要求,系统的Bode 图如图5-1所示。

考虑采用串联超前校正装置,以增加系统的相角裕度。

1010101010幅值(d b )--Go,-Gc,GoGcM a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramGm = Inf dB (at Inf rad/sec) , P m = 12.8 deg (at 4.42 rad/sec)Frequency (rad/sec)图5-1 原系统的Bode 图由),3,8.12,50(00000c m c Φ=Φ=+-=Φ令取为原系统的相角裕度εγγεγγ,mm ϕϕαsin 1sin 1-+=可知:e=3; r=50; r0=pm1;phic=(r-r0+e)*pi/180;alpha=(1+sin(phic))/(1-sin(phic)) 得:alpha = 4.6500[il,ii]=min(abs(mag1-1/sqrt(alpha)));wc=w( ii); T=1/(wc*sqrt(alpha)); num0=20; den0=[1,1,0]; numc=[alpha*T,1]; denc=[T,1];[num,den]=series(num0,den0,numc,denc); [gm,pm,wcg,wcp]=margin(num,den); printsys(numc,denc) disp('校正之后的系统开环传递函数为:');printsys(num,den) [mag2,phase2]=bode(numc,denc,w); [mag,phase]=bode(num,den,w); subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.'); grid; ylabel('幅值(db)'); title('--Go,-Gc,GoGc'); subplot(2,1,2); semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('相位(0)'); xlabel('频率(rad/sec)');title(['校正前:幅值裕量=',num2str(20*log10(gm1)),'db','相位裕量=',num2str(pm1),'0';'校正后:幅值裕量=',num2str(20*log10(gm)),'db','相位裕量=',num2str(pm),'0'])1010101010-100-5050幅值(d b )--Go,-Gc,GoGc1010101010-200-150-100-50050相位(0)频率(rad/sec)图5-2 系统校正前后的传递函数及Bode 图 num/den = 0.35351 s + 1-------------- 0.076023 s + 1校正之后的系统开环传递函数为:num/den = 7.0701 s + 20 -----------------------------0.076023 s^3 + 1.076 s^2 + s 系统的SIMULINK 仿真:校正前SIMULINK 仿真模型:单位阶跃响应波形:校正后SIMULINK仿真模型:单位阶跃响应波形:分析:由以上阶跃响应波形可知,校正后,系统的超调量减小,调节时间变短,稳定性增强。

自动控制实验五线性定常系统的串联校正

自动控制实验五线性定常系统的串联校正

自动控制实验实验五线性定常系统的串联校正姓名: 学号: 班级:实验指导老师: __________________ 成绩: ____________________一、实验目的1 对系统性能进行分析, 选择合适的校正方式, 设计校正器模型。

2 通过仿真实验, 理解和验证所加校正装置的结构、特性和对系统性能的影响;3 通过模拟实验部分进一步理解和验证设计和仿真的结果, 进而掌握对系统的实时调试技术。

二、实验内容1 对未加校正装置时系统的性能进行分析, 根据性能要求进行校正器模型的理论设计2 Matlab仿真(1)观察校正前系统的时域、频域性能。

(2)观察校正后系统的时域、频域性能。

(3)对比1.2中结果分析校正器性能, 在保证校正效果的前提下并根据实验台实际参数进行校正器模型调整。

3 模拟实验。

(1)搭接校正前的系统模拟电路。

(2)搭接校正器模拟电路(3)验证是否满足设计要求。

三、实验数据或曲线1 MATLAB仿真部分选取实验题目三系统模型g0=tf([20],[1 1 0]);Bode(g0)gf=feedback(g0,1);step(gf)gc=tf([0.38 1],[0.05 1]);g=g0*gc;Bode(g0,g)gcf=feedback(g,1);step(gcf)校正前系统伯德图由图可知系统的性能不满足性能要求, 考虑采用串联超前校正。

阶跃响应曲线校正后系统的伯德图校正器模型(0.4s+1)/(0.05s+1),由图知系统的性能均满足性能要求, 校正器模型合理。

校正后闭环系统的阶跃响应曲线从校正前后系统的阶跃响应曲线上显示的参数可见, 系统的性能得到了改善。

2 模拟部分校正前系统的阶跃响应曲线校正后系统的阶跃响应曲线四、实验结论控制系统设计的思路之一就是在原系统特性的基础上, 对原特性加以校正, 使之达到要求的性能指标。

常用的串联校正装置有超前校正、滞后校正和超前滞后校正装置。

串联系统校正实验报告

串联系统校正实验报告

3.3线性系统的校正与状态分析 3.3.1频域响应发串联超前校正-实验目的1. 了解和掌握超前校正的原理。

2. 掌握利用闭环和开环的对数副频和相频特性完成超前校正网络的参数的计算。

3. 掌握在被控系统中如何串入超前校正网络,构成性能满足指标的新系统的方法。

二实验内容及步骤1. 观察被控系统的闭环和开环的对数副频和相频特性、幅值穿越频率、相位余度,按校正后系统的相位余度要 求,设计矫正参数,构成矫正后系统。

2. 观察校正前后的时域特性曲线,并测量校正后的相位余度、超调量、峰值时间。

3. 按实验要求改变相位余度要求,计算相关参数填入实验报告。

(1)未校正系统的时域特性曲线的测试未校正系统图如下。

本实验用B5作为信号发生器,OUT 输出施加于被测系统的输入端 Ui 。

观察OUT 从0V到2.5V 时被测系统的时域特性。

实验步骤: ① 按表格接线。

② 在显示与功能选择(D1)单元中,选择“矩形波”。

③ 量程开关S2置下,调节“设定电位器1 ”,使脉宽>3秒。

④ 调节B5单元的“矩形波调幅”使电位器矩形波输出电压=2.5V 。

⑤ 运行、观察、记录:运行LABACT 软件,选择对应的模拟电路的构成,选择线性系统的校正,用 CH1观察系统输出信号待波形完后后用游标测量超调量、峰值时间、调节时间。

超调量=56.4%、峰值时间tp=0.32S(2)未校正系统的频域特性的测试本实验用D/A 转换单元(B2 )作为信号发生器,实验开始后,频率特性扫描点设置”表中根据自己的需要 填入各个扫描点的频率, OUT2输出施加于被测系统的输入项r (t ),然后分别测试被测系统的输出信号的闭环对数幅值的相位。

实验接线如下表所示② 运行、观察、记录:运行LABACT 软件,选择对应的模拟电路的构成,选择二阶系统,在弹出的“频率特性扫描点设置”表中 根据自己的需要填入各个扫描点的频率,本试验选择0.1Hz 为分辨率。

在未校正系统的相频特性曲线上测 得为校系统的相位余度 丫 =18.9 °穿越频率 Wc=9.4rad/s(3) 超前校正网络的设计① 在未校正系统模拟电路的开环性频特性曲线上侧得未校正系统的相位余度 丫 =18.9 °。

串联校正实验报告(3篇)

串联校正实验报告(3篇)

第1篇一、实验目的1. 了解串联校正的基本原理和设计方法。

2. 掌握利用串联校正装置改善系统性能的方法。

3. 通过实验验证串联校正对系统动态性能的影响。

二、实验原理串联校正是一种常用的控制系统设计方法,通过在系统的输入端或输出端添加校正装置,来改善系统的动态性能和稳态性能。

本实验主要研究串联校正对系统相位裕度和增益裕度的影响。

三、实验器材1. 控制系统实验平台2. 信号发生器3. 示波器4. 信号调理器5. 校正装置(如PID控制器、滤波器等)6. 计算机及仿真软件四、实验步骤1. 搭建实验系统:根据实验要求搭建控制系统实验平台,包括被控对象、校正装置和测量装置。

2. 设置实验参数:设置被控对象和校正装置的参数,如PID参数、滤波器参数等。

3. 进行开环实验:通过信号发生器向系统输入不同频率的正弦信号,利用示波器观察系统的输出响应,记录系统的相位裕度和增益裕度。

4. 进行闭环实验:将系统切换到闭环状态,再次输入正弦信号,观察系统的输出响应,记录系统的相位裕度和增益裕度。

5. 分析实验结果:比较开环和闭环实验结果,分析串联校正对系统性能的影响。

五、实验结果与分析1. 开环实验结果:通过开环实验,可以得到系统的相位裕度和增益裕度,以及系统的频率响应曲线。

2. 闭环实验结果:通过闭环实验,可以得到系统的相位裕度和增益裕度,以及系统的频率响应曲线。

3. 分析结果:- 当校正装置的参数设置合理时,系统的相位裕度和增益裕度会得到改善,从而提高系统的稳定性。

- 串联校正可以有效地抑制系统的振荡和超调,提高系统的响应速度。

- 串联校正对系统的稳态误差也有一定的影响,需要根据实际需求进行调整。

六、实验结论1. 串联校正是一种有效的控制系统设计方法,可以改善系统的动态性能和稳态性能。

2. 通过合理设置校正装置的参数,可以有效地提高系统的稳定性、响应速度和稳态精度。

3. 在实际应用中,需要根据被控对象和系统的具体要求,选择合适的校正装置和参数。

南邮自动控制原理实验报告

南邮自动控制原理实验报告
(D)对该开环函数构成的单位负反馈系统的稳定性作出判断,说明理由;假如闭环不稳定,则应指出不稳定极点的数目。
>> step(G,6)
自然频率=16.9538rad/sec
阻尼比=0.73578
实验二
2.1
(1)考察闭环系统根轨迹的一般形成规律。
(2)观察和理解引进零极点对闭环根轨迹的影响。
(3)观察、理解根轨迹与系统时域响应之间的联系。
(4)初步掌握利用产生根轨迹的基本指令和方法。
2.2
根轨迹绘制的指令法、交互界面法;复平面极点分布和系统响应的关系。
指令:rlocfind(G)
分离点:-2.0095 + 1.0186iK=0.0017
与虚轴的交点:-0.0000 + 3.6025iK=65.8411
(3)利用MATLAB的rlocfind指令,求出系统临界稳定增益,并用指令验证系统的稳定性。
系统临界稳定增益:65.8411
由于系统无右半平面的开环极点,且奈奎斯特曲线不包围(-1,j0)点,系统稳定。
1
-----------
s^2 + s + 1
>> step(G,18)
阻尼比=2:
>> G=tf([1],[1,2,1])
Transfer function:
1
-------------
s^2 + 2 s + 1
>> step(G,18)
结论:
当阻尼比取0时,其振荡频率为1,即为无阻尼振荡;当阻尼比大于0小于1时,二阶系统为欠阻尼二阶系统,其单位阶跃响应为衰减振荡;当阻尼比大于1时,二阶系统为过阻尼二阶系统,其单位阶跃响应为是非振荡的。

自动控制原理线性系统串联校正实验报告五

自动控制原理线性系统串联校正实验报告五

武汉工程大学实验报告专业电气自动化班号指导教师姓名同组者无
SIMULINK仿真模型:
单位阶跃响应波形:
分析:由以上阶跃响应波形可知,校正后,系统的超调量减小,调节时间变短,稳定性
单位阶跃响应:
单位阶跃响应:
分析:由以上仿真结果知,校正后,系统由不稳定变为稳定,系统的阶跃响应波形由发散
单位阶跃响应:
单位阶跃响应:
由以上仿真结果知,校正后,系统由不稳定变为稳定,系统的阶跃响应波形由发要求:正文用小四宋体,1.5倍行距,图表题用五号宋体,图题位于图下方,表题位于表上方。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五连续系统串联校正
一、实验目的
1. 加深理解串联校正装置对系统动态性能的校正作用。

2. 对给定系统进行串联校正设计,并通过模拟实验检验设计的正确性。

二、实验仪器
1.EL-AT-III型自动控制系统实验箱一台
2.计算机一台
三、实验内容
1.串联超前校正
(1)系统模拟电路图如图5-1,图中开关S断开对应未校情况,接通对应超前校正。

图5-1 超前校正电路图
图5-1 超前校正电路图
(2)系统结构图如图5-2
图5-2 超前校正系统结构图
图中Gc1(s)=2
2(0.055s+1)
Gc2(s)=
0.005s+1
2.串联滞后校正
(1)模拟电路图如图5-3,开关s断开对应未校状态,接通对应滞后校正。

图5-3 滞后校正模拟电路图
(2)系统结构图示如图5-4
图5-4 滞后系统结构图
图中Gc1(s)=10
10(s+1)
Gc2(s)=
11s+1
3.串联超前—滞后校正
(1)
模拟电路图如图5-5,双刀开关断开对应未校状态,接通对应超前—滞后校正。

图5-5 超前—滞后校正模拟电路图
(2)系统结构图示如图5-6。

图5-6超前—滞后校正系统结构图
图中 Gc1(s)=6
6(1.2s+1)(0.15s+1)
Gc2(s)=
(6s+1)(0.05s+1)
四、实验步骤
1.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。

2.测试计算机与实验箱的通信是否正常,通信正常继续。

如通信不正常查找原因使通信
正常后才可以继续进行实验。

超前校正:
3.连接被测量典型环节的模拟电路(图5-1)。

电路的输入U1接A/D、D/A卡的DA1输出,
电路的输出U2接A/D、D/A卡的AD1输入,将将纯积分电容两端连在模拟开关上。

检查无误后接通电源。

4.开关s放在断开位置。

-
5.在实验项目的下拉列表中选择实验五[五、连续系统串联校正]。

鼠标单击按钮,
弹出实验课题参数设置对话框。

在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果,并记录超调量 p和调节时间ts。

超前
校正前校正后校正系统
指标
阶跃响应曲线
δ%51.111.8 Tp(秒)166118
Ts(秒)1152 154
滞后校正:
7.连接被测量典型环节的模拟电路(图5-3)。

电路的输入U1接A/D、D/A卡的DA1输出,
电路的输出U2接A/D、D/A卡的AD1输入,将纯积分电容两端连在模拟开关上。

检查无误后接通电源。

8.开关s放在断开位置。

9.在实验项目的下拉列表中选择实验五[五、连续系统串联校正]。

鼠标单击按钮,
弹出实验课题参数设置对话框,在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果,并记录超调量σp和调节时间ts。

10.开关s接通,重复步骤9,将两次所测的波形进行比较。

并将测量结果记入下表中:

后校正系统
校正前校正后指标
阶跃响应曲线
δ%67.2 11.53 Tp(秒)213 439
Ts(秒)2529529
超前--滞后校正
11.连接被测量典型环节的模拟电路(图5-5)。

电路的输入U1接A/D、D/A卡的DA1输
出,电路的输出U2接A/D、D/A卡的AD1输入,将纯积分电容两端连在模拟开关上。

检查无误后接通电源。

12.开关s放在断开位置。

13.在实验项目的下拉列表中选择实验五[五、连续系统串联校正]。

鼠标单击按钮,
弹出实验课题参数设置对话框,在参数设置对话框中设置相应的实验参数后鼠标单
击确认等待屏幕的显示区显示实验结果,并记录超调量σp和调节时间ts。

14.开关s接通,重复步骤13,将两次所测的波形进行比较。

并将测量结果记入下表中:
超前-
滞后系统
校正前校正后指标
阶跃响应曲线
δ%69.122.6 Tp(秒)130201 Ts(秒)1615 570 阶跃响应曲线图:
串联超前校正前:
串联超前校正后:
串联滞后校正前:
串联滞后校正后:
串联超前—滞后校正前:
串联超前—滞后校正后:
五、实验报告
书本上错误的方程:
串联超前校正校正前:
G(s)=
Wc=13.7rad/s,
串联滞后校正校正前:
G(s)=
Wc=16.3rad/s
纠正错误:
串联超前校正校正前:
Wc=16.7rad/s
V=17度;
串联滞后校正校正前:
Wc=17.7rad/s V=-14度;
串联超前—滞后校正校正前:
G(s)=
Wc=18.6rad/s;
V=11度
2. 计算串联超前校正装置的传递函数Gc(s)和校正网络参数,并求出校正后系统的
ω′c及ν′。

串联系统超前校正后:
书本上错误的公式:
Wc=15.8rad/s V=54度;
纠正后:
G(s)=
Wc=25rad/s V=65度
串联滞后校正后:书本上错误的公式:
G(s)=
Wc=7.21rad/s
V=1;
纠正后:
G(s)=
Wc=6.83rad/s
V=31度;
串联超前—滞后校正后:
Wc=13.2rad/s
V=56.5度。

串联超前校正后的网络参数:a=0.108
校正装置的作用:
串联超前校正装置:
可以看到超调量明显减小,从原来的51.1%变成11.8%,系统的带宽增加了,系统的响应速度提高。

原有的稳态精度不变。

此装置将高频段抬高,系统的抗干扰能力有所降低。

串联滞后校正装置:
从图可以看出系统的稳态精度不该变,高频段对数幅值下降,抗干扰性能提高,系统有了足够的幅值裕度和65度的相位裕度。

系统的超调量也明显减小,从原来的67.2%到校正后的11.53,因幅值穿越频率增大,所以响应速度变慢。

串联超前—滞后校正装置:
从图可以看出此装置既能加快系统的响应速度,又有良好的稳态精度。

此装置综合了串联超前校正装置和串联滞后装置的优点,可以满足更高的性能指标要求。

但系统比较复杂。

相关文档
最新文档