响应面分析法课件
合集下载
响应面试验设计与分析ppt课件

可编辑课件PPT
9
可编辑课件PPT
10
可编辑课件PPT
11
可编辑课件PPT
12
可编辑课件PPT
13
可编辑课件PPT
14
可编辑课件PPT
15
可编辑课件PPT
16
可编辑课件PPT
17
可编辑课件PPT
18
可编辑课件PPT
19
可编辑课件PPT
20
可编辑课件PPT
21
可编辑课件PPT
响应面试验设计与分析
可编辑课件PPT
1
第一节 响应面的概念
可编辑课件PPT
2
第二节 响应面模型
可编辑课件PPT
3
第三节 响应面试验设计与DesignExpert软件
可编辑课件PPT
4
可编辑课件PPT
5
可编辑课件PPT
6
可编辑课件PPT
7
可编辑课件PPT
8
第四节 响应面试验设计与分析实例
22
可编辑课件PPT
23
可编辑课件PPT
24
可编辑课件PPT
25
可编辑课件PPT
26
可编面方程应用
可编辑课件PPT
28
可编辑课件PPT
29
可编辑课件PPT
30
可编辑课件PPT
31
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
《响应曲面法RSM》PPT模板课件

实验设计指南RSM
1. 问题的认知及陈述 2. 反应变量的选择 3. 因子选择与水平个数及范围的选择 4. 选择合适的实验设计 5. 进行试验收集数据
实验设计指南RSM
6.资料分析 为整个模型建立Anova表 模式精简:去除不显著项(P-value高)或平方和影响低的
项次(在Pareto图或常态图)后,进行模型的简化。切记 :一次删一项,重新分析再评估。 注意Lack of fit问题是否显著 解释能力是否足够:R2值要大于80%。 残差分析,确认模型的前提假设是否成立:四合一残差图 研究显著的交互作用/主效应(P-value小于0.05)---从高阶着 手 7.结论与建议 列出数学模型 评估各方差源实际的重要性 将模型转换为实际的流程设置(优化器)
项
系数
P
常量
79.8000
486.087 0.000
Time 0.000
0.9950
Temp 0.005
0.5152
Time*Time -1.3062 0.000
Temp*Temp -0.9312
系数标准误 T
0.1642
可以简化 哪项?
0.1298 7.666
0.1298 3.969
0.1392 -9.385 解释能力
目的:探究多个输入变量与化学制程产出值之 间关系。
在实验设计规划范围内,如何寻找实验因子最 佳组合,以达到最佳反应值。
系列化实验的最佳规划。 Minitab使分析变成更容易。
What Is RSM?
什么是响应面方法(RSM)
Plot A Plot B
When doing DOE to maximize yield, which plot do you prefer to see? Why? 当实施DOE把良率提到最高,你希望看到那个图?为什么?
响应面方法PPT课件

Optimal 最优设计
-User-Defined 用户自定义
19
-
20
Box Behnken(Design-Expert8.05b)
b1
1 219217.93 219217.93 1179.11** F = 0.05(1,44) 4.06;F0.01(1,44)=7.24
b2
1
754.29 754.29
4.06*
b4
1 61688.63 61688.63 331.81**
b5
1 50331.10 50331.10 270.72**
Composite Design(CCD)、Box-Behnken Design(BBD)。最常见的是CCD与BBD。 • 主要以BBD为例说明Design-Expert的使用 • 注:选用的模型不同,设计方案也不同,所需做实验的次数也就不同的
-
4
二因素响应面分析
• 在化学量测实践中,一般不考虑三因素及三因素以上间的交互作用。因此假设 二因素响应(曲)面的数学模型为二次多项式模型。
磷肥
0 7 14 21 28 35 42
0 86.9 110.4 134.3 162.5 158.2 144.3 88.7
表1
3 162.5 204.4 238.9 275.1 237.9 204.5 192.5
大麦氮磷肥配比试验结果
氮肥
6
9
12
216.4 274.7 274.3
276.7 342.8 343.4
• 一个简单实用的方法就是以响应的计算值与试验值之间的相关系数是否接近于 1或观察其相关图是否所有的点都基本接近直线进行判别。
• 应当指出,上述求出的模型只是最小二乘解,不一定与实际体系相符,也即, 计算值与试验值之间的差异不一定符合要求。因此,求出系数的最小二乘估计 后,应进行检验。
《响应面分析方面》课件

响应面优化
1
流程
定义优化目标,通过寻找最优的处理条件来优化响应。
2
实践方法
使用模拟、数学优化算法和试验来寻找最佳响应条件。
3
响应面分析实例
实例分析
使用响应面分析方法分析某产品生产流程中的关键因素对产品品质的影响。
应用场景
适用于各种行业,如制药、化工、冶金和环境工程。
总结
1 优势与不足
响应面分析提供了对因素和响应关系的深入理解,但也受到实验设计和模型选择的限制。
2 未来的发展趋势
随着数据科学和机器学习的发展,响应面分析将变得更加精确和自动化。
注
本PPT为响应面分析方面课件,仅供学习使用。
《响应面分析方面》PPT 课件
# 响应面分析方面
响应面分析是一种用于优化和优化设计的方法。它结合数学建模和统计分析, 帮助研究人员理解和预测因素对响应的影响。
简介
概念和意义
探索响应与因素之间的关系,以提高产品质 量和生产效率。和药品 开发。
响应面设计
1
基本原理
设计和选择实验的方法,以获取对响应变量的最佳预测。
2
常用方法
Central Composite Design,Box-Behnken Design,Doehlert Design等。
3
响应面建模
方法
使用多元回归分析、偏最小二 乘法等来建立统计模型。
指标
通过评估预测和模型拟合度来 选择最佳响应面模型。
响应面分析方面ppt

3.6点击Analysis下的响应R1(Analyzed),得到整体分析界面,然后逐个打开标签查看分析结果。 获得统计诊断报告
数据转换选项卡。取默认值
拟合摘要选项卡。 选定方程类型
选模型次数和所需项目。 一般取默认值
方差分析选项卡:得到方程显著性检验系数显著性检验及回归方程
得到等高线和响应面图
例:响应面Box-Behnken试验设计
01
04
02
03
进入软件界面,调出相同因素的随机方案表,修改随机方案表编码与原随机表编码相同,然后输入指标值。
点击Analysis下的响应R1(Analyzed),得到整体分析界面,然后逐个打开上方标签查看分析结果
How to start response surface
创建响应面设计的第一步是从文件菜单中选择New Design
01
然后选择响应面选项卡,将出现若干RSM designs 方法列表
02
在列表中选择设计方法类型,并在屏幕填写因素数量。 (很多设计可处理多达30因素,加上最多10个额外的定性因素。)
诊断统计报告 在Diagnostics图形分析没问题后, 点击Influence → report 可得Diagnostics Case Statistics报告
等高线图
在响应图上右键单击,或右击字母、数字,弹出Graph preferences 命令,点击Graph preferences 命令,弹出Graph preferences对话框,打开对话框标签添加变量轴内容
1.3.Mixture design Simplex Lattice 单纯形格子设计 Simplex Centroid 单纯形重心设计 Screening 筛选设计 Optimal 最优设计 User –Defined 用户自定义 Historical Data 历史数据 bined designs Optimal 最优设计 User –Defined 用户自定义
响应面法PPT课件

三因素试验,F为8,r = 1.682
因此,各因素的水平点共有五个,即(-r, -1, 0, 1, r) 根据上下水平的具体值,可以将标准化的 r值 换为具体值。
以三因素X1, X2, X3为例,说明设计点的步骤
因此,各因素的水平点共有五个,即(-r, -1, 0, 1, r) 根据上下水平的具体值,可以将标准化的 r值 换为具体值。
由有限次的试验的出的数据,来估计 y= f ( x1, x2…xp )具体表达式 (由部分说明全体)。 但该具体表达式不具体存在,只能通过数学模 型进行拟合,得出与实际结果最为近似的表达 式。
数学拟合模型 例如,三因素的多元线性拟合的结果:
y=a+bx1+cx2+dx3
但是,从实际出发,因素与响应一般是非线性的,所以以上模型一般都不适用。 因此,对于曲面上弯曲较大的区域,线性显然不能线性拟合。 我们要用二次或以上的多元非线性拟合
数学拟合模型
三因素的二元非线性拟合的结果表达式: Y=B0+B1X1+B2X2+B3X3+B4X12+B5X22+B6X32+B7X1X 2+B8X2X3+B9X1X3
思路:通过设计试验点, 通过这些试验点的响应,来得出系数的值。
怎样选择试验点了?
星点试验设计
以三因素X1, X2, X3为例,说明设计点的步骤
真实极值= r *∆+x10 = - r *∆+x10
例如,某因素
上水平35,下水平为30 真实上极值=38.41 真实下极值=21.59
两因子组合设计试验点分布图
试验点确定后,进行响应面表设计。
效应面表由以下部分组成:(以三因素为例)
因此,各因素的水平点共有五个,即(-r, -1, 0, 1, r) 根据上下水平的具体值,可以将标准化的 r值 换为具体值。
以三因素X1, X2, X3为例,说明设计点的步骤
因此,各因素的水平点共有五个,即(-r, -1, 0, 1, r) 根据上下水平的具体值,可以将标准化的 r值 换为具体值。
由有限次的试验的出的数据,来估计 y= f ( x1, x2…xp )具体表达式 (由部分说明全体)。 但该具体表达式不具体存在,只能通过数学模 型进行拟合,得出与实际结果最为近似的表达 式。
数学拟合模型 例如,三因素的多元线性拟合的结果:
y=a+bx1+cx2+dx3
但是,从实际出发,因素与响应一般是非线性的,所以以上模型一般都不适用。 因此,对于曲面上弯曲较大的区域,线性显然不能线性拟合。 我们要用二次或以上的多元非线性拟合
数学拟合模型
三因素的二元非线性拟合的结果表达式: Y=B0+B1X1+B2X2+B3X3+B4X12+B5X22+B6X32+B7X1X 2+B8X2X3+B9X1X3
思路:通过设计试验点, 通过这些试验点的响应,来得出系数的值。
怎样选择试验点了?
星点试验设计
以三因素X1, X2, X3为例,说明设计点的步骤
真实极值= r *∆+x10 = - r *∆+x10
例如,某因素
上水平35,下水平为30 真实上极值=38.41 真实下极值=21.59
两因子组合设计试验点分布图
试验点确定后,进行响应面表设计。
效应面表由以下部分组成:(以三因素为例)
响应面试验设计与分析教材(PPT31页)

响应面试验设计与分析教材(PPT31页 )培训 课件培 训讲义 培训ppt教程管 理课件 教程ppt 响应面试验设计与分析教材(PPT31页 )培训 课件培 训讲义 培训ppt教程管 理课件 教程ppt
响应面试验设计与分析教材(PPT31页 )培训 课件培 训讲义 培训ppt教程管 理课件 教程ppt 响应面试验设计与分析教材(PPT31页 )培训 课件培 训讲义 培训ppt教程管 理课件 教程ppt
响应面试验设计与分析教材(PPT31页 )培训 课件培 训讲义 培训ppt教程管 理课件 教程ppt 响应面试验设计与分析教材(PPT31页 )培训 课件培 训讲义 培训ppt教程管 理课件 教程ppt
响应面试验设计与分析教材(PPT31页 )培训 课件培 训讲义 培训ppt教程管 理课件 教程ppt 响应面试验设计与分析教材(PPT31页 )培训 课件培 训讲义 培训ppt教程管 理课件 教程ppt
响应面试验设计与分析教材(PPT31页 )培训 课件培 训讲义 培训ppt教程管 理课件 教程ppt 响应面试验设计与分析教材(PPT31页 )培训 课件培 训讲义 培训ppt教程管 理课件 教程ppt
响应面试验设计与分析教材(PPT31页 )培训 课件培 训讲义 培训ppt教程管 理课件 教程ppt 响应面试验设计与分析教材(PPT31页 )培训 课件培 训讲义 培训ppt教程管 理课件 教程ppt
响应面试验设计与分析教材(PPT31页 )培训 课件培 训讲义 培训ppt教程管 理课件 教程ppt 响应面试验设计与分析教材(PPT31页 )培训 课件培 训讲义 培训ppt教程管 理课件 教程ppt
响应面试验设计与分析教材(PPT31页 )培训 课件培 训讲义 培训ppt教程管 理课件 教程ppt 响应面试验设计与分析教材(PPT31页 )培训 课件培 训讲义 培训ppt教程管 理课件 教程ppt
响应面分析实用举例PPT

模型缩减,逐步去掉不显著的回归系数,结果见表3。得 到的模型为:
y ij
b0
b1 N i
b2 Pj
b4
N
2 i
b5 Pj2
ij
四、响应面分析实例
使用该模型分析的结果为表3,从表3中可以看出,b1, b4,b5达到极显著水平,b2接近达到显著性,只有b3达
不到显著水平。
二、如何做响应面分析
要构造响应面并进行分析以确定最优条件或寻找最优区域, 首先必须通过试验获取大量的测量数据,并建立一个合适 的数学模型(建模),然后再用此数学模型作图。
建模最常用和最有效的方法之一就是多元线性回归方法。 对于非线性体系可作适当处理化为线性形式。
二、如何做响应面分析
设有m个因素影响指标取值,通过试验测量,得到n组试 验数据。假设指标与因素之间的关系可用线性模型表示, 则可将各系数写成矩阵式。
DF
SS
MS
F
5
332061.25 66412.25 352.08** F = 0.05(5,43) 2.44;F0.01(5,43)=3.49
1
219217.93 219217.93 1162.16** F = 0.05(1,43) 4.07;F0.01(1,43)=7.27
1
754.29 754.29
9.2
7.27
= A: 发酵时间 /h
8.8
= B: 发酵温度 /℃
tual Factor
8.4
接种量 /% = 3.0
8
7.6
42.0
30.0
41.5
27.0
41.0
24.0
发酵温度 /℃
40.5
y ij
b0
b1 N i
b2 Pj
b4
N
2 i
b5 Pj2
ij
四、响应面分析实例
使用该模型分析的结果为表3,从表3中可以看出,b1, b4,b5达到极显著水平,b2接近达到显著性,只有b3达
不到显著水平。
二、如何做响应面分析
要构造响应面并进行分析以确定最优条件或寻找最优区域, 首先必须通过试验获取大量的测量数据,并建立一个合适 的数学模型(建模),然后再用此数学模型作图。
建模最常用和最有效的方法之一就是多元线性回归方法。 对于非线性体系可作适当处理化为线性形式。
二、如何做响应面分析
设有m个因素影响指标取值,通过试验测量,得到n组试 验数据。假设指标与因素之间的关系可用线性模型表示, 则可将各系数写成矩阵式。
DF
SS
MS
F
5
332061.25 66412.25 352.08** F = 0.05(5,43) 2.44;F0.01(5,43)=3.49
1
219217.93 219217.93 1162.16** F = 0.05(1,43) 4.07;F0.01(1,43)=7.27
1
754.29 754.29
9.2
7.27
= A: 发酵时间 /h
8.8
= B: 发酵温度 /℃
tual Factor
8.4
接种量 /% = 3.0
8
7.6
42.0
30.0
41.5
27.0
41.0
24.0
发酵温度 /℃
40.5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习交流PPT
3
响应面优化法的不足
• 响应面优化的前提是:设计的实验点应包括最 佳的实验条件,如果实验点的选取不当,使用 响应面优化法是不能得到很好的优化结果的。 因而,在使用响应面优化法之前,应当确立合 理的实验的各因素与水平。
学习交流PPT
4
因素与水平的选取方法
多种实验设计方法
使用已有文献报道结果,确定实验 的各因素与水平。
使用单因素实验,确定合理的响应面优化法实 验的各因素与水平。
使用爬坡实验,确定合理的响应面优化法实 验的各因素与水平。
使用两水平因子设计实验,确定合理的响 应面优化法实验的各因素与水平。
学习交流PPT
5
响应面分析实验设计
可以进行响应面分析的实验设计有多种,但 最用的是下面两种: Central Composite Design- 响应面优化分析、Box-Behnken Design - 响应面优化分析。
学习交流PPT
13
根据得到的拟合方程,可采用绘制出响应面图 的方法获得最优值;也可采用方程求解的方法, 获得最优值。另外,使用一些数据处理软件,可 以方便的得到最优化结果。 响应面分析得到的优 化结果是一个预测结果,需要做实验加以验证。 如果根据预测的实验条件,能够得到相应的预测 结果一致的实验结果,则说明进行响应面优化分 析是成功的;如果不能够得到与预测结果一致的 实验结果,则需要改变响应面方程,或是重新选 择合理的实验因素与水平。
19
响应面图示
学习交流PPT
20
学习交流PPT
21
学习交流PPT
22
学习交流PPT
8
Box-Behnken Design
Box-Behnken Design,简称BBD,也是响应 面优化法常用的实验设计方法,其设计表安排 以三因素为例(三因素用A、B、C表示),见下 页表2,其中 0 是中心点,+, -分别是相应的高 值和低值。其设计的表格的信息和三因素BBD设计表格如下表1ຫໍສະໝຸດ 表2。学习交流PPT2
响应面优化法的优点
• 响应面优化法,考虑了试验随机误差;同时, 响应面法将复杂的未知的函数关系在小区域内 用简单的一次或二次多项式模型来拟合,计算 比较简便,是解决实际问题的有效手段。
• 所获得的预测模型是连续的,与正交实验相比, 其优势是:在实验条件寻优过程中,可以连续 的对实验的各个水平进行分析,而正交实验只 能对一个个孤立的实验点进行分析。
12
按照实验设计安排实验,得出实验数据,下一步 即是对实验数据进行响应面分析。响应面分析主要 采用的是非线性拟合的方法,以得到拟合方程。最 为常用的拟合方法是采用多项式法,简单因素关系 可以采用一次多项式,含有交互相作用的可以采用 二次多项式,更为复杂的因素间相互作用可以使用 三次或更高次数的多项式。一般,使用的是二次多 项式。
学习交流PPT
9
学习交流PPT
10
学习交流PPT
11
对更多因素的 BBD实验设计,若 均包含三个重复的中心点,四因素 实验对应的实验次数为27次,五因 素实验对应的实验次数为 46次。因 素更多,实验次数成倍增长,所以 对在BBD设计之前,进行析因设计 对减少实验次数是很有必要的。
学习交流PPT
学习交流PPT
14
应用举例:响应面分析法优化槐米总黄酮 的提取工艺
根据Box-Benhnkende的中心组合设计原理选取乙醇浓 度、提取时间、液料比对槐米总黄酮影响显著的3个因 素,采取3因素3水平响应面分析法。
学习交流PPT
15
响应面实验设计方案
以提取时间A、乙醇浓度B、液料比C为自变量, 以槐米总黄酮提取率为响应值(Y)进行响应面分析 实验,
学习交流PPT
6
中心组合设计
也称为星点设计。其设计表是在两水平析因设计的基础
上加上极值点和中心点构成的,通常实验表是以代码的
形式编排的, 实验时再转化为实际操作值,(一般水平取
值为 0, ±1, ±α, 其中 0 为中值, α为极值, α=F*
(1/ 4 ); F 为析因设计部分实验次数,
或
, 其中 k为因素数,
学习交流PPT
16
学习交流PPT
17
多元二次响应面回归模型的建立于分析
通过RAS软件程序进行二次回归响应分析, 建立多元二次响应面回归模型。
学习交流PPT
18
各因素的方差分析
学习交流PPT
回归模型 的决定系 数为B、C、 BC、AC, 它们的 Prob>F对 总黄酮提 取率影响 显著,说 明该模型 拟合度好。
响应面实验设计
班级:高分子12研 姓名:孙新华
学习交流PPT
1
响应面优化法简介
• 响应面优化法,即响应曲面法( Response Surface Methodolog y ,RSM),这是一种实验条件寻 优的方法,适宜于解决非线性数据处理的相关 问题。它囊括了试验设计、 建模、检验模型的 合适性、 寻求最佳组合条件等众多试验和计技 术;通过对过程的回归拟合和响应曲面、等高 线的绘制、可方便地求出相应于各因素水平的 响应值。在各因素水平的响应值的基础上,可 以找出预测的响应最优值以及相应的实验条件。
(1/2一般5 因素以上采用),设计表有下面三个部分组成:
(1) 析因设计。
学习交流PPT
7
2极值点。由于两水平析因设计只能用作线性考察, 需 再加上第二部分极值点, 才适合于非线性拟合。如果以 坐标表示, 极值点在相应坐标轴上的位置称为轴(axialpo int)或星点( star poin t) , 表示( ±α,0,…,0) ,(0,±α , …, 0) , …, (0, 0, …, ±α)星点的组数与因素数相同。 3一定数量的中心点重复试验。中心点的个数与CCD 设 计的特殊性质如正交(o rthogonal)或均一精密有关。