铸造业浇注系统的计算

合集下载

铸造球墨铸铁冶炼计算公式

铸造球墨铸铁冶炼计算公式

铸造球墨铸铁冶炼计算公式铸造球墨铸铁是一种优质的铸铁材料,具有优良的机械性能和耐磨性能,因此在工程领域得到了广泛的应用。

在球墨铸铁的冶炼过程中,需要进行各种计算,以确保最终产品的质量和性能。

本文将介绍铸造球墨铸铁冶炼过程中的计算公式及其应用。

1. 铸造球墨铸铁的成分计算。

在球墨铸铁的冶炼过程中,需要计算原料的成分比例,以确保最终产品的化学成分符合要求。

通常情况下,球墨铸铁的成分包括碳(C)、硅(Si)、锰(Mn)、磷(P)和硫(S)等元素。

根据产品的要求,可以通过以下公式计算原料的成分比例:\[成分\% = \frac{元素含量}{总重量} \times 100\%\]例如,如果需要生产含有3.5%碳、2.0%硅、0.5%锰、0.1%磷和0.03%硫的球墨铸铁,可以通过上述公式计算出每种元素在原料中的比例,从而确定配料的比例。

2. 铸造球墨铸铁的合金添加量计算。

在球墨铸铁的冶炼过程中,通常需要添加一定量的合金元素,以改善其性能。

常用的合金元素包括铜(Cu)、镍(Ni)、钼(Mo)等。

根据产品的要求,可以通过以下公式计算合金元素的添加量:\[添加量 = \frac{合金元素含量}{总重量} \times 总重量\]例如,如果需要在球墨铸铁中添加0.5%的铜,可以通过上述公式计算出所需的铜的添加量。

3. 铸造球墨铸铁的熔化温度计算。

在球墨铸铁的冶炼过程中,需要计算熔化温度,以确保原料能够完全熔化并得到均匀的液态铁水。

通常情况下,球墨铸铁的熔化温度取决于其成分和合金元素的含量。

可以通过以下公式计算球墨铸铁的熔化温度:\[熔化温度 = aC + bSi + cMn + dP + eS + fCu + gNi + hMo\]其中,a、b、c、d、e、f、g、h分别为碳、硅、锰、磷、硫、铜、镍、钼的系数。

这些系数可以根据实际情况进行调整,以适应不同的产品要求。

4. 铸造球墨铸铁的浇注温度计算。

在球墨铸铁的冶炼过程中,需要计算浇注温度,以确保铁水在浇注时能够达到适当的流动性和润湿性。

球墨铸铁浇注时间的计算方法

球墨铸铁浇注时间的计算方法

球墨铸铁浇注时间的计算方法
球墨铸铁浇注时间的计算方法通常是根据以下几个因素进行估算:1. 铸件的几何形状和尺寸:较大和复杂形状的铸件需要较长的浇注时间,而较小和简单形状的铸件需要较短的浇注时间。

2. 铸造材料的熔化温度:球墨铸铁的熔化温度通常在1300°C到1400°C之间,较高的熔化温度需要较长的浇注时间。

3. 铸型的温度:铸型的温度会影响铸件的冷却速度和凝固时间。

较高的铸型温度可能需要较短的浇注时间,以保持铸件的热度。

4. 浇注系统的设计:浇注系统的设计包括浇注口、冒口和浇注道等。

合理的浇注系统设计可以提高浇注速度和填充性能,从而减少浇注时间。

综合考虑以上因素,可以使用经验公式或模拟软件进行浇注时间的估算。

具体的计算方法可能因不同的情况而有所不同,建议咨询专业的铸造工程师或使用相关的模拟软件进行准确的计算。

浇注系统的设计与计算

浇注系统的设计与计算

浇注系统的设计与计算摘要:本文主要讲述了计算机在浇注系统中辅助应用,为铸造工艺设计的科学化、精确化,提供了良好的工具。

关键词:设计原则设计顺序设计方法及计算公式在铸造工艺设计过程中,有许多繁贞的数字计算和大量的查表选择工作,仅凭工艺设计人员的个人经验和手工操作,不但要发费很多时间,而且设计结果往往因人而异,很难保证铸件质量。

60年代以来,特别是进入80年代后,随着电子计算机技术的迅猛发展,计算机辅助设计技术在工业中得到愈来愈广泛的应用,也为铸造工艺设计的科学化、精确化提供了良好的工具,成为铸造技术开发和生产发展的重要内容之一。

浇注系统是在砂型中开设的引导金属液进入型腔和冒口的通道,是铸型充填系统中的一个组成部分,通常由四部分(组元)组成:外浇道(浇口杯、浇口盆)、直浇道、横浇道和内浇道。

如图(1)所示。

设计浇注系统主要是选择浇注系统的结构类型,确定引入位置,计算浇注系统各组元的截面尺寸。

成功的浇注工艺,取决于金属本身的特性、铸型的性质和把金属液引入型腔的浇注系统的结构。

设置浇注系统是铸造技术人员和工人用以控制金属液充型的主要手段。

因此,这是一项重要的技术工作。

1-浇口杯2-直浇道3-横浇道4-内浇道图(1)浇注系统结构示意图一、浇注系统的设计原则所谓浇注系统的设计原则就是确定这些浇注系统的形状、尺寸和浇注条件。

如果浇注系统设计不合理就有可能造成以下铸造缺陷,如气孔、砂眼、渣眼、缩孔、裂纹、浇不足和冷隔等缺陷,因此浇注系统时必须遵守以下原则:(1)液体金属的温度在流动中应不降低太多。

(2)应不卷入空气或铸型与液体金属的界面上发生反应所生成的气体。

(3)应不损坏铸型。

(4)应防止掉砂和熔渣流入型腔。

(5)应防止液体金属过度加热铸型。

(6)应有助于方向性凝固。

(7)应不降低工艺出口率(型腔体积对包括浇注系统在内的整铸型型腔体积之比)。

(8)凝固以后应该容易去除。

二、浇注系统设计顺序不同的铸造方法、工厂、技术人员可能采用不同的浇注系统设计方法。

消失模铸造浇注系统设计

消失模铸造浇注系统设计

消失模铸造浇注系统设计浇注系统和浇注是获得高质量铸件的重要工序,浇注系统很关键,要经过反复试验,浇注系统可以用泡沫塑料板材来制造,但浇注系统最好是发泡成型,如果可能与模型成为一体,只有这样才能减少飞边,因为薄而复杂的浇注系统在操作过程中很容易损坏,所以使浇注系统简化很重要;浇注系统和浇注操作的目的是减少浇注时产生紊流的倾向,减轻金属液的氧化,防止产生冷隔、皱皮等缺陷,应用成功的浇口设计有很多类型,如顶注、底注、雨淋式浇注,压边浇口、牛浇口等;金属液的充型速度必频与模型热解的速度相同,浇注速度慢或出现断流的现象,都会引起严重的塌箱,金属液量一定要充分,以保持一定的金属静压头防止金属液前沿与熔融模型之间的空隙处发生他乡;铁或铝和氧的亲和性、铁或铝的吸气性以及模型结构对控制浇注的成功至关重要;浇注时泡沫塑料模型要发生一些列的变化,包括熔融、解聚、热解、聚合物裂解等,模型的热解产物会引起很多铸造缺陷,如铝合金中的气孔、缩松,铸件中的碳缺陷,以及铸钢件中的增碳等;金属液充型过程中,模型在约75℃时开始软化,164℃时溶熔,316℃时开始解聚,在580℃时开始分解,设计浇注系统和浇注过程中,要防止气体、干砂、模型的热解残留物卷入金属液中,减少模型热解残留物取决于浇注系统的设计、浇注速度、模型的几何形状尤其是模型的表面和体积之比、涂料、砂箱的排气、真空的使用、模型的密度及种类等;浇注系统的主要作用是用金属液充填型腔,同时必须不对铸型和金属两者产生部可接受的损坏,浇注系统能够在型内建立温度梯度、提供补给金属,以促进健全的铸件,浇注过程中,浇注系统内的金属流不仅要支撑铸型,还要通过浇注系统排除模型的热解产物,在涂料和干砂的充填、紧实的过程中,浇注系统还可用以支撑和搬运,浇注系统还要有一定的强度,便于操作并使模型某些部位可能加固,防止变形;浇注出铸件后,必须去掉浇注系统;浇注系统应该与铸件部重要的部位相连并且面积应尽量减小,一般情况下,面积越小,可增加浇注系统装配模型数量;消失模铸造工艺中多使用较大的浇口杯防止浇注过程中出现断流,能够快速而稳定地浇注,保持液态金属的静压头,浇口杯多采用合粘结剂的型砂制造;生产铸件时常用过滤网,它有助于防止浇注时直浇道的损坏,金属液的静压头必须超过金属与模型界面的压力,否则就会发生反喷,金属液压头越高,通常导致铸件的质量越好,铝合金铸件中采用中空直浇道和其它组元,有助于铝液的充型;1、消失模铸造浇注位置的确定确定浇注位置应考虑以下原则①尽量立浇、斜浇,避免大平面向上浇注,以保证金属有一定上1速度;②浇注位置应使金属与模型热解速度相同,防止浇注速度慢或出现断流现象,而引起塌箱、对流缺陷;③模型在砂箱中的位置应有利于干砂充填,尽量避免水平面和水平向下的盲孔;重要加工面处在下面或侧面,顶面最好是非加工面;⑤浇注位置还应有利于多层铸件的排列,在涂料和干砂充填紧实怕过程方便支撑和搬运,使模型某些部位可能加固,防止变形;2、消失模铸造浇注方式的确定浇注系统按金属液引入型腔的位置分为顶注、侧注、底注或几种方式综合使用;所有这些方法都能够生产出合格的铸件,顶注时充型所需的时间最短,因此需要浇注速度最快,以防止塌箱;侧注充型速度最慢,而底注介于两者之间,因为铝合金浇注时模型分解的速度很慢,型腔保持充满可避免塌箱,因此多采用顶注,但是这样难以控制金属液流,容易卷入热解残留物; 顶注系统:顶注充型所需时间最短,浇注快有利于防止塌箱;温度降低少,有利于防止浇不足和冷隔缺陷;工艺出品率高,顺序凝固补缩效果好,可以消除我铸铁件碳缺陷,因难控制金属液流,容易使EPS热解残留物卷入,增碳倾向降低;由于铝合金浇注时模型分解速度慢,型腔保持充满,可避免塌箱,一般薄壁件多采用顶注;侧浇注系统:液体金属从模型中间引入,一般在铸件最大投影面积部位引入,可缩短内浇道的距离;生产铸件的采用顶注和侧注,铸件上表面出现碳缺陷的机率低;但卷入铸件内部碳缺陷常常出现;底浇注系统:从底部模型引入金属液,上升平稳,充型速度慢,铸件上表面容易出现碳缺陷,尤其厚大件更为严重;因此应将厚大平面置于垂直方向而非水平方向;底注工艺最有利于金属充型,金属液前沿的分解产物在界面空隙中排出的同时,又能够支撑干砂型壁;一般厚大件应采取底注方式;阶梯式浇注系统:分两层或多层引入金属时采用中空直浇道,大部分金属从最上层内浇道引入金属,多层内浇道作用减弱;阶梯浇道引入容易引起冷隔缺陷;一般在高大铸件时采用;上述浇注方式在一定条件下能生产出合格的铸件;浇道比例和引入位置,采用的浇注系统原则①引入液体金属流,应使充型过程连续不断供应金属不断流,液体金属必须支撑干砂型壁,采用封闭式浇注系统最为有利;即内浇道断面最小;如内浇道:直浇道=1:1. 2-1. 4;②浇注系统的形式与传统工艺不同,不考虑复杂结构形式如常用的离心式、阻流式、牛角式等,尽量减少浇注系统组成,常没有横浇道只有直浇道和内浇道以缩短金属流动的距离;形状简单,方形长方形为主;③直浇道与铸件间距离即内浇道长度应保证充型过程不因温度升高而使模型变形;金属压头,应超过金属EPS界面气体压力,以防呛火;呛火是液体金属从直浇道反喷出来,中空直浇道和底注有利于避免反喷,同样适用于铸铝件;对EPS/EPMkIA共聚树脂模型更为突出,高的直浇道压头高容易导致良好的铸件质量和浇注时的安全;生产铸件时,采用顶注和侧注,铸件表面出现碳缺陷,但是由于卷入模型残留物,铸件的内部常常出现碳缺陷;底注能够减少内部的碳缺陷,但是在铸件的上表面容易出现碳缺陷,尤其是在厚大铸件的上表面,目此多将厚大平面置于垂直的而不是水平的方向;厚度介于3. 2-6. 4mm的铸件一般不会出现什么问题,但是对于壁厚较大的铸件,需要更多的内浇道隐入、更低的模型密度、代用模型材料、采用不同的涂料配方、抽真空浇注或其它的调整,以减少碳缺陷;3、内浇道尺寸大小的设计计算首先确定内浇道最小断面尺寸,再按一定比例确定在直浇道和横浇道;计算方法有2种:经验法:以传统砂型工艺为参考查表或经验公式计算后,适当调整,一般增大15%-20%即可;理论计算方法:如水力学计算公式,以球铁包括灰铁为例G:流经内浇道的液态重量kg铸造重+浇注系统重u:流量系数,可参考传统工艺查表,一般可按阻力偏小来取;如Hp:压头高度,根据模型在砂箱中位置确定;t:关键是浇注时间的选择,快速浇注是EPC工艺最大特点;按下式决定t:k1中小件用公式k1是修正系数,有负压时; K1取<1-般为左右;T=k1计算结果是一个参考值,通过浇注试验调整,有确切把握后可和模型联在一起发泡成型是有利的;4、消失模铸造浇注工艺浇注铝合金铸件时由于模型分解速度不快,浇注速度与铸铁件生产相比要低一些,因此,需要较大的内浇道和直浇道,生产铝合金件时的冷隔和皱皮缺陷是由于铝合金液中卷入了模型的热解残留物以及当今束流相遇是铝液的热量不足以充分熔融这些残留物的综合结果所致;底注工艺最有利于金属液充型,金属液以受控最好的方式在直浇道中下降,然后在铸型型腔内有规律地上,金属液前沿使分解产物在金属液与模型的界面空隙中逸出的同时,又能够支撑干砂型壁;一个浇注系统上能够组装多层模型,在浇注结束前金属液的静压头降低和流动的速度减小的情况下,一定要使每个铸型都充满,模型之间不要靠得太近,否则会使型内气压升高,浇注铸铁和铸钢件时,模型的热解的过程中产生大量高温气体,如果这些气体聚集在相邻两个模型间的区域内,模型会受到损坏,使干砂流入型腔内,产生严重的缺陷;如果把这些高温气体从型内排出,则可以解决这些问题;浇注时也可采用抽真空,抽真空能够排出砂箱内的气体,提高铸件表面的光洁度,阻止干砂流态化,改善薄壁铸件的充型性能,抽真空还能够排出浇注时产生的其它产物,真空系统中收集过多的这类产物会发生批爆炸,所以要求真空系统至少能够承受住1MPa的峰值压力;浇注温度的确定:由于模型气化是吸热反应,需要消耗液体金属的热量,浇注温度应高一些,虽然负压下浇注,充型能力大为提高,但从顺利排除EPS固、液相产物也要求温度高一些,特别是球铁件为减少残碳、皱皮等缺陷,温度偏高些对质量有利;一般推荐EPC工艺浇温比砂型高30-50℃,对铸铁件而言,最后浇注的铸件应高于136 0℃表1推荐的浇注温度范围:表l采用消失模铸造工艺时合金浇注温度负压的范围和时间的确定负压的作用:1 紧实干砂,防止冲砂和崩散、型壁移动尤其球铁更为重要;2 加快排气速度和排气量,降低界面气压,加快金属前沿推进速度提高充型能力,有利于减少铸件表面缺陷;3 提高复印性,铸件轮廓更清晰;4 密封下浇注,改善环境;负压大小范围:1根据合金种类,选定负压范围,见表2;表2 负压范围铸件凝固,形成外壳足以保持铸件时即可停止抽气,一般5min左右根据壁厚定为加快凝固冷却速度也可延长负压作用时间;铸件较小负压可选低些,重量大或一箱多铸可选高一些,顶注可选高一些,壁厚或瞬时发气量大也可选略高一些;浇注过程中,负压会发生变化,开始浇注后负压降低,达到最低值后,又开始回升,最后恢复到初始值,浇注过程负压下降最低点不应低于铸铁件l00-200mmHg,生产上最好控制在200mmHg以上,不允许出现正压状态,可通过阀门调节负压,保持在最低限以上;为避免浇注时喷灯效应,不应采用名冒口,而且直浇道是砂箱表面上唯一敞开处,仔细设计浇注系统,要力争减少型内不同方向的金属液的对流,在金属液流的前沿,常有一些模型热解残留物,在两股金属液对流时在交界面处会卷入这些残留物,因此,铸件截面尺寸的突然变化的部位也有类似的问题,设计浇注系统时,一定要懂得在金属液前沿积累的热解残留物一定要力争排除或减少;浇注操作EPC工艺中浇注时多使用较大的浇口杯防止浇注过程中出现断流而使铸型崩散,达到快速稳定浇注并保持静压头;浇口杯多采用砂型制造,生产铸件还常采用过滤网;它有助于防止浇注道的损坏并起滤渣的作用;消失模铸件在模型后退允许情况下,一般应尽快浇注;采用自动浇注机有利于稳定浇注速度,并能够在浇注时快速调整;而手工浇注不便控制,废品率比自动浇注时的要高一些;几种新的自动浇注方法已得到生产应用;如才用加压方法从铸件底部充型;采用真空技术将金属液吸入铸件中,其前景很好;。

[精彩]第三章 浇注系统的设计与计算

[精彩]第三章 浇注系统的设计与计算

Department of Materials Engineering
计算
1、 奥赞(Osann)公式 —阻流(最小)截面积的计算 。 阻流(最小)组元指浇注系统中最小截 面积的浇道,一般为内浇道,即
m A阻= 2 gHp
H P H0 P
2
2C
湖北汽车工业学院材料工程系 Department of Materials Engineering
轻合金浇注系统中安装过滤网
湖北汽车工业学院材料工程系 Department of Materials Engineering
4、内浇道的设计
1) 内浇道的作用: 控制液态金属充型速度和流动方向、温度分布和凝固顺序。 2) 形状:扁平梯形、月牙形和三角形。 3) 位置的选择: 依据铸件所需凝固方式和流动特性考虑。 同时凝固: 对于壁厚均匀的铸件,拟采用多个内浇道分散引入; 对于不均匀的铸件,则从薄壁处引入。 顺序凝固: 从厚壁处引入金属液。
湖北汽车工业学院材料工程系 Department of Materials Engineering
5、确定内浇道位置的几个具体问题
结构复杂的铸件,壁厚差别大的补缩区域则按顺 序凝固从厚处引入;整个铸件按同时凝固方式采 用多个内浇道充型。 要求各内浇道的流量分布合理。 液流顺壁流入,不冲刷 型壁、型芯和铸型凸出部分。 避开铸件重要部位, 防止晶粒粗大。 造型、清理操作方便, 不阻碍铸件收缩。 湖北汽车工业学院材料工程系
(二)按浇注系统各组元截面积的比例关系分
1、封闭式浇注系统
∑A内< ∑A横<A直
一般为 ∑A内:∑A横:A直=1:1.1:1.15
特点:
挡渣力强,金属消耗少,易清理;

关于铸钢件浇注速度和时间的探讨

关于铸钢件浇注速度和时间的探讨

关于铸钢件浇注时间及浇注速度问题的探讨摘自《铸造手册五》P174~205及《铸造工程师手册》1. 转包式钢包浇注时间的确定转包浇注铸钢件时,浇注时间按下式计算t = 311G S ⨯⨯δ式中:t :浇注时间,量纲S S 1:系数 见表AG :型内金属液总量,量纲Kgδ:铸件平均壁厚,量纲mm 。

对于宽度大于厚度4倍的铸钢件,δ可取铸件主要部位壁厚;对于圆形或正方形铸钢件,δ可取直径或边长的一半;对于复杂形状的铸件,δ取铸件主要部分的壁厚。

注:技术要求低且形状简单的铸钢件,S 1加大0.1~0.2;技术要求高或大型薄壁件S 1减0.1。

对于G>15t 的铸件,t 按下式计算:t = G S 2 式中:t :浇注时间,量纲SS 2:系数 见表BG :型内金属液总量,量纲Kg注:1. 技术要求高或大型薄壁件S 2可减少0.1;2. d 为铸件的相对密度 d = G/V V 为铸件的轮廓体积,即铸件三个方向的最大尺寸的乘积,量纲Kg/cm 3。

2. 采用塞杆包(即底注钢包)浇注铸钢件时,应掌握的适宜浇注时间、金属液在型腔中的适宜上升速度及浇注系统匹配等技术参数要求(P204~) (1) 国外文献介绍的铸钢件适宜浇注时间表C 国外文献介绍的铸钢件适宜浇注时间(S)注:包孔(水口)直径ф40~65mm ,()为双包孔浇注的适宜时间。

(2) 底注包孔浇注时重量/速度计算公式0F 248.0H g 2F H ⨯⨯=⨯⨯⨯⨯⨯=包包包ρμμ式中::包μ钢包的浇注重量/速度,量纲Kg /Sμ:损耗系数,μ=0.8 F 包:包孔截面积,量纲cm 2ρ:钢液密度,ρ=0.007, 量纲kg/cm 2g :重力加速度,g=980,量纲cm /S 2H 0:钢包金属液静压头高度,可取平均值,量纲cm 。

(3) 国外文献介绍的钢液在型腔中的适宜上升速度注:通常可根据钢液在型腔中的适宜上升速度,选择适宜的包孔直径和包孔个数,并设计浇注系统各组元的通径。

熔模铸造浇注系统计算

熔模铸造浇注系统计算

熔模铸造浇注系统计算熔模铸造是一种常用的制造复杂和精密铸件的工艺,其浇注系统的设计和计算对于确保铸件质量和生产效率具有重要意义。

本文将介绍熔模铸造浇注系统的计算方法和步骤,并详细阐述其中的关键要点。

1.浇注系统的设计原则1.1浇注系统应保证熔融金属顺利流入模腔,并避免气体和杂质的混入。

1.2浇注系统应能够提供足够的金属流量和压力,以填充模腔和充实铸件。

1.3浇注系统应使金属液的速度和压力逐渐减小,以避免金属的喷溅和侵蚀模具。

1.4浇注系统设计应考虑模具的结构特点和铸件形状,以获得良好的浇注效果。

2.浇注系统的主要计算参数在进行浇注系统的计算前,需要收集和确定以下参数:2.1铸件的形状和尺寸:包括铸件的几何形状、尺寸、壁厚等。

2.2材料的液态性能:包括铸造合金的熔点、密度、表面张力等。

2.3系统的性能:包括浇注管道和浇注头的直径、长度和形状等。

2.4浇注过程的条件:包括金属液的温度、浇注速度和压力等。

3.浇注系统的计算步骤根据以上参数和原则,进行浇注系统的计算,一般可分为以下几个步骤:3.1确定浇注管道和浇注头的几何参数:根据铸件的形状和尺寸,确定浇注管道和浇注头的直径、长度和形状。

通常,浇注管道和浇注头的直径会逐渐减小,以保证金属液的速度和压力逐渐降低。

3.2计算浇注头的流速和压力:根据材料的液态性能和浇注过程的条件,计算金属液在浇注头中的流速和压力。

这一步需要考虑金属液的粘度、密度以及浇注头的形状、长度等参数。

3.3计算浇注管道和浇注头的阻力:根据浇注管道和浇注头的形状和尺寸,计算流动的阻力。

这一步需要考虑流动的雷诺数、曼宁系数和摩擦因数等参数。

3.4确定浇注时间和浇注压力:根据铸件的尺寸和形状,计算金属液的流速和浇注时间,进而确定浇注压力。

通常,浇注时间应保证金属液充分填充模腔,并保持一定的冲刷效果。

4.浇注系统的优化完成上述计算后,可以进行浇注系统的优化,包括以下几个方面:4.1浇注管道的优化:可以通过改变浇注管道的形状和尺寸,减小阻力和压力损失,提高浇注效率。

浇注系统设计

浇注系统设计

23:29
38
• C)根据标准冒口形状,从圆柱形冒口中 选择与计算值最接近且大于计算值的冒 口。MR=0.84(6#)符合条件:
MR ≥0.79cm
23:29
39
• d) 冒口直径为:DR=45mm • e)冒口径的横截面积计算如下:
冒口径直径: DN>1/3DR=45/3=15mm 冒口径的面积(为圆形)
34
冒口计算范例
• 为更好的说明冒口计算,此处以球铁的 万向节冒口设计为例。很显然圆柱支柱 是铸件最紧实部分,这部分冷却最慢, 凝固最晚,因此在金属收缩时需要金属 补缩。模板的布置图如下:冒口放置在
圆柱的顶部,以便(1)获得顺序凝固
(2)补缩时借助重 力
23:29
35
如图:
冒口计算范例
35mm
80mm
45
铸造常见的几种缺陷
23:29
1.冷隔 2.砂渣眼 3.掉砂 4.粘板 5.押入
6.错模 7.粘砂 8.气孔 9.缩孔 10.打联
46
分析对铸件缺陷产生原因
1.浇注系统
a)因浇道位置引起的铸件缺陷。 b)因浇道形状引起的铸件缺陷。 c)因浇道面积引起的铸件缺陷。
2.因机器参数设置引起的缺陷
23:29
4. 冒口与铸件如何连接(冒口径) 冒口径的形状设计必须能保证冒口与铸
件间通道始终畅通,金属液以最佳的方式 对铸件进行补缩。
23:29
26
冒口有两种类型的收缩
1.表面缩孔。 2.内部缩松。 改善内部的缩松对策:
a.提高CE值 b.增加砂型强度 c.使用冷铁 d.顺序凝固 e.减少孕育用量 f.铁液净化 g.镁残留量趋进0.035
23:29

铸造浇注系统设计PPT课件

铸造浇注系统设计PPT课件

直浇道窝的作用
① 缓冲作用:液流下落的动能有相当大一部分被窝 内液体吸收而转变为压力能,再由压力能转化为 水平速度流向横浇道,减轻了对直浇道底部铸型 的冲刷。
直浇道窝的作用
② 改善内浇道的流量分布:例如在S直:S横: 2S内= 1 : 2.5 : 5的实验条件下,无直浇道窝时,两相等 截面的内浇道的流量分配为:31.5%(近直浇道者) 和68.5%(远者);有直浇道窝时的流量分配为: 40.5%(近直浇道者)和59.5%(远者)。
主要作用是捕集、保留由浇道流入的夹杂物,所以又称“捕渣 器”,是浇注系统最后一道挡渣关口。
要求横浇道平稳、缓慢地输送金属液,而低速流动又可减少充 填时对型腔时的冲击,利于渣粒在横浇道中上浮并滞留在其顶 部而不进入型腔。
1、横浇道中的液流分配
• 金属液从直浇道进入横浇道初期,以较大速度沿 长度方向向前运动,等到达横浇道末端冲击该处 型壁后,金属液的动能转变为势能,横浇道末端 附近液面升高,形成金属浪,并开始返回移动, 使横浇道内液面向直浇道方面逐渐升高,直到全 部充满。
浇注过程是不稳定流动过程 ✓ 在型内合金液淹没了内浇道之后,随着合金液面上升,
充型的有效压力头渐渐变小 ✓ 型腔内气体的压力并非恒定 ✓ 浇注操作不可能保持浇口杯内液面的绝对稳定
一、砂型流动的水力学特点
合金液在浇注系统中一般呈湍流状态
多相流动
一般合金液总含有某些少量固相杂质、液相夹杂和气 泡,在充型过程中还可能析出晶粒及气体,故充型时合 金液属于多相流动
第七章 浇注系统设计
本章主要讲授浇注系统类型的选择,浇注最小截 面尺寸的计算,其它铸造合金浇注系统的特点。要 求掌握浇注系统的选择原则。
重点为浇注系统的选择原则和确定浇注位置,难 点为浇注系统选择原则的灵活应用。

材料成型浇注系统

材料成型浇注系统

浇注系统是为填充型腔和冒口而开设于铸型中的一系列通道。

常用的浇注系统大多由浇口杯、直浇道、横浇道、内浇道等部分组成。

除导入液态合金这一基本作用外,浇注系统还能实现其它的一些作用,其作用如下:(1)使液态合金平稳充满砂型,不冲击型壁和砂芯,不产生激溅和涡流,不卷入气体,并顺利地让型腔内的空气和其它气体排出型外,以防止金属过渡氧化及生产砂眼、铁豆、气孔等缺陷。

(2)阻挡夹杂物进入型腔,以免在铸件上形成渣孔。

(3)调节砂型及铸件上各部分温差,控制铸件的凝固顺序,不阻碍铸件的收缩,减少铸件变形和开裂等缺陷。

(4)起一定的补缩作用,一般是在内浇道凝固前补给部分液态收缩。

(5)让液态合金以最短的距离,最合宜的时间充满型腔,并有合适的型内液面上升速度,得到轮廓完整清晰的铸件。

(6)充型流股不要对正冷铁和芯撑,防止降低外冷铁的激冷效果及表面熔化,不使芯撑过早软化和熔化,而造成铸件壁厚变化。

(7)在保证铸件质量的前提下,浇注系统要有利于减小冒口体积,结构要简单,在砂型中占据的面积和体积要小,以方便工人操作、清除和浇注系统模样的制造,节约金属液和型砂的消耗量,提高砂型有效面积的利用。

一、浇注系统各组成部分与作用:(1)浇口杯:浇口杯又称外浇口,其作用是承接来自浇包的金属液,减轻金属液对铸型的冲击,阻止熔渣、杂物、气泡等进入直浇道,增加金属液的充型压力等。

常用浇口杯有呈漏斗形和池形(浇口盆),漏斗形浇口杯可单独制造或直接在铸型内形成,成为直浇道顶部的扩大部分;它结构简单,体积小,可节约金属,但阻渣能力较差,它常用于中、小型铸件,在机器造型中广泛采用。

对大、中型铸件,特别是铸铁件,常采用浇口盆,它具有较好的阻渣效果,浇口盆是与直浇道顶端连接,用以承接导入熔融金属的容器。

在浇口盆出口处常放置有浇口塞,当浇口盆充满金属后,塞子升起即开始浇注。

(2)直浇道:浇注系统中的垂直通道,它通常带有一定的锥度。

对黑色金属,直浇道应做成上大下小的锥体,锥度一般为1:20,其底部常比横浇道的底部稍低并呈(它可储存最初进入的金属液,球形。

铸钢件浇注时间计算

铸钢件浇注时间计算

铸钢件浇注时间计算
1. 经验公式法:根据铸件的重量、复杂程度和浇注系统等因素,可以使用一些经验公式来估算浇注时间。

例如,常用的经验公式为:浇注时间(秒)= 铸件重量(千克)×系数。

系数的大小根据具体情况而定,一般在 0.1 到 0.5 之间。

2. 模拟分析法:使用计算机模拟软件对浇注过程进行模拟分析,可以得到较为准确的浇注时间。

这种方法需要建立铸件的三维模型,设置浇注参数和边界条件,然后进行模拟计算。

3. 试验法:通过实际浇注试验,记录浇注时间和铸件质量等数据,然后进行分析和统计,得出适合特定铸件的浇注时间范围。

需要注意的是,以上方法都有一定的局限性和不确定性,实际浇注时间可能会受到许多因素的影响,如浇注温度、浇注速度、模具排气等。

因此,在计算浇注时间时,需要综合考虑各种因素,并根据实际情况进行调整和优化。

如果你需要更准确和详细的信息,建议参考相关的铸造手册、技术规范或咨询专业的铸造工程师。

模铸有关计算公式

模铸有关计算公式

模铸有关计算公式
模铸是一种常见的金属铸造工艺,通过将金属熔化后倒入模具中,然后冷却凝固成型,最终得到所需的零件或产品。

在模铸过程中,需要进行各种参数的计算,以确保最终产品的质量和精度。

本文将介绍模铸过程中常见的计算公式,帮助读者更好地理解和应用模铸技术。

1. 铸件重量计算公式。

在模铸过程中,首先需要计算铸件的重量,以确定所需的原材料数量和生产成本。

铸件重量的计算公式如下:
铸件重量(kg)= 铸件体积(cm³)×铸件密度(g/cm³)× 0.001。

其中,铸件体积可以根据模具的设计参数和产品图纸进行计算,铸件密度则根据具体的金属材料来确定。

通过这个公式,可以快速准确地计算出铸件的重量,为生产计划和原材料采购提供参考依据。

2. 浇注系统计算公式。

在模铸过程中,浇注系统的设计对最终产品的质量和成型效果有着重要影响。

浇注系统的计算公式如下:
浇注压力(MPa)= (液态金属重力头压力 + 液态金属浇注冲击压力)/ 浇注面积。

液态金属重力头压力可以根据液态金属的密度和浇注高度来计算,液态金属浇注冲击压力则需要根据具体的浇注工艺和设备参数来确定。

通过计算浇注压力,可以合理设计浇注系统,确保金属能够充分填充模具,并避免产生气孔和缺陷。

3. 固化时间计算公式。

在模铸过程中,金属液态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态态。

铸造中浇注系统设计

铸造中浇注系统设计
不到、冷隔等缺陷。 金属消耗大;
应用:
主要用于构造复杂旳多种黑色金属 铸件和易氧化旳有色金属铸件。
3、中间注入式浇注系统
对内浇道下列旳型腔部分为顶注 式;对内浇道以上旳型腔部分相 当于底注式。故它兼有顶注式和 底注式浇注系统旳优缺陷。因为 内浇道在分型面上开设,故极为 以便,广为应用。合用于高度不 大旳中档壁厚旳铸件。
轻易充斥,可降低薄壁 件浇不到、冷隔方面旳 缺陷
充型后上部温度高于底 部,有利于铸件自下而 上 旳顺序凝固和冒口旳 补缩
冒口尺寸小,节省金属
内浇道附近受热较轻
构造简朴,易于清除
缺陷:
易造成冲砂缺陷金属, 液下落过程中接触空气, 出现飞溅、氧化、 卷入 空气等现象,使充型不 平稳
易产生砂孔、铁豆、气 孔和氧化夹杂物缺陷, 大部分浇注时间,内浇 道工作在非淹没状态,
第四章 浇注系统
浇注系统旳作用:将液态金属引入铸型。
经典浇注系统旳构造 a)封闭式 b)开放式 1-浇口杯,2-直浇道,3-直浇道窝,4-横浇道,5-末端延长段,6-内浇道
对浇注系统旳基本要求
1.所拟定旳内浇道旳位置、方向和个数应符合铸件旳凝固原则或补缩 措施。
2.在要求旳浇注时间内充斥型腔。 3.提供必要旳充型压力头,确保铸件轮廓、棱角清楚。 4.使金属液流动平稳,防止严重紊流。预防卷入、吸收气体和使金属
过分氧化。 5.具有良好旳阻渣能力。 6.金属液进人型腔时线速度不可过高,防止飞溅、冲刷型壁或砂芯。 7.确保型内金属液面有足够旳上升速度,以免形成夹砂结疤、皱皮、
冷隔等缺陷。
第一节、浇注系统各单元旳作用:
1、浇口杯旳作用:①承接来自浇包旳金属液,预防金属液 飞溅和溢出,便于浇注;②减轻液流对型腔旳冲击、分离 渣滓和气泡,阻止其进入型腔;③增长充型压力头。

铸造手册中非铁合金铸件浇注系统尺寸的确定

铸造手册中非铁合金铸件浇注系统尺寸的确定

铸造手册中非铁合金铸件浇注系统尺寸的确定铸造是制造业中常见的一种工艺,通过将熔化的金属或非金属材料注入模具中,然后冷却凝固成型,来制造各种零部件和构件。

而在铸造过程中,浇注系统是至关重要的一环,它直接影响着铸件的质量和成型效果。

本文将从深度和广度的角度,探讨铸造手册中非铁合金铸件浇注系统尺寸的确定。

一、什么是铸造手册中的非铁合金铸件浇注系统尺寸?铸造手册中的浇注系统尺寸,指的是对于非铁合金铸件来说,根据铸件的设计和要求,在进行铸造时所需要的浇注系统的各项尺寸参数。

这些尺寸参数包括浇口直径、浇道截面积、浇道长度以及浇注冒口的设计尺寸等等。

二、确定铸造手册中非铁合金铸件浇注系统尺寸的重要性1. 影响铸件的质量浇注系统的尺寸设计不合理会导致浇注不充分,使得铸件出现缺陷,比如气孔、热裂纹等。

合理确定浇注系统的尺寸对于保证铸件的质量至关重要。

2. 影响铸造效率合理的浇注系统尺寸可以降低金属的浇注阻力,提高浇注速度,从而提高铸造的效率。

3. 影响工艺成本如果浇注系统设计不合理,会导致金属浪费或者二次加工,增加了生产成本和周期。

三、如何确定铸造手册中非铁合金铸件浇注系统尺寸?1. 按照铸件的形状和尺寸进行确定铸件的形状和尺寸是确定浇注系统尺寸的基础。

不同形状和大小的铸件,其浇注系统的尺寸也会有所不同。

2. 根据金属流动原理设计根据金属液体在浇注系统中的流动原理,合理设计浇口、浇道和冒口的尺寸和位置,以保证金属充分、均匀地填充模腔。

3. 结合铸造工艺要求根据具体的铸造工艺要求,包括金属的浇注温度、浇注方式、模具的放热要求等,综合考虑确定浇注系统尺寸。

四、个人观点和理解在确定铸造手册中非铁合金铸件浇注系统尺寸时,我认为应该遵循以下原则:一是充分考虑金属流动原理及浇注系统设计的合理性,以保证铸件质量;二是结合具体的铸造工艺要求,使得浇注系统尺寸能够满足铸造过程中的各种要求。

只有在这样的基础上,确定的浇注系统尺寸才能最大程度地保证铸件的质量,提高铸造效率,并节约工艺成本。

浇注系统的计算

浇注系统的计算

内浇道截面面积的计算根据截面比设计法,内浇道截面面积计算公式为:pL Lgh t G A 2μρ=内式中: A 内—内浇道截面积; G L —流经内浇道的金属液总重量;L ρ—金属液密度; μ—流量损耗系数; t—浇注时间; g—重力加速度;h p —内浇道单元处的压力高度值;Hp—平均静压头高度;对于有浇口杯-直浇道-横浇道-内浇道四个单元的浇注系统来说ℎp =k 221+k 12+k 22H p式中: k 1—直浇道截面积与横浇道截面积之比;k 2—直浇道截面积与内浇道截面积之比; H p 为平均静压头的高度。

浇注时间t 按照经验公式t=AG n (1) t=B δp G n (2)G 为铸件或浇注金属重量;δ为铸件壁厚。

对于铝合金对于式(1)有:A=2.4; n=0.387 式(2)有:B=1.25; n=0.35; p=0.35.式中各参数的数值为:根据铸件的合金为铝合金G L 一般为铸件质量的2~3倍,故而G L=2.5×G =2.5×253.986=634.965kg ;L ρ =2.685g/cm 3=2.685×103kg/m 3;一、 取截面比为A 直:A 横:A 内=1:2:1。

μ=0.68;k 1=0.5;k 2=1;g=9.8m/s 2。

采用底注式根据砂箱高度为700mm以及浇口杯高度为150mm,H p =85cm ;按式(1)得t=2.4G L 0.387=2.4×(634.965)0.387=20.46s ; 按式(2)得t=B δp G n =1.25×200.35×253.9860.35=24.77s 两者相差不大由于铝合金要快浇,可以取t=20.46sℎp =k 221+k12+k 22H p =121+0.52+12×85=0.378m 将以上参数代入式(5-1)得:223内5.62)(00625.0378.08.9246.2068.010685.2965.634cm m A ==⨯⨯⨯⨯⨯⨯=浇注系统各截面尺寸和形状的确定根据已经确定的截面比截面比为A 直:A 横:A 内=1:2:1,可以计算出A 直=62.5cm 2,A 横=125cm 2。

熔模铸造浇注系统计算

熔模铸造浇注系统计算

熔模铸造浇注系统计算1 熔模铸造浇注系统计算浇注系统是熔模铸造工艺设计的重要部分。

国内熔模碳钢铸件居多,其浇注系统除应具有引入金属液等作用外,还要能为铸件提供必要的补缩金属液和补缩通道。

目前,很多工厂熔模铸件浇注系统大小是设计人员凭经验定的,直接影响了铸件的成品率和工艺出品率。

因此,有必要开展熔模铸造浇注系统计算方法的探讨。

从结构上看,熔模铸造浇注系统有直浇道-内浇道、横浇道-内浇道和组合式三大类。

其中直浇道-内浇道式又分:单一直浇道、直浇道-补缩环、多道直浇道和特种形状直浇道等形式。

但在实际生产中应用最广泛的是单一直浇道浇注系统,如图1所示。

图1 单一直浇道Fig.1 Single sprue目前用于单一直浇道浇注系统的计算方法有:亨金法、比例系数法、浇口杯补缩容量法、当量热节法、浇注系统确定参考图法等。

其中亨金法较全面地考虑了影响补缩的因素;并可计算出直浇道、内浇口尺寸,以及一个浇注系统铸件组最多允许的铸件数量。

据介绍亨金法更适用于该类浇注系统。

本文就单一直浇道浇注系统计算开展研究。

利用计算机对第一拖拉机股份有限公司(简称洛阳拖拉机厂)、东风汽车公司精密铸造厂(简称第二汽车制造厂)大量工艺已成熟零件的浇注系统与亨金法计算结果相比较,并对亨金法进行修正。

该修正公式可供各工厂技术人员在设计浇注系统时参考。

2 亨金法简介为使铸件获得补缩,内浇口应设在铸件厚处(热节处),以保证在金属液凝固时,内浇口比铸件厚处晚凝固,而直浇道又比内浇口晚冷,从而利用直浇道中金属液补缩铸件。

因此,内浇口截面的热模数Mg(mm)是铸件热节处的热模数Mc(mm)、直浇道截面的热模数Ms(mm)、单个铸件质量Q(g)和内浇口长度Lg(mm)的函数,即Mg=f(Mc,Q,Lg,Ms) (1)前苏联学者亨金用不同铸件做试验,把公式(1)中各参数关系绘成曲线后发现,它们之间的关系为各种不同方次的抛物线关系,最后归纳得到下列公式:(2)式中Kh——比例系数,中碳钢Kh≈2。

【doc】适用范围宽的铸件浇注系统最小截面积计算公式

【doc】适用范围宽的铸件浇注系统最小截面积计算公式

适用范围宽的铸件浇注系统最小截面积计算公式764甘适FOUNDRYV ol49No10Oct2000适用范围宽的最小截面积计算公式刘文川,王兴平,向敬成J欧光富,吴卫,祝举章(1.西南蔼露研总厂,四川南定-葫了duu2四川省南充市技工学校,四川南充637000 3四川工业学院材料科学系,四川南充637000)摘要:阐连了目前灰铸铁,球铁,铝台盎及铜合盎等叠属铸件在重力铸造条件下.计算铸忙浇注系统最小截面积的常罔水力学公式及几个常用或转常用的竖验硅式之特点和存在的不足.分析了这些公式共同存在的使用前提不明,适用范围密,通用性差等缺点.舟卸了一种用统计学方法回归推算出的实用性强,操作简便快捷,适用范酉宽闰的盎属铸件浇注暮统最小截面积计算公式,并对其计算结果与近十多罡来众多成功的生产实例连行了比麒,证明其具有良好的可靠性,社学性和宽阔的适捕范围.关键词:铸件;盗注系统;退小截面积;计算公式有效浇注时间中图分篓荔融雨写■芰覃磊号1001—4977(2000)10—0764.05 AWidelyUsedEquationfortheMinimumSectionof thePoringSystemAppliedtoV ariousCastingsLIUWen-chuan1,W ANGXing.ping,XIANGJing.cheng2,OUGuang-fu,WUWei,ZHUJu.zhang(1.SouthwestGeneralWorksofEngineParts,Nanchong637000,Sichuan,China;2.SchoolofTechnicalWorkersinNanchongofSichuanProvince,Nanchong637000,Sichua n,China3.SichuanInstituteofTechnology,Nanchong637000,Sichuan,China)Abstraof:Theequations,whicharegeneraIlyusedandbasedonthetheoryofhydrauli∞oremPiricalfor-mula.ofmInimumsectioninthepouringsystemtoproducenon-ferrouscastings,grayironcas tings,duc-tilecastings,arereviewedTheircharacteristicsandshortcomingareIistedTheshortcomings, thatpreconditionisnotclearandthatsuitabilityisnarrow,areanalyzedAnequationbasedonstatis tics,EFm=[G/(r√2日?惦)](1/3),isintroduced,whichischaracteristicsofeasyuse,conveniency andwidesujtabiIitytoPreduceferrousandnon-ferrouscastings.Itisconvincedthatthisequat ionisgood credibleandsuitablebythesuccessfulsampIesintheproductioninrecenttenyears Keywetds:castings;pouringsystem;minimumsection;calculatingequation;effectivepour ingtime迄今为lL,铸件浇注系统最小截面积计算公式已有数十种,用于确定铸件浇注系统最小截面积的图表也有十多种.然而用于生产实践时,这些公式不仅适用范围窄,通用性差,而且存在着仅考虑铸件重量(G件)或浇洼重量(G侥),对铸件壁厚(d)考虑不足的问题即使是一些权威资料和常用手册推荐的计算公式,计算结果亦相差甚远.至于图表法,更存在着准确性差.使众多铸造工作者难以适从的问题铸造工艺合理与否及铸件合格品率的高低,在很大程度上取决于浇注系统最小截面积确定得是否合理.因此,铸件浇注系统最小截面积的确定是铸造工艺学的重要组成部分,铸造工艺设计的关键要素之一,也是铸造工作者的基本研究课题.其相应的计算公式在不断地推陈出新和逐渐完善.本文作者根据在工厂的多年生产实践经验及通过对所掌握的众多文献和资料的统计分析,提出一种适用范围宽的计算铸件浇注系统最小截面积(∑F阻)的新公式,它适用于重力铸造条件下所有金属铸件的各种铸造方式和不同的浇注方式.以期对铸造工艺水平的提高有所贡献.l一些常用计算公式存在的不足目前采用的数十种铸件浇注系统最小截面积计算公式,大致为两类:一类是以水力学为基础的理论计算公式;另一类是源于生产实践的经验计算公式.理论计算公式和应用较多的经验计算公式见表1,1.1水力学理论计算公式普遍反映用袁1中基于水力学的理论计算公式收稿日期:200008—07收割初稿.2000—08,25收到修订确作者嘀介:刘文)11(1963一).男.四川蓬澳人.工学士,西南内燃机配件总厂铸造分厂技术组长.高壤工程师.主要从事发琦机铸件铸造工艺设计厦研完工作.辟适刘文川等:适用范围宽的铸件浇注系统最小截面积计算公式?765表1常用的铸件浇注系统最小截面积计算公式Table1Thecommollusedelevationsforcalculatingminimumsectionareaofthepouringsyst emofcastingsingravitycasting类别计算公l式公式号公式中符号的意义及单位适用对象亚范围水zFE——浇注系坑最小截面积.c(下同)卜一浇住时间.s(下同)力G——金属谴通过阻流截面的重量.1【gg——重力加速度.980c学尚(1)所有金属铸件:公p——材质密度,kg/cmH.——平均压力头.咖(下同)式"——流量系数.一般选取范围为015~095黑专(2)z——经验系数鳢盘壁厘Tn=亘二二G&lt;41~kg的夏杂薄色G——铸件重量(不音浇冒lsI),l【g584943壁中小铸铁件金…铸件平均壁厚/mra≤1516~303l~60G&gt;100kg形状简单属=F阻=rG(31——l070.60.5的中大型灰铸铁件(铸件用G——铸型中金属液的浇注总量.(下同)G&gt;1000l【g的重大铸经zF=(4)验K——比浇住速度.kg/(cm2?s).由G#和轮廓密度Kv(ke,/d~)查表而得铁件公式一一G一(0.o5)佤(5)球氍仟--有=F阻=G,(耳)(61——系数,铝台盘o04o07,镬台金=0025~o04铝,镁舍金铸件, 色金L——流动修正系数.一般取1.0属K——比浇注速度(kg/咖?s),根据轮廓密度Kv按下表选取:铸m=()KJ(kg.dm一)0~l0l_l~22l~331~44.1~55l~6&gt;6铝台金铸件.件用经K0.60.65070750.809095验K——转换系数(查表选定.范围0.8~l3)式EK4'G~'8)铜台金铸件s,"——速度系数(查表选定.范围0.9-32)(1)算得的浇注系统最小截面积∑F日偏小,故有人主张采用大流量原则l1'10."J.这是因为式(i)中流量系数"的变化范围太宽,大小相差6.3倍l】J,要准确估计各种因素对的影响极其困难,生产中很难把握,而按一些资料介绍的修正方法取值则"往往偏大.导致EFm的计算值偏小.同时,式(1)中变量较多,且将对流量(浇注速度)影响不显着但计算比较繁复的平均压力头H.考虑过重,导致式(1)计算量过大.因此,式(1)有待于进一步改进和完善.1.2计算黑色金属铸件2;F目的常用经验公式表1中的式(2)推荐用于计算G&lt;400kg的复杂薄壁中小铸铁件的YF日,但生产实践表明,它仅对G&lt;lOOkg的中小铸铁件有较好的适应性,对G停&gt;100kg的铸铁件,YF的计算值往往偏小,且该式多用于可锻铸铁件,鲜用于灰铸铁件和球墨铸铁件,故式(2)适应性较差.表中的式(3)推荐用于计算G#&gt;~00kg的形状简单的中大铸铁件的∑F口,是生产中应用较多的经验公式.但实际应用时都将经验系数,的限值范围由0.7~0.5扩大至≥1.0的范围[11.式(3)及其推荐的经验系数取值,仅适用于极少数厚壁件,尤其是需要边浇注边朴缩及G&gt;1000的铸铁件.式(4)推荐用于G#&gt;1000kg的重大铸铁件.生产中常用该式计算用吊包(非拔塞方式)手动浇注的大型箱体类铸铁件的YF阻,但对于采用拔塞浇口浇注的铸铁件,用该式计算∑F日时,通常会导致计算值过大而无法认可.因此.式(4)的适用范围较窄.式(5)推荐用于开放式浇注系统浇注的球铁件.在生产中用其计算大型球铁件的YF目时,因计算值偏小.有的工厂便将YF目的实际值取为计算值的2倍",有的工厂用铸件的相应参数核算出其比浇注速度达1.5~1.83kg/(f~ffl2?s)",这在用非拔塞式浇注时是很难实现的.因此,式(5)的适用范围也较窄.1.3计算有色金属铸件£F的常用经验公式(1)表1中的式(6)实际上是将水力学公式(1)中的流量系数"范围窄化后的一个经验公式,推荐用于铝台金铸件和镁台金铸件.用于铝合金铸件时,式(6)中系数的选取范围为0.04—0.O7,实质上是在铝台金的密度范围(p :0.00255~0.00294kg/cm)内,将式(1)中的流量系数"的范围窄化至0.31~0.62内推导而得.因此,式(6)在一定程度上克服了直接用式(1)时因"偏大,而使YF阻计算值偏小的问题.故对壁厚d较厚的一些铝合金铸件有较好的适应性.用于镁合金铸件时,式(6)中系数r/的取值范围为0.025--0.04,同样是在镁合金密度范围(P:0.0018 --0.00mSkg/c)内,将式(1)中的流量系数u的范围窄化在0.31~0.52内而导得.因此,式(6)对壁厚较厚的一些镁合金铸件也有较好的适应性.(2)表1中的式(7)推荐用于铝合金铸件.式中的比浇注速度K是一个经验系数,其取值取决于铸件的轮廓密度K(kg/dm~).因此,K值在一定766Oct2000FOUNDRYV oI.49NO10程度上体现了与铸件壁厚的关系.但在生产实践中发现:当K≤1.0kg/dm时,K一律取为0.6显得过于粗放,且在铝合金密度范围(≤2.94kg/dm)内,其K值的变化范围(0.6~0.7)也显得过小;并且,用式(7)算得的铝合金铸件的EF日值也普遍偏小或过小;此外,对于铝合金铸件来说.式(7)中系数K的取值依据K不可能出现K&gt;3kg/dm的情况.因此,式(7)的适用范围极其有限.(3)表1中的式(8)推荐用于铜合金铸件,其转换系数K的取值范围为0.8~1.3但在生产实际中.砂型铸造的有色金属或黑色金属铸件,无论是壳型顶注,还是湿型底注,其浇注系统的EF目的合理值远不会出现60%(0.8/1.3)以上的大幅度偏差;并且,式(8)中的速度系数的取值袄据铸件的轮廓密度K和壁厚的划分档次也过于粗放;此外,式(8)与式(1),(2),(6)一样也存在着将对流量(浇注速度)影响不很重要的因素(平均压力头H)考虑过重的问题.由此,式(8)的合理性还有待深入探讨,需作进'步的完善和修正.此外,式(1)至(8)除各自存在的不足之处外,还存在着一些共同的不足之处,主要表现在:这些公式及相关的确定浇注时间的公式或图.只考虑了铸件重量G件或浇注重量G浇,未考虑或未充分考虑铸件壁厚a这一一重要特征参数,使这些公式缺乏严谨性和科学性,适用范围较窄,通用性极差.其次,这些公式都存在着使用前提不明的问题.的进水速度快.浇注时间短;对于大型铸件或某些复杂薄壁铸件,在两组以上浇注系统或两个以上浇包同时浇注等情况下,其浇注系统截面积及其浇注时间应怎样计算和修正,式(1)至(8)均未给出适宜的修正方法和措施由此可见,式(1)至(8)及与之相关的浇注时间计算公式等,均存在着较多的不足和尚未解决的矛盾和问题,需要铸造工作者作进一步的研究和探索.使之能有一个较完善的,形式统一,适用范围宽阔,在不同条件下有很好通用性的浇注系统最小截面积计算公式及相应的浇注时间计算公式.2适用范围宽阔的浇注系统计算公式根据多年来对所掌握的有关浇注系统计算的众多文献和资料的统计分析,以及对多年来工厂实践经验的总结,作者认为:将水力学公式中难以准确确定且在生产中不便操作的流量系数"与对流量影响很小的平均压力头的平方根/H之乘积("v/Hp)代之以壁厚修正系数,便可得到简便而适用范围宽的铸件浇注系统最小截面积计算公式(9):,EF=—L一一(9)口√2g'£.式中∑F——非拔塞式浇注系统最小截面积,CmG——型中铸件的重量(不含浇冒口),kgp——铸件材质密度,kg/cm.见表2g——重力加速度,980cm/s2大家知道:对于同样壁厚或同样重量的铸件,平板件——铸件主要壁厚(常指最薄壁厚),mm需要快速浇注,金属型铸造也需要较大的~Fm;对——材质指数.见表3于同样大小的直浇道截面积,拔塞浇口比非拔塞浇口——铸件有效浇注时间..,计算式见表4表2常用金属{合金)铸件材质的密度范围{参考值】——..兰竺!竺!坚矍!竺!竺金属铸件材质l灰铸镜!球镜厦铸志白口铸铁铸钢I铝舍金I镁台金I铜音金锌台盘密度日/(k日cm.)fo.00710[H]73{00078J000255--0.002940.00180--00018510.0@73~00095表3常用金属{合金)的材质指数{w值】lable3'lhemateria1吨ure{】of~oii3,moiiusedalloys铸件…铝台盒铜告金球铁铸钢耋;材质矸立铝硅,铝锌系舍金铝铜,铝镁系舍金青铜(除铝青铜外)铜,紫铜,铅青铜I质直灰铸铁指数"0320310290.28l02602502402302202表4铸件有效浇注时间计算公式_1Table4'lheequationsforcalculatingtheeffectivepouringtimeofcastings有教浇注时计算公式f公式号l公式中符号的意义及单位适用条件——————…—J——~—.…————————l——铸件的有效晓洼时旬,sG——铸件重量(不含浇冒口),kg一型一组,~…I/——材质系数,其取值情况如下——铸件的主要壁厚(指最薄壁厚),皿n】晓注系统l{】""-_I__T:]善耋材质系数f1oo6-0811—121.5~16j产条件——...''..'........'..........'—''....'.'——'''.'...—'..''''''———'''——''—'—————'———————————''————————'—————————————————————————————————————————————————————————L————.—.——.一f+两l燕释i…………同.I11lO苏件l/+,/_}乩|忡I×l寺:l(12)l下列情况对的计取值(累加相应数目):暑量世'll拔塞浇口平板类件一=盘属型铸造=1.其余符号意义均与式()相同I哥造刘文川等:适用范围宽的铸件浇注系统最小截面积计算公式?767式(9)突出了壁厚对金属液阻力的影响,淡化了其他不重要因素.在实际操作中要合理确定水力学公式中流量系数"和平均压力头H的大小是十分困难和繁琐的.因此,用式(9)取代式(1)来计算浇注系统最小截面积,显得更加简便和适宜,抓住了铸件壁厚这一影响金属液充型能力的重要特征因素.公式(9)中的部分,实质上是对众多文献和资料中的成功生产实例进行统计验算后得到的一个经验系数.它完全能满足和体现铸件壁愈薄计算出的EF值相对愈大,壁愈厚计算出的EF日值相对愈小的工艺要求和客观规律.其中,指数"是材质流动性等工艺性能差异的具体体现,即浇注温度较高,流动性较差的材质,"值较小.因此,经验系数使公式(9)更具科学性和更为合理.对于需采用拔塞式浇注系统的某些重要铸件,大型铸件和复杂薄壁铸件,可将式(9)修正为全能型浇注系统最小截面积计算公式(10):I1lEF疆=—二=_一÷:(1o)口2g.t..j式中m——浇注方式修正系数:拔塞方式m=1,非拔塞方式m=0式(10)的取值与式(9)略有不同:在采用非拔塞浇注方式(即m:0)时.其d按实际值取值,与式(9)相同;在采用拔塞浇注方式(即m=1)时,若d&lt;100ram,仍按实际值取值,若d≥100ram,均按=100ram进行计算.可见,式(9)实质上是式(10)的简化形式.由于绝大多数铸件采用的是浇注速度适中的非拔塞式浇注方式,围此式(9)是适用于绝大多数铸件的常用形式.换句话说,式(10)包含了式(9),是式(9)的母公式.表4给出了分别与式(9)和(10)相对应的铸件有效浇注时间计算公式(11)和(12),它们与式(9)和(10)一样,也是主要依据铸件的两个主要特征因素即铸件重量G和壁厚d来进行计算的.大量的统计验算表明,用这四个公式算得的铸件有效浇注时间和浇注系统最小截面积EF目,与源文献和资料所介绍的成功应用于生产实际的对应参数能较好地吻合乃至更为合理,这主要表现在相应的铸件型腔液面上升速度和比浇注速度这两个重要的工艺参数上,见表5.故公式(9)和(10)及对应的铸件有效浇注时间计算公式(11)和(12)具有很强的科学性和宽阔的适用范国.此外.这四个公式还具有简便,快捷,便于生产实际操作等优点,省去了用水力学公式时对流量系数"的"猜选"过程.3结1者对于铸件浇注系统最小截面积的计算,主要依据铸件的本身重量及其壁厚这两个重要特征因素来自行决定.将其它各影响因素归并为一个经验系数,用统计学方法统计回归出的经验公式(9),(10)设计出的铸件浇注系统具有如下一些主要特电.(1)浇注系统最小截面积的计算原则是:大孔进水,快速浇注,确保铸件在最佳的有效浇注时间内充满铸件的最高轮廓.(2)低流速,平稳充型.以浇注系统阻流截面决定金属液的流量,直浇道的高度取最小有效压力头即可,保证金属液以大流量,低流速平稳充型.(3)公式(10)及其简化的子公式(9)具有简单,实用,可靠性和科学性强,适用范围宽阔,便于生产实际操作等优点.参考文献:(1]魏兵铸件浇拄系统阻谎截面积的确定(J]铸造技术,l981.(1):27~38(2]车魁盛铸造工艺设计基础(M]北京:机械工业出版社,1981(3]曹文龙铸造工艺学[M]北京:机械工业出版社.1993(4]陈琦铸铁手册[蛐北京:机械工业出版社,1984(5]黄良亲简明铸工手册[M北京:机械工业出版社,1998(6]铸造有色舍金手册编写组铸造有色舍盒手册(M]北京机械工业出版社.1978[7:陈培里铸工实用手册:蛐杭州:浙江科学技术出版社.1997:8]王丕元.空心轴瓦的铸造工艺m铸造技术.1990,(5):28~29 9]秦文声,等钢铜职金属包覆铸造3000吨挤压成型机活塞压头(力特种铸造匣有色台金,l991,(2):24~27[10]马崇峰浇注系统大孔出流理论在铸造工艺设计中的应用[』: 铸造技术,1991,(6):24~26(11]刘文JIl快浇技术在气缸体生产中的应用(J:铸造.1996,(11): 33~35(1Z]棘瑞笸高炉辟却壁的铸造工艺lj]铸造技术.1991.(1):37~38[13]吴秉正冷却箱体铸造工艺(J]铸造技术.1987.(3】.26~27 [14:史鉴开.吴晓三1.8m×6m平板的半永久型地坑无盖葙组芯无胃口诗选现代铸铁,1994,(1):55~56[15]赵书绶太型高炉球锻冷却壁的辟造:J:铸造,1996.(6):19~2l[16]张汉泉,赵佩英.葛智豪汽轮机厚断面球墨铸铁件的铸造技术(力现代铸铁.1994,(2):36~4l(17]车巨文,于春田.袁伟被大型铝音盘曲面铸件的铸造工艺设计』]铸造.1998,(12】:36~粥(18:谭建渡大型铝台金葙俸的铸造工艺[J]铸造技术,1999.(2): 36~37(19]刘文川,赖小平,祝举章,等适用范围宽阿的铸件有效浇拄时间计算公式口铸造技术,2000,(5)20]饶忠义可锻铸铁吊架无冒口铸造工艺[J]铸造生产,1986,(1):26~2721]田新社连续铸造所甩铸铁结晶器的侥注与补绾m铸造技术.2000,(1):23~24(22]谭建渡Al—台金支架的铸造工艺世计J_铸造技术.1999,(6):20~21[23:高玉申,程普曲轴箱体的铸造工艺改进[J.现代铸铁,1998,(1):54~56[24]睬仙笛用雨淋式浇注系统铸造球铁活塞[』]铸遣技术.1989,(2):19~21:25]王贵岭,张桂兰.吴康MWMD234V型柴油机,,缸机体的铸造工艺(』I热加工工艺,1995,(2)55~56(26]孙三楠焦炭坩锅炉熔制大型铜铸件:J:铸造.1987,(8)32~33[27张宝山,等环锤式碎煤机筛板类铸件的工艺探讨:J铸造技求.1992,(5):23~25(28]席里之.铜螺旋浆的铸造(J]特种铸造厦有色台盒1991.(3):30~3l(29]王树戚自天申,林家骝N8024导叶持环球铁件无目口铸造(j]球铁,1985,(3):33~35768?Oct2000FOLJNDRYV ol49NoIO表5?公式{IO),{12:J对多种金属铸件的适宜性对照Table5Comparisonofthesuitabilitytovario~alloyc∞tinbyusingequationf10)andc12铸件嚣铸件重量原文献和资料卉甥的浇柱系统相关工艺参敦噩评竹替式(1日),(12)计算的浇诖系统相应参毅置评竹(不告浇目口)爵蚌主要壁名称,【£r雌c/晌's.靛面上升速度此浇柱莲度最小截面积有就浇注时间蔷面上升速&amp;奁度G/(?皿一2,S-zFⅢ,f,s/{ms?s)∞-2,s,f)6(2㈨2511,5=0宜{135180【2x∞x帅盯】08=051丙忤越=0,54【=021(,=0'5.=I宦9,60396/f=0A471136砦脂07×515町15l3c1)=05F直=083髓=055c=0::,=1.0,^=1J髓113=0-】9i21515120:0"女棚∞.帅站cl:l91]=0.22c=031(,=l船.r=I:越髓Tl0(152{0黄:叭32加(1=0"F:071.Pm髓:,:D8,^=l髓弛】=050lb鹕276傩【l瑚x650×栅0…j22lcIIll【】=0庸=D卯c=口31:lr=Lr=I:髓2L.L226=D.t2jD瞄11428嚣}f『瑚l【9012I1]c】=l"摊挠遒髓=0.2l=024.=1】:,=I.0=2】宦1】1舯2=I.D7.]5922{】0吲230{【9(】)=0"稚10.j髓=1.2L(口=0c,=口&amp;=lJ髓口:口帅26龆删阱【25=737x竹】xH=55帅一∞(1):5枷=0.52(:0㈨c.n=ll必5衄_]2=1.嘶l!曲24嚣.t髓棚0x栅39020一35酉盟黼ll3l眦融髓=152【=0硼I/=【LI.=210l{0T.1赫【蜘0x600x啪0啪删l0栏她I255=3】8髓l=0盐=L1r=0=21稚{^】4.910623H52压熹珈x枷f踟)1}【"]54l5置=050l口=dⅢ{,=I舶.=lI翘卣面BIT=0II56.2555.4=0斛【∞26笠伽×30Dl4】1帅】2矾(ij建i醐遘髓=0鲫c=㈨{r=】棚.^=2J"7l盟72194l茸莩2翻lml11蛐】i{c1(.j.56=0%置=1i=02r=115.^=l柏甜=钔5】2=a粥舶3.3々zl0x虻xL60唧蜘l珊l}5l4B立=D√斛髓=017I=024llr=I1.12:髓∞0200l041{】旺9】fi121,1刘CC4;{LID2900i{56…12帅雒髓Kt=lI(B=0=fr=09.12:髓黼2~4Bx955x.Ⅲ愀娜l5'0…39】6j=0弼.0j如4=1谁扎悻口]雒黼髓=【05f=02I.=I:l,Ij=:1髓8951=I4720{嚣53=00k张【"锄x1铷】5001j553.6c…l/=Ij.=髓#龄越≥【55l0241批0啪×ⅢK=I211.0加!群'】l90I辩79瑚l5!./f=ll,/7【=0=1】If=08.!越触湖0225.x眦哳145呻25m】60=0棚2.】∞l01200=05糠㈨2l娃/f0.67=DI,!】0.^12l宦螂x【520×l-呻躺15.1=l棚1棚储244瞄0旧洲船1I=2.0髓12,17【0=J:r=08^=1l 髓舞…】.1DDl∞74120/f=2.丑【5】510122醚I吧I=0翌.=.1:,=06.^!髓礤"》】0002857l4三组m.10267=3.33]}9:02¨5【蚓雒艄蕾惶=515l=0翌.lD.6,^}1甜】㈣{560×酣90=I.266驾5器【删5028{0抛瑚1800雒龅甜=6锦【D.塑.)j8=" 注:1表5中小括号_内参数是根据其它参数或图表推算而碍;2当=O时.来注出;3K=G/(=FⅢ?£).KG/(EFE£)[30]刘增林大型柴油机气缸体的铸造[』]铸造1997.(12):20~22[34]张仁智棘超,于洪若.等大型不锈钢转轮上冠的铸造:J]铸[31]刘仲南,王生玫,张炳英16V280ZJ柴油机机体整体铸造技术造.1993,(1).20~24 [J]现代铸铁.1993,(1):46~54[35:刘功.大型液压机固定粱缸粱连俸铸造工艺[J]铸造1994[32)寻孝茎高大机床铸铁件浇注系坑的丹层处理[J]铸造.1991(5):29~3(7):34~36[36:李贺增.2160ram热连轧机机架的铸造:JJ铸造技术1996,_33]华永荦,尤志庆,张焕平,等16V'3OO柴油机球铁缸体的生产U]现代铸铁,1998,(1):57~58(编辑:朱文高)。

铸造业浇注系统的计算

铸造业浇注系统的计算

及 其 液 态 1.底注 由 中 间 注 1. 顶注
流动性
2.注入厚 入 或 者 阶 2. 均匀地由薄处浇注

梯浇注
浇 注 温 度 1.3
1.4
1.5—1.6
与金属流
动性正常
浇 注 温 度 1.4—1.5 1.5—1.6 1.6—1.8
高与金属
流动性较
高时
1.3.半封闭式浇注系统的各段截面积之比
F 直: F 阻: F 横: F 内=1.6:1:1.8:1.4 根据不同情况,比例有可变的取值范围,原则不变的前提下可以灵活运用。
v流速单位cms计算时可以按最小截面积的流速铸件质量重量单位kg截面积单位cm浇注时间单位s平均压力头单位cm取值计算见后金属液体的密度单位kgcm铸铁70铸钢73由铸件壁厚和结构以及浇道等因素引起的金属液体流速损耗系数复杂铸铁件可取为034对于铸钢件根据不同的铸型025050此公式的各种变形铸造书中常称作奥藏迪台尔特公式
S2-----和铸件壁厚相关的系数,取值如下表:
铸件主要壁厚(mm) 10以内
10---20
S 系数值
1.0
1.3
20---40 1.5
40---80以上 1.7
③式适于计算重型铸件。
④t=S4√(G*δ)
上式中。各个字母的定义与②相同,本式子用于铸钢时的 S4取值如下:
金属温度
金属的不同引入方法时的 S4值
铸造生产的条件千差万别,因素太多,以至于所有的计算公式都是近似的有条件的。往往一个公式不一定适 用于所有的场合。所以公式中往往有取值范围较大的系数供用户结合本单位的情况选择
1:铸件的重量、主要壁厚、复杂程度、铸型种类等。
下边是几个常用的确定浇注时间的公式:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S 系数值
1.63
1.85
2.2
此式子适用于重量不超过450kg 的铸件。
②t=S13√(G*δ)
上式子中,t----时间(s)G----重量(kg) S1-----和金属液相关的系数(铸铁取 S1=2)
厚(mm)
③t=S2*√(2*P*G)
δ----铸件主要壁
上式子中,t----时间(s) G----重量(kg) P----常数,取0.62(认为一吨铁水浇注35秒为合适时间导来)
铸件冒口的尺寸计算
2.1.冒口设计的基本原理
铸件冒口主要是在铸钢件上使用。铸铁件只用于个别的厚大件的灰铸铁件和球铁件上。金属液在液态降温和 凝固过程中,体积要收缩。铸件的体收缩大约为线收缩的3倍。因此,铸钢的体收缩通常按3---6%考虑,灰铸铁 按2---3%,不过由于灰铸铁和球墨铸铁凝固时的石墨化膨胀,可以抵消部分体积收缩,所以如果壁厚均匀,铸型 紧实度高,通常不需要设计冒口。铸件的体收缩如果得不到补充,就会在铸件上或者内部形成缩孔、缩陷或者缩 松。严重时常常造成铸件报废。
其中 h 为浇口杯平面到内浇口的高度,c 为铸件的高度。公式推导从略,见有关的书籍。 以上计算出的是浇注系统的最小截面积。在不同类型的浇注系统中,最小截面积的位置是不同的。封闭式浇注系 统的最小截面积是内浇口,开放式浇注系统的最小截面积是直浇口,最常用的半封闭式浇注系统的最小截面积是 阻流段。
奥藏--:迪台尔特公式是既有理论又有实践经验确定的系数值。是个较科学的公式,计算也很有规律。到一个 新的铸造车间,最好通过实测一些铸件的浇注时间,把式子中的参数选定。 根据这个公式可以自己把常用的参数代入,造个表供本单位使用。
2.2冒口尺寸的基本计算方法
冒口计算的公式、图线、表格等有很多。介绍如下。 最常用的方法是,冒口直径 D=d0+h 理由是假定冒口和铸件以相同的速度凝固,凝固过程是从铸件的两个表面向内层进行,当铸件完全凝固终了, 正好冒口凝固了同样的厚度,这时还剩下中间的空心的缩孔,体积正好等于补缩球的体积,这部分金属液在凝固 过程中正好补缩进了铸件。 当铸件存在热节时,可以把 h 换成热节的直径 T 即可。 即 D=do+T。 另外设计冒口,还有个重要的部位,就是冒口颈,所谓冒口颈就是冒口和铸件的连接通道,冒口里的金属液 都是经由冒口颈补缩到铸件里的。所以对冒口颈的截面是有要求的,通常取冒口颈的直径 dj=(0.6~0.8)T。 冒口高度 H=(1.5~2.5)D。 H 的高度还应该考虑要高于需要补缩部位的高度,否则就成了反补缩了,铸件补缩了冒口,这是要避免的。
F=G/(γ*t*μ*√(2*g*H)) -----------------------------------------(2) 设 y=γ*μ*√(2*g) 则 F=G/(y *t*√H) ---------------------------------------------------(3) 此公式的各种变形铸造书中常称作奥藏---迪台尔特公式。是各种铸造书中引用最多的浇注系统的计算公式。
1.2.浇注时间的取值
浇注时间的取值受如下因素决定:铸件的重量、主要壁厚、复杂程度、铸型种类等。
下边是几个常用的确定浇注时间的公式:
① t=S*√G
¼
上式子中,t----时间(s)G----重量(kg)S-----和壁厚相关的系数,列表如下:
铸件壁厚(mm)
2.5—3.5
3.5----8
8----15
铸造业浇注系统的计算
1.浇注系统的计算
1.1.奥藏---迪台尔特公式
根据流体力学的白努利方程式可以导出如下的浇注系统的液流的式子: v= G/(γ*F*t)=μ*√(2*g*H) ------------------------------------(1) 其中:v 流速 单位 cm/s (计算时可以按最小截面积的流速) G 铸件质量(重量) 单位 kg F 截面积 单位 cm2 (计算时可以按最小截面积) t 浇注时间 单位 s g 重力加速度981cm/s2 H 平均压力头 单位 cm(取值计算见后) γ 金属液体的密度 单位 kg/cm3 铸铁 γ=7.0 铸钢 γ=7.3 μ 由铸件壁厚和结构以及浇道等因素引起的金属液体流速损耗系数,复杂铸铁件可取为0.34 对于铸钢件根据 不同的铸型 μ=0.25----0.50 湿型取小值,干型取大值,阻力大取小值,阻力小取大值。 由(1)式,得
冒口尺寸计算原则是,首先计算需要补缩的金属液需要多少。通常把这一部分金属液假设成球体,并求出直 径(设为 d0)用于冒口计算。冒口补缩铸件是有一定的范围------叫有效补缩距离,设为 L,对厚度为 h 的板状零 件通常 L=3~5h。对棒状零件 L=(25~30)√h
式子中,h------铸件厚度
S2-----和铸件壁厚相关的系数,取值如下表:
铸件主要壁厚(mm) 10以内
10---20
S 系数值
1.0
1.3
20---40 1.5
40---80以上 1.7
③式适于计算重型铸件。
④t=S4√(G*δ)
上式中。各个字母的定义与②相同,本式子用于铸钢时的 S4取值如下:
金属温度
金属的不同引入方法时的 S4值
2.3.其它计算方法
常用的经验计算方法还有不计算需要估算补缩的金属液,直接将热节园的直径乘个系数得出冒口直径。例如 简单铸件 D=(1.05~1.15)T 外形简单,热节比较集中。 复杂铸件 D=(1.40~1.80)T 外形复杂,例如有许多筋条和铸件的其余部分连接。 中间类型 D=(1.15~1.40)T 介于以上两种之间。
系数 y 的取值: 对特定的金属液和特定类型的铸件(如壁厚等)和特定的生产工艺,可视为常数,具体数值可从试验中,通过记 录浇注时间反求 y 的平均值作为今后计算的常数。 如,一拖一铁厂的原二线为0.18—0.22 原三四线 为0.13 原一线为0.15—0.16 现在的 KW 线,由于砂型的紧实度特高,y=0.04左右 平均压头 H 的取值: 顶注 为 H=h 底注 为 H=h-c/2 从铸件中间浇注 为 H=h-c/4
及 其 液 态 1.底注 由 中 间 注 1. 顶注
流动性
2.注入厚 入 或 者 阶 2. 均匀地由薄处1.4
1.5—1.6
与金属流
动性正常
浇 注 温 度 1.4—1.5 1.5—1.6 1.6—1.8
高与金属
流动性较
高时
1.3.半封闭式浇注系统的各段截面积之比
F 直: F 阻: F 横: F 内=1.6:1:1.8:1.4 根据不同情况,比例有可变的取值范围,原则不变的前提下可以灵活运用。
铸造生产的条件千差万别,因素太多,以至于所有的计算公式都是近似的有条件的。往往一个公式不一定适 用于所有的场合。所以公式中往往有取值范围较大的系数供用户结合本单位的情况选择
相关文档
最新文档