923851-复变函数-1,2习题课

合集下载

复变函数习题答案习题详解

复变函数习题答案习题详解

第一章习题详解1. 求下列复数z 的实部与虚部,共轭复数、模与辐角: 1)i231+ 解:()()()132349232323231231ii i i i i -=+-=-+-=+ 实部:133231=⎪⎭⎫⎝⎛+i Re 虚部:132231-=⎪⎭⎫⎝⎛+i Im共轭复数:1323231ii +=⎪⎭⎫⎝⎛+ 模:1311323231222=+=+i辐角:πππk arctg k arctg k i i Arg 23221331322231231+⎪⎭⎫ ⎝⎛-=+-=+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+arg 2) ii i --131 解:()()()2532332113311131312i i i i i i i i i i i i i i -=-+-=++---=+-+-=--实部:23131=⎪⎭⎫⎝⎛--i i i Re 虚部:25131-=⎪⎭⎫⎝⎛--i i i Im共轭复数:253131ii i i +=⎪⎭⎫⎝⎛-- 模:234434253131222==+=--iii 辐角:πππk arctg k arctg k i i i i i i Arg 235223252131131+⎪⎭⎫ ⎝⎛-=+⎪⎪⎪⎭⎫ ⎝⎛-=+⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--arg3)()()ii i 25243-+解:()()()22672267272625243ii ii ii i --=-+=--=-+ 实部:()()2725243-=⎪⎭⎫⎝⎛-+i i i Re虚部:()()1322625243-=-=⎪⎭⎫⎝⎛-+i i i Im 共轭复数:()()226725243ii i i +-=⎪⎭⎫⎝⎛-+ 模:()()2925226272524322=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=-+ii i辐角:()()ππk arctg k arctg i i i Arg 272622722625243+⎪⎭⎫ ⎝⎛=+⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-+ 4) i ii +-2184解:i i i i ii 31414218-=+-=+-实部:()14218=+-i i i Re 虚部:()34218-=+-i i i Im 共轭复数:()i i i i 314218+=+- 模:1031422218=+=+-i ii辐角:()()πππk arctg k arctg k i i i i ii Arg 23213244218218+-=+⎪⎭⎫⎝⎛-=++-=+-arg2. 当x 、y 等于什么实数时,等式()i iy i x +=+-++13531成立?解:根据复数相等,即两个复数的实部和虚部分别相等。

复变函数 第二章 习题 文档

复变函数 第二章 习题 文档

第二章 解析函数一、选择题:1.函数23)(z z f =在点0=z 处是( )(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导2.函数)(z f 在点z 可导是)(z f 在点z 解析的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件3.下列命题中,正确的是( )(A )设y x ,为实数,则1)cos(≤+iy x(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C )若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析(D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析4.下列函数中,为解析函数的是( )(A )xyi y x 222-- (B )xyi x +2(C ))2()1(222x x y i y x +-+- (D )33iy x + 5.函数)Im()(2z z z f =在0=z 处的导数( ) (A )等于0 (B )等于1 (C )等于1- (D )不存在 6.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常数=a ( )(A )0 (B )1 (C )2 (D )2-7.如果)(z f '在单位圆1<z 内处处为零,且1)0(-=f ,那么在1<z 内≡)(z f ( )(A )0 (B )1 (C )1- (D )任意常数8.设函数)(z f 在区域D 内有定义,则下列命题中,正确的是(A )若)(z f 在D 内是一常数,则)(z f 在D 内是一常数(B )若))(Re(z f 在D 内是一常数,则)(z f 在D 内是一常数(C )若)(z f 与)(z f 在D 内解析,则)(z f 在D 内是一常数(D )若)(arg z f 在D 内是一常数,则)(z f 在D 内是一常数9.设22)(iy x z f +=,则=+')1(i f ( )(A )2 (B )i 2 (C )i +1 (D )i 22+10.i i 的主值为( )(A )0 (B )1 (C )2πe (D )2π-e11.z e 在复平面上( )(A )无可导点 (B )有可导点,但不解析(C )有可导点,且在可导点集上解析 (D )处处解析12.设z z f sin )(=,则下列命题中,不正确的是( )(A ))(z f 在复平面上处处解析 (B ))(z f 以π2为周期 (C )2)(iziz e e z f --= (D ))(z f 是无界的 13.设α为任意实数,则α1( )(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于114.下列数中,为实数的是( )(A )3)1(i - (B )i cos (C )i ln (D )i e23π- 15.设α是复数,则( )(A )αz 在复平面上处处解析 (B )αz 的模为αz(C )αz 一般是多值函数 (D )αz 的辐角为z 的辐角的α倍二、填空题1.设i f f +='=1)0(,1)0(,则=-→zz f z 1)(lim 0 2.设iv u z f +=)(在区域D 内是解析的,如果v u +是实常数,那么)(z f 在D 内是3.导函数xv i x u z f ∂∂+∂∂=')(在区域D 内解析的充要条件为 4.设2233)(y ix y x z f ++=,则=+-')2323(i f5.若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f6.函数)Re()Im()(z z z z f -=仅在点=z 处可导7.设z i z z f )1(51)(5+-=,则方程0)(='z f 的所有根为 8.复数i i 的模为9.=-)}43Im{ln(i 10.方程01=--z e 的全部解为三、已知22y x v u -=-,试确定解析函数iv u z f +=)(.四、若函数)(z f 在上半平面内解析,试证函数)(z f 在下半平面内解析.五、解方程i z i z 4cos sin =+.。

复变函数留数习题PPT课件

复变函数留数习题PPT课件

VS
应用
留数定理在解决各种数学问题中有着广泛 的应用,如求解定积分、求解微分方程等 。此外,留数定理还在物理学、工程学等 领域中有着广泛的应用。
03
习题解析
简单习题解析
总结词
基础知识点
详细描述
简单习题主要涉及复变函数和留数的基本概念,包括复数、复变函数、级数、积分等。 这些题目旨在帮助学生掌握复变函数和留数的基本知识点,为后续的学习打下基础。
留数的定义与性质
留数的定义
留数是复变函数在奇点附近的行为的一种度量,它是通过计算函数沿着正反两个方向的无穷小包围区 域的积分来定义的。
留数的性质
留数具有一些重要的性质,如线性性质、可加性、奇偶性质等,这些性质在计算留数时非常有用。
留数定理及其应用
留数定理
留数定理是复变函数积分理论中的重要 定理,它表明一个复函数沿着一个封闭 曲线的积分可以用该函数在曲线内部的 奇点上的留数来计算。
复数在物理中的应用
在交流电和电信中的应用
在交流电和电信中,常常需要用到复数来表示正弦波和余弦波,以便于进行计 算和分析。
在量子力学中的应用
在量子力学中,波函数通常是复数,通过复数来表示粒子的状态和行为。
02
复变函数的积分与留数
复变函数的积分
பைடு நூலகம்
01
复数平面上的路径
复变函数在复平面上的积分依赖于所选择的路径,不同的路径可能导致
04
留数在解决实际问题中的应用
在电路分析中的应用
总结词
电路分析中,留数可以用于计算复平面上的 奇异点对应的电流和电压。
详细描述
在电路分析中,留数是一个重要的概念,它 可以用于计算复平面上的奇异点对应的电流 和电压。通过将电路模型转化为复平面上的 函数,并利用留数的性质,可以方便地求解 电路中的电流和电压,特别是在处理具有极

复变函数教学课件—3-习题课 - 副本

复变函数教学课件—3-习题课 - 副本

f (z0
R ei )d .
一个解析函数在圆心处的值等于它在圆周上的
平均值.
11
8. 高阶导数公式
解析函数 f (z)的导数仍为解析函数, 它的 n 阶
导数为:
f
(n)(z0 )
n! 2i
C
(z
f
(z) z0 )n1
dz
(n 1,2, )
其中C 为在函数 f (z)的解析区域 D内围绕 z0 的
如果A到B作为曲线C的正向, y
B
那么B到A就是曲线C的负向,
记为 C .
A
o
x
4
2.积分的定义
设函数 w f (z) 定义在区域 D内, C 为区域
D内起点为 A 终点为B的一条光滑的有向曲线,
把曲线 C 任意分成 n 个弧段, 设分点为
A z0 , z1, , zk1, zk , , zn B,
z z(t) x(t) iy(t) (a t b)

C
f (z)dz
b
a
f [z(t)]
z(t )dt .
7
4. 积分的性质
设 f (z), g(z)沿曲线C连续.
(1) f (z)dz f (z)dz;
C
C
(2) C kf (z)dz k C f (z)dz; (k为常数)
(3) C[ f (z) g(z)]dz C f (z)dz C g(z)dz;
(4) 设C由C1,C2连结而成,则
f (z)dz f (z)dz f (z)dz;
C
C1
C2
(5) 设曲线C 的长度为L,函数 f (z) 在 C 上满足
f (z) M , 那末 C f (z)dz C f (z)ds ML.

复变函数第5章习题课

复变函数第5章习题课

解 被积函数在 C 内的孤立奇点 z

C
th z d z 2 i R es[
e e
z
z
e e
z
z
,
i 2
]
2 i
th z
e e
z z z
e e
z
e e
z
z
0
e
2z
1 e
i ( 2 k 1 )
z
i ( 2 k 1) 2
17
88页6 试求下列各积分的值 2 1 (1) d 0 a co s 解 原式=
R es[
1 e z
4 2z
z
4
在孤立奇点处的留数
1 e
z0
2z
3
在全平面解析.
2z
,0 ]
( 1 e )
2z

2 e
3!
6
z0

4 3
解法2 e
z
1 z
1 2!
z
2
1 3!
z
3
1 4!
z
4
...
16 z4 z z ... e 1 2z 4! 3! 2! 4 3 2 4 2 2z 1 e 2 z 2 z z z ... 3 3 2z 4 1 e R es[ ,0 ] 4 3 z
0
87页5 求下列积分 (1)
C 正向圆周
dz
10

C
1
z (z
3
10
2)
C : | z | 2
2 内处处解析 其洛朗级数
解 被积函数在圆环域| z |

8-习题课-复变函数

8-习题课-复变函数
第八章 Laplace变换
一、求函数的Laplace变换 二、求函数的Laplace逆变换 三、求解微积分方程
机动 目录 上页 下页 返回 结束
性质
Laplace变换
Laplace变换 的应用
线位微积延 性移分分迟 性性性性性 质质质质质
卷积
留数
Laplace变换逆变换
2
机动 目录 上页 下页 返回 结束
e 2( s1) (A) s 1
(B) e 2( s1)
e2s
(C)
s1
s1
e2s
(D)
s1
设f (t) 2 (1 cos at),则L [ f (t)] t
s2 a2
ln s2
设L
[
f
(t )]
F (s),
a
0, 则L
t
[e a
f
(
t
)]
a
aF(as 1)
. .
8
机动 目录 上页 下页 返回 结束
4
24
12
机动 目录 上页 下页 返回 结束
(2) 令F (s) 1 1 1 ,易 知 s(s 1) s s 1
L 1[F (s)] 1 et .
由延迟性质得
L 1[ e 2s ] L 1[e 2s F ( s)] s(s 1) [1 e (t 2) ]u(t 2).
13
机动 目录 上页 下页 返回 结束
1

数 (
s1 s 2)4
的Laplace逆

换L
-1[
(
s1 s 2)4
]
.
1 t 2e2t 1 t 3e2t
2
6
2.

复变函数课后习题讲解

复变函数课后习题讲解

e 2 k (cos ln 3 i sin ln 3), (1 i )i eiLn (1i ) e e
1 ( 2 k ) 4
k 0, 1, 2, e
i ln 2 ( 2 k ) 2 4
i[ln 1 i ] i (arg(1 i ) 2 k )
2
2
15.求Ln(i),Ln(3 4i)和它们的主值。
解 Ln(i ) Ln i i (arg(i ) 2k ) i (

2
2k )
1 i (2k ), k 0, 1, 2, 2 i ln(i ) ln i i arg(i ) 2 Ln(3 4i ) ln 3 4i i[arg(3 4i ) 2k ] 4 ln 5 i[( arctan ) 2k ] 3 4 ln 5 i[(arctan (2k 1) )], k 0, 1, 2, 3 4 ln(3 4i) ln 3 4i i arg(3 4i ) ln 5 i ( arctan ) 3

3 i
0
z 2 dz z 2 dz z 2 dz z 2 dz z 2 dz.
0 i c3 c4
i
3 i
C3 : z it 0 t 1 ; C4 : z 3t i 故
0 t 1 ,
26 i 3

3 i
0
z dz t idz 3t i 3dt 6
1 i t 1 i 2t dt= 1 i t 2 i 2t 3 dt
0 0
1 5 1 i = 1+i i. 6 6 3 3

复变函数课件1-2

复变函数课件1-2

定义域
函数值集合
称w为z的象点(映象),而z称为w的原象。
y
(z)
v
(w)
w=f(z)
G
z
原象
w=f(z)
G* w象
o
x
o
u
14
2) 函数 w z2 构成的映射.
显然将 z 平面上的点z1 i, z2 1 2i, z3 1 映射成 w平面上的点w1 1, w2 3 4i, w3 1.
单连通区域
多连通区域
11
§1.5 复变函数的极限与连续性
1、 复变函数的定义
定义 设 GD 是一个复数 z = x + iy 的集合, 如果有 一个确定的法则存在, 按照这一法则, 对于集合 GD
中 的 每 一 个 复 数 z, 就 有 一 个 或 几 个 复 数
w = u + iv 与之对应, 则称复变数 w 是复变数 z 的
惟一性
与实变函数的极限性质类似.
复合运算等
22
5、函数的连续性
连续的定义:
如果
lim
z z0
f (z)
f (z0 ),
那么我们就说
f (z) 在 z0 处连续.
(1) f(z)在z0处有定义
连续的 三要素:
(2)f(z)在z0处有极限 (3)f(z)在z0处的极限值等于函 数值
如果f(z)在区域D内处处连续,则称f(z)在D内连续.
5
课堂练习 判断下列区域是否有界?
(1) 圆环域: r1 z z0 r2; (2) 上半平面: Im z 0;
(3) 角形域: 0 arg z ;
(4) 带形域: a Im z b.

复变函数课件6-习题课.

复变函数课件6-习题课.
2 iw
f (z)与 (w)互为反函数,
2019/6/28
课件
26
由 arg f (2) 0,
arg(i) arg 1 0,
f (2)
(i )

2

e i
2(w 2
i) iw
2ei 3,
wi
得 0. 所以 z 2 2(w i),
i 2i i
0 w1
2
, 2
2019/6/28
课件
25
当w1 g( )时,


g1(w1 )
e i
w1 i 1 i w1
2 2
,
z 2 ei (w 2i) 2 i 2 , 1 (i 2) ((w 2i) 2)
所以 z 2 ei 2(w i) (w),
定义 w az b (ad bc 0, a,b,c,d均为常数.) cz d
称为分式线性映射. 任一分式线性映射都可看成是由下列三种基本的
分式映射复合而成: (1)平移映射 w z b;
(2)旋转与相似映射w az; (3)反演映射 w 1 .
z
2019/6/28
在分式线性映射下, 它们的象点w1, w2也是关于 C的象曲线 的一对对称点. 这一性质称为保对称性.
2019/6/28
课件
12
4.唯一决定分式线性映射的条件
在 z平面上任意给定三个相异的点z1, z2, z3,
在 w 平面上也任意给定三 个相异的点w1, w2, w3, 那么就存在唯一的分式线性映射, 将 zk (k 1,2,3) 依次映射成 wk (k 1,2,3).

复变函数课后习题答案(全)

复变函数课后习题答案(全)

习题一谜底之勘阻及广创作2. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i + (2)(1)(2)i i i -- (3)131i i i -- (4)8214i i i -+- 解:(1)1323213i z i -==+, 因此:32Re , Im 1313z z ==-, (2)3(1)(2)1310i i i z i i i -+===---, 因此,31Re , Im 1010z z =-=, (3)133335122i i i z i i i --=-=-+=-, 因此,35Re , Im 32z z ==-, (4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3z z =-=,3. 将下列复数化为三角表达式和指数表达式:(1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cos sin 22ii i e πππ=+= (2)1-+23222(cos sin )233i i e πππ=+= (3)(sin cos )r i θθ+()2[cos()sin()]22i r i re πθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 4. 求下列各式的值: (1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5=(6= 5.设12 ,z z i ==-试用三角形式暗示12z z 与12z z 解:12cos sin , 2[cos()sin()]4466z i z i ππππ=+=-+-,所以 12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+, 6. 解下列方程:(1)5()1z i += (2)440 (0)z a a +=> 解:(1)z i += 由此25k i z i e i π=-=-, (0,1,2,3,4)k =(2)z ==11[cos (2)sin (2)]44a k i k ππππ=+++,那时0,1,2,3k =,对应的4), 1), 1), )i i i i +-+--- 7. 证明下列各题:(1)设,z x iy =+z x y ≤≤+证明:首先,显然有z x y =≤+;其次,因 222,x y x y +≥ 固此有 2222()(),x y x y +≥+从而z =≥. (2)对任意复数12,,z z 有2221212122Re()z z z z z z +=++证明:验证即可,首先左端221212()()x x y y =+++,而右端2222112211222Re[()()]x y x y x iy x iy =+++++-2222112212122()x y x y x x y y =+++++221212()()x x y y =+++, 由此,左端=右端,即原式成立.(3)若a bi +是实系数代数方程101100n n n a z a z a z a --++++=的一个根,那么a bi -也是它的一个根.证明:方程两端取共轭,注意到系数皆为实数,而且根据复数的乘法运算规则,()n n z z =,由此获得:10110()()0n n n a z a z a z a --++++=由此说明:若z 为实系数代数方程的一个根,则z 也是.结论得证.(4)若1,a =则,b a ∀≠皆有1a b a ab-=- 证明:根据已知条件,有1aa =,因此:11()a b a b a b a ab aa ab a a b a---====---,证毕. (5)若1, 1a b <<,则有11a b ab -<- 证明:222()()a b a b a b a b ab ab -=--=+--,2221(1)(1)1ab ab ab a b ab ab -=--=+--,因为1, 1a b <<,所以, 2222221(1)(1)0a b a b a b +--=--< ,因而221a b ab -<-,即11a b ab-<-,结论得证. 7.设1,z ≤试写出使n z a +到达最年夜的z 的表达式,其中n 为正整数,a 为复数. 解:首先,由复数的三角不等式有1n n z a z a a +≤+≤+, 在上面两个不等式都取等号时n z a +到达最年夜,为此,需要取n z 与a 同向且1n z =,即n z 应为a 的单元化向量,由此,n a z a=, 8.试用123,,z z z 来表述使这三个点共线的条件.解:要使三点共线,那么用向量暗示时,21z z -与31z z -应平行,因而二者应同向或反向,即幅角应相差0或π的整数倍,再由复数的除法运算规则知2131z z Arg z z --应为0或π的整数倍,至此获得:123,,z z z 三个点共线的条件是2131z z z z --为实数. 9.写出过1212, ()z z z z ≠两点的直线的复参数方程.解:过两点的直线的实参数方程为:121121()()x x t x x y y t y y =+-⎧⎨=+-⎩, 因而,复参数方程为:其中t 为实参数.10.下列参数方程暗示什么曲线?(其中t 为实参数)(1)(1)z i t =+ (2)cos sin z a t ib t =+ (3)i z t t=+ 解:只需化为实参数方程即可.(1),x t y t ==,因而暗示直线y x =(2)cos ,sin x a t y b t ==,因而暗示椭圆22221x y a b+= (3)1,x t y t==,因而暗示双曲线1xy = 11.证明复平面上的圆周方程可暗示为 0zz az az c +++=,其中a 为复常数,c 为实常数证明:圆周的实方程可暗示为:220x y Ax By c ++++=, 代入, 22z z z z x y i+-==,并注意到222x y z zz +==,由此 022z z z z zz A B c i+-+++=, 整理,得 022A Bi A Bi zz z z c -++++= 记2A Bi a +=,则2A Bi a -=,由此获得 0zz az az c +++=,结论得证.12.证明:幅角主值函数arg z 在原点及负实轴上不连续. 证明:首先,arg z 在原点无界说,因而不连续.对00x <,由arg z 的界说不难看出,当z 由实轴上方趋于0x 时,arg z π→,而当z 由实轴下方趋于0x 时,arg z π→-,由此说明0lim arg z x z →不存在,因而arg z 在0x 点不连续,即在负实轴上不连续,结论得证.13.函数1w z=把z 平面上的曲线1x =和224x y +=分别映成w 平面中的什么曲线?解:对1x =,其方程可暗示为1z yi =+,代入映射函数中,得211111iy w u iv z iy y-=+===++, 因而映成的像曲线的方程为 221, 11y u v y y-==++,消去参数y ,得2221,1u v u y +==+即22211()(),22u v -+=暗示一个圆周. 对224x y +=,其方程可暗示为2cos 2sin z x iy i θθ=+=+代入映射函数中,得因而映成的像曲线的方程为 11cos , sin 22u v θθ==-,消去参数θ,得2214u v +=,暗示一半径为12的圆周. 14.指出下列各题中点z 的轨迹或所暗示的点集,并做图: 解:(1)0 (0)z z r r -=>,说明动点到0z 的距离为一常数,因而暗示圆心为0z ,半径为r 的圆周.(2)0,z z r -≥是由到0z 的距离年夜于或即是r 的点构成的集合,即圆心为0z 半径为r 的圆周及圆周外部的点集.(3)138,z z -+-=说明动点到两个固定点1和3的距离之和为一常数,因而暗示一个椭圆.代入,z x iy ==化为实方程得(4),z i z i +=-说明动点到i 和i -的距离相等,因而是i 和i -连线的垂直平分线,即x 轴.(5)arg()4z i π-=,幅角为一常数,因而暗示以i 为极点的与x 轴正向夹角为4π的射线. 15.做出下列不等式所确定的区域的图形,并指出是有界还是无界,单连通还是多连通.(1)23z <<,以原点为心,内、外圆半径分别为2、3的圆环区域,有界,多连通(2)arg (02)z αβαβπ<<<<<,极点在原点,两条边的倾角分别为,αβ的角形区域,无界,单连通(3)312z z ->-,显然2z ≠,而且原不等式等价于32z z ->-,说明z 到3的距离比到2的距离年夜,因此原不等式暗示2与3 连线的垂直平分线即x =2.5左边部份除失落x =2后的点构成的集合,是一无界,多连通区域.(4)221z z --+>,显然该区域的鸿沟为双曲线221z z --+=,化为实方程为 2244115x y -=,再注意到z 到2与z 到-2的距离之差年夜于1,因而不等式暗示的应为上述双曲线左边一支的左侧部份,是一无界单连通区域.(5)141z z -<+,代入z x iy =+,化为实不等式,得 所以暗示圆心为17(,0)15-半径为815的圆周外部,是一无界多连通区域.习题二谜底1.指出下列函数的解析区域和奇点,并求出可导点的导数.(1)5(1)z - (2)32z iz + (3)211z + (4)13z z ++ 解:根据函数的可导性法则(可导函数的和、差、积、商仍为可导函数,商时分母不为0),根据和、差、积、商的导数公式及复合函数导数公式,再注意到区域上可导一定解析,由此获得:(1)5(1)z -处处解析,54[(1)]5(1)z z '-=-(2)32z iz +处处解析,32(2)32z iz z i '+=+(3)211z +的奇点为210z +=,即z i =±, (4)13z z ++的奇点为3z =-, 2.判别下列函数在何处可导,何处解析,并求出可导点的导数.(1)22()f z xy x yi =+ (2)22()f z x y i =+(3)3223()3(3)f z x xy i x y y =-+- (4)1()f z z= 解:根据柯西—黎曼定理:(1)22, u xy v x y ==,四个一阶偏导数皆连续,因而,u v 处处可微,再由柯西—黎曼方程, x y y x u v u v ==-解得:0x y ==,因此,函数在0z =点可导, 0(0)0x x z f u iv ='=+=, 函数处处不解析.(2)22, u x v y ==,四个一阶偏导数皆连续,因而,u v 处处可微,再由柯西—黎曼方程, x y y x u v u v ==-解得:x y =,因此,函数在直线y x =上可导,()2x x y x f x ix u iv x ='+=+=,因可导点集为直线,构不成区域,因而函数处处不解析.(3)32233, 3u x xy v x y y =-=-,四个一阶偏导数皆连续,因而 ,u v 处处可微,而且 ,u v 处处满足柯西—黎曼方程 , x y y x u v u v ==-因此,函数处处可导,处处解析,且导数为(4)2211()x iy f z x iy x yz +===-+,2222, x y u v x y x y ==++, 2222222222, ()()x y y x x y u v x y x y --==++, 22222222, ()()y x xy xy u v x y x y --==++, 因函数的界说域为0z ≠,故此,,u v 处处不满足柯西—黎曼方程,因而函数处处不成导,处处不解析.3.当,,l m n 取何值时3232()()f z my nx y i x lxy =+++在复平面上处处解析?解:3232, u my nx y v x lxy =+=+22222, 2, 3, 3x y y x u nxy v lxy u my nx v x ly ===+=+, 由柯西—黎曼方程得:由(1)得 n l =,由(2)得3, 3n m l =-=-,因而,最终有4.证明:若()f z 解析,则有 222(())(())()f z f z f z x y∂∂'+=∂∂ 证明:由柯西—黎曼方程知,左端22=+222222()()x x x x uu vv uu vv uu vv uv vu u v ++++-=+=+ 2()f z '==右端,证毕.5.证明:若()f z u iv =+在区域D 内解析,且满足下列条件之一,则()f z 在D 内一定为常数.(1)()f z 在D 内解析 , (2)u 在D 内为常数,(3)()f z 在D 内为常数, (4)2v u =(5)231u v += 证明:关键证明,u v 的一阶偏导数皆为0!(1)()f z u iv =-,因其解析,故此由柯西—黎曼方程得 , x y y x u v u v =-= ------------------------(1) 而由()f z 的解析性,又有, x y y x u v u v ==- ------------------------(2)由(1)、(2)知,0x y x y u u v v ===≡,因此12, ,u c v c ≡≡即 12()f z c ic ≡+为常数(2)设1u c ≡,那么由柯西—黎曼方程得0, 0x y y x v u v u =-≡=≡,说明v 与,x y 无关,因而 2v c ≡,从而12()f z c ic ≡+为常数.(3)由已知,2220()f z u v c =+≡为常数,等式两端分别对,x y 求偏导数,得220220x x y y uu vv uu vv +=+=----------------------------(1) 因()f z 解析,所以又有 , x y y x u v u v ==--------------------------(2)求解方程组(1)、(2),得 0x y x y u u v v ===≡,说明 ,u v 皆与,x y 无关,因而为常数,从而()f z 也为常数.(4)同理,2v u =两端分别对,x y 求偏导数,得再联立柯西—黎曼方程, x y y x u v u v ==-,仍有(5)同前面一样,231u v +=两端分别对,x y 求偏导数,得考虑到柯西—黎曼方程, x y y x u v u v ==-,仍有0x y x y u u v v ===≡,证毕.6.计算下列各值(若是对数还需求出主值)(1)2i e π- (2)()Ln i - (3)(34)Ln i -+(4)sin i (5)(1)i i + (6)2327解:(1)2cos()sin()22i e i i πππ-=-+-=- (2)1()ln arg()2(2)2Ln i i i k i k i ππ-=-+-+=-+, k 为任意整数,主值为:1()2ln i i π-=- (3)(34)ln 34arg(34)2Ln i i i k i π-+=-++-++4ln5(arctan 2)3k i ππ=+-+, k 为任意整数 主值为:4ln(34)ln5(arctan )3i i π-+=+- (4)..1sin 22i i i i e e e e i i i ----== (5)(2)2(1)44(1)i i k i k i iLn i i e e e ππππ++--++===24(cosln sin k e i ππ--=+, k 为任意整数(6)22224427(272)27333333279Ln ln k i ln k i k i e e e e e πππ+====,当k 分别取0,1,2时获得3个值:9, 4399(1)2i e π=-+, 8399(1)2i e π=-+ 7.求2z e 和2z Arge解:2222z x y xyi e e -+=,因此根据指数函数的界说,有2z e 22x y e -=, 222z Arge xy k π=+,(k 为任意整数)8.设i zre θ=,求Re[(1)]Ln z - 解:(1)ln 1[arg(1)2]Ln z z i z k i π-=-+-+,因此9.解下列方程: (1)1z e =+ (2)ln 2z i π=(3)sin cos 0z z += (4)shz i = 解:(1)方程两端取对数得:1(1)ln 2(2)3z Ln k i π=+=++(k 为任意整数)(2)根据对数与指数的关系,应有(3)由三角函数公式(同实三角函数一样),方程可变形为因此,4z k ππ+= 即 4z k ππ=-, k 为任意整数 (4)由双曲函数的界说得 2z ze e shz i --==,解得 2()210z z e ie --=,即z e i =,所以(2)2z Lni k i ππ==+ ,k 为任意整数 10.证明罗比塔法则:若()f z 及()g z 在0z 点解析,且000()()0, ()0f z g z g z '==≠,则000()()lim ()()z z f z f z g z g z →'=',并由此求极限 00sin 1lim ; lim z z z z e z z→→- 证明:由商的极限运算法则及导数界说知000000000000()()()()lim ()lim lim ()()()()()lim z z z z z z z z f z f z f z f z z z z z f z g z g z g z g z g z z z z z →→→→----==----00()()f z g z '=', 由此,00sin cos lim lim 11z z z z z →→== 11.用对数计算公式直接验证:(1)22Lnz Lnz ≠ (2)12Lnz = 解:记i z re θ=,则(1)左端22()2ln (22)i Ln r e r k i θθπ==++,右端2[ln (2)]2ln (24)r m i r m i θπθπ=++=++,其中的,k m 为任意整数.显然,左端所包括的元素比右真个要多(如左端在1k =时的值为2ln (22)r i θπ++,而右端却取不到这一值),因此两端不相等. (2)左端221]ln (2)22m i Ln re r m k i θπθππ+==+++ 右端11[ln (2)]ln ()222r n i r n i θθππ=++=++ 其中,k n 为任意整数,而 0,1m =不难看出,对左端任意的k ,右端n 取2k 或21k +时与其对应;反之,对右端任意的n ,当2n l =为偶数时,左端可取,0k l m ==于其对应,而当21n l =+为奇数时,左端可取2,1k l m ==于其对应.综上所述,左右两个集合中的元素相互对应,即二者相等.12.证明sin sin , cos cos z z z z ==证明:首先有 (cos sin )(cos sin )z x x x iy z e e y i y e y i y e e -=+=-== ,因此sin 2i z i ze e z i--==,第一式子证毕. 同理可证第二式子也成立.13.证明Im Im sin z z z e ≤≤ (即sin y y z e ≤≤)证明:首先,sin 222iz iziz iz y y y e e e e e e z e i ---+-+=≤=≤, 右端不等式获得证明.其次,由复数的三角不等式又有 sin 2222iz izy yy y iz iz e e e e e e e e z i --------=≥==,根据高等数学中的单调性方法可以证明0x ≥时2x xe e x --≥,因此接着上面的证明,有sin 2y y e e z y --≥≥,左端不等式获得证明.14.设z R ≤,证明sin , cos z chR z chR ≤≤证明:由复数的三角不等式,有sin 2222iz iz y y iz iz y y e e e e e e e e z ch y i ----+-++=≤===, 由已知,y z R ≤≤,再主要到0x ≥时chx 单调增加,因此有sin z ch y chR ≤≤,同理,cos 2222iz iz y yiz iz y y e e e e e e e e z ch y chR ----++++=≤===≤ 证毕.15.已知平面流场的复势()f z 为(1)2()z i + (2)2z (3)211z + 试求流动的速度及流线和等势线方程.解:只需注意,若记()(,)(,)f z x y i x y ϕψ=+,则流场的流速为()v f z '=,流线为1(,)x y c ψ≡,等势线为2(,)x y c ϕ≡,因此,有(1)2222()[(1)](1)2(1)z i x y i x y x y i +=++=-+++流速为()2()2()v f z z i z i '==+=-,流线为1(1)x y c +≡,等势线为 222(1)x y c -+≡(2)333223()3(3)z x iy x xy x y y i =+=-+- 流速为22()33()v f z z z '===,流线为2313x y y c -≡,等势线为 3223x xy c -≡(3)22221111()112z x iy x y xyi==+++-++ 流速为222222()(1)(1)z z v f z z z --'===++, 流线为 122222(1)4xy c x y x y≡-++, 等势线为 222222221(1)4x y c x y x y-+≡-++ 习题三谜底1.计算积分2()cx y ix dz -+⎰,其中c 为从原点到1i +的直线段 解:积分曲线的方程为, x t y t ==,即z x iy t ti =+=+,:01t →,代入原积分表达式中,得2.计算积分z ce dz ⎰,其中c 为(1)从0到1再到1i +的折线 (2)从0到1i +的直线解:(1)从0到1的线段1c 方程为:, :01z x iy x x =+=→, 从1到1i +的线段2c 方程为:1, :01z x iy iy y =+=+→,代入积分表达式中,得11(sin1cos1)(cos1sin1)11i e ei i i e i e +=-+-+=+-=-;(2)从0到1i +的直线段的方程为z x iy t ti =+=+,:01t →, 代入积分表达式中,得1100()(1)(cos sin )z t ti tc e dz e t ti dt i e t i t dt +'=+=++⎰⎰⎰, 对上述积分应用分步积分法,得3.积分2()cx iy dz +⎰,其中c 为(1)沿y x =从0到1i + (2)沿2y x =从0到1i + 解:(1)积分曲线的方程为z x iy t ti =+=+,:01t →, 代入原积分表达式中,得(2)积分曲线的方程为 2z x iy x x i =+=+, :01t →, 代入积分表达式中,得4.计算积分cz dz ⎰,其中c 为(1)从-1到+1的直线段 (2)从-1到+1的圆心在原点的上半圆周解:(1)c 的方程为z x =,代入,得(2)c 的方程为cos sin , :0z x iy i θθθπ=+=+→,代入,得5.估计积分212cdz z +⎰的模,其中c 为+1到-1的圆心在原点的上半圆周.解:在c 上,z =1,因而由积分估计式得222111222c c c cdz ds ds ds z z z ≤≤=++-⎰⎰⎰⎰c =的弧长π= 6.用积分估计式证明:若()f z 在整个复平面上有界,则正整数1n >时其中R c 为圆心在原点半径为R 的正向圆周. 证明:记()f z M ≤,则由积分估计式得122n n M M R R Rππ-==, 因1n >,因此上式两端令R →+∞取极限,由夹比定理,得()lim 0Rn R c f z dz z →+∞=⎰, 证毕. 7.通过分析被积函数的奇点分布情况说明下列积分为0的原因,其中积分曲线c 皆为1z =.(1)2(2)c dz z +⎰ (2)224cdz z z ++⎰ (3)22cdz z +⎰(4)cos c dz z ⎰ (5)z cze dz ⎰ 解:各积分的被积函数的奇点为:(1)2z =-,(2)2(1)30z ++=即1z =-±,(3)z = (4), 2z k k ππ=+为任意整数,(5)被积函数处处解析,无奇点不难看出,上述奇点的模皆年夜于1,即皆在积分曲线之外,从而在积分曲线内被积函数解析,因此根据柯西基本定理,以上积分值都为0.8.计算下列积分:(1)240i z e dz π⎰ (2)2sin i i zdz ππ-⎰ (3)10sin z zdz ⎰解:以上积分皆与路径无关,因此用求原函数的方法:(1)42202400111()(1)222i i i z z e dz e e e i πππ==-=-⎰ (2)21cos2sin 2sin []224i i i ii i z z z zdz dz ππππππ----==-⎰⎰ (3)11110000sin cos cos cos z zdz zd z z z zdz =-=-+⎰⎰⎰9.计算 22c dz z a-⎰,其中c 为不经过a ±的任一简单正向闭曲线.解:被积函数的奇点为a ±,根据其与c 的位置分四种情况讨论:(1)a ±皆在c 外,则在c 内被积函数解析,因而由柯西基本定理(2)a 在c 内,a -在c 外,则1z a+在c 内解析,因而由柯西积分 公式:22112z a c cdz z a dz i i z a z a a z a ππ=+===-+-⎰⎰(3)同理,当a -在c 内,a 在c 外时,(4)a ±皆在c 内此时,在c 内围绕,a a -分别做两条相互外离的小闭合曲线12,c c ,则由复合闭路原理得: 注:此题若分解221111()2a z a z a z a=--+-,则更简单! 10. 计算下列各积分解:(1)11()(2)2z dz i z z =-+⎰,由柯西积分公式 (2)23221izz i e dz z -=+⎰, 在积分曲线内被积函数只有一个奇点i ,故此同上题一样:(3)2232(1)(4)z dz z z =++⎰ 在积分曲线内被积函数有两个奇点i ±,围绕,i i -分别做两条相互外离的小闭合曲线12,c c ,则由复合闭路原理得:(4)4221z z dz z -=-⎰,在积分曲线内被积函数只有一个奇点1,故此(5)221sin 41z zdz z π=-⎰, 在积分曲线内被积函数有两个奇点1±,围绕1,1-分别做两条相互外离的小闭合曲线12,c c ,则由复合闭路原理得:(6)22, (1)nn z z dz n z =-⎰为正整数,由高阶导数公式 11. 计算积分312(1)zc e dz i z z π-⎰,其中c 为 (1)12z = (2)112z -= (3)2z = 解:(1)由柯西积分公式(2)同理,由高阶导数公式(3)由复合闭路原理30(1)z z e z ==-11()2!z z e z =''+12e =-, 其中,12,c c 为2z =内分别围绕0,1且相互外离的小闭合曲线. 12. 积分112z dz z =+⎰的值是什么?并由此证明012cos 054cos d πθθθ+=+⎰ 解:首先,由柯西基本定理,1102z dz z ==+⎰,因为被积函数的奇点在积分曲线外.其次,令(cos sin )z r i θθ=+,代入上述积分中,得 考察上述积分的被积函数的虚部,便获得2012cos 054cos d πθθθ+==+⎰,再由cos θ的周期性,得 即012cos 054cos d πθθθ+=+⎰,证毕. 13. 设(),()f z g z 都在简单闭曲线c 上及c 内解析,且在c 上 ()()f z g z =,证明在c 内也有()()f z g z =. 证明:由柯西积分公式,对c 内任意点0z ,00001()1()(), ()22c c f z g z f z dz g z dz i z z i z z ππ==--⎰⎰, 由已知,在积分曲线c 上,()()f z g z =,故此有 再由0z 的任意性知,在c 内恒有()()f z g z =,证毕. 14. 设()f z 在单连通区域D 内解析,且()11f z -<,证明 (1)在D 内()0f z ≠;(2)对D 内任一简单闭曲线c ,皆有()0()c f z dz f z '=⎰证明:(1)显然,因为若在某点处()0,f z =则由已知 011-<,矛盾! (也可直接证明:()1()11f z f z -<-<,因此1()11f z -<-<,即0()2f z <<,说明()0f z ≠)(3)既然()0f z ≠,再注意到()f z 解析,()f z '也解析,因此由函数的解析性法则知()()f z f z '也在区域D 内解析,这样,根据柯西基本定理,对D 内任一简单闭曲线c ,皆有()0()cf z dz f z '=⎰,证毕. 15.求双曲线22y x c -= (0c ≠为常数)的正交(即垂直)曲线族.解:22u y x =-为调和函数,因此只需求出其共轭调和函数(,)v x y ,则(,)v x y c =即是所要求的曲线族.为此,由柯西—黎曼方程 2x y v u y =-=-,因此(2)2()v y dx xy g y =-=-+⎰,再由 2y x v u x ==-知,()0g y '≡,即0()g y c =为常数,因此02v xy c =-+,从而所求的正交曲线族为xy c ≡(注:实际上,本题的谜底也可观察出,因极易想到222()2f z z y x xyi =-=--解析)16.设sin px v e y =,求p 的值使得v 为调和函数.解:由调和函数的界说2sin (sin )0px px xx yy v v p e y e y +=+-=,因此要使v 为某个区域内的调和函数,即在某区域内上述等式成立,必需210p -=,即1p =±.17.已知22255u v x y xy x y +=-+--,试确定解析函数 解:首先,等式两端分别对,x y 求偏导数,得225x x u v x y +=+-----------------------------------(1)225y y u v y x +=-+- -------------------------------(2) 再联立上柯西—黎曼方程x y u v =------------------------------------------------------(3)y x u v =-----------------------------------------------------(4)从上述方程组中解出,x y u u ,得这样,对x u 积分,得25(),u x x c y =-+再代入y u 中,得 至此获得:2205,u x x y c =--+由二者之和又可解出 025v xy y c =--,因此200()5f z u iv z z c c i =+=-+-,其中0c 为任意实常数. 注:此题还有一种方法:由定理知 由此也可很方便的求出()f z .18.由下列各已知调和函数求解析函数()f z u iv =+ 解:(1)22, ()1u x xy y f i i =+-=-+, 由柯西—黎曼方程,2y x v u x y ==+,对y 积分,得212()2v xy y c x =++,再由x y v u =-得2()2y c x x y '+=-+,因此201(), ()2c x x c x x c '=-=-+,所以22011222v xy y x c =+-+,因()1f i =-,说明0,1x y ==时1v =,由此求出012c =,至此获得:2222111()(2)222f z u iv x xy y y x xy i =+=+-+-++,整理后可得:211()(1)22f z i z i =-+(2)22yv x y=+, (2)0f = 此类问题,除上题采纳的方法外,也可这样:222222222222()1()()()x y xy z i x y x y z zz -=-==++,所以 1()f z c z=-+,其中c 为复常数.代入(2)0f =得,12c =,故此(3)arctan , (0)yv x x=>同上题一样,()x x y x f z u iv v iv '=+=+22221x y z i zx y x y zz -=+==++, 因此0()ln f z z c =+,其中的ln z 为对数主值,0c 为任意实常数. (4)(cos sin )x u e x y y y =-,(0)0f =(sin sin cos )x x y v u e x y y y y =-=++,对x 积分,得再由y x v u =得()0c x '=,所以0()c x c =为常数,由(0)0f =知,0x y ==时0v =,由此确定出00c =,至此获得:()f z u iv =+=(cos sin )x e x y y y -(sin cos )x ie x y y y ++, 整理后可得 ()z f z ze =19.设在1z ≤上()f z 解析,且()1f z ≤,证明 (0)1f '≤ 证明:由高阶导数公式及积分估计式,得1112122z ds πππ=≤==⎰,证毕. 20.若()f z 在闭圆盘0z z R -≤上解析,且()f z M ≤,试证明柯西不等式 ()0!()n n n f z M R≤,并由此证明刘维尔定理:在整个复平面上有界且处处解析的函数一定为常数. 证明:由高阶导数公式及积分估计式,得11111!!!!()2222n n n n z z n n M n M n M f z ds ds R R R R R ππππ+++===≤==⎰⎰, 柯西不等式证毕;下证刘维尔定理:因为函数有界,无妨设()f z M ≤,那么由柯西不等式,对任意0z 都有0()Mf z R'≤,又因()f z 处处解析,因此R 可任意年夜,这样,令R →+∞,得0()0f z '≤,从而0()0f z '=,即 0()0f z '=,再由0z 的任意性知()0f z '≡,因而()f z 为常数,证毕.习题四谜底1. 考察下列数列是否收敛,如果收敛,求出其极限. (1)1n n z i n=+解:因为lim n n i →∞不存在,所以lim n n z →∞不存在,由定理4.1知,数列{}n z 不收敛.(2)(1)2n n iz -=+解:1sin )22i i θθ+=+,其中1arctan 2θ=,则()sin )cos sin nnn z i n i n θθθθ-⎤=+=-⎥⎣⎦.因为lim 0nn →∞=,cos sin 1n i n θθ-=,所以()lim cos sin 0nn n i n θθ→∞-= 由界说4.1知,数列{}n z 收敛,极限为0.(3)21n i n z e nπ-=解:因为21n i eπ-=,1lim 0n n →∞=,所以21lim 0n i n enπ-→∞= 由界说4.1知,数列{}n z 收敛,极限为0. (4)()n n zz z=解:设(cos sin )z r i θθ=+,则()cos 2sin 2n n z z n i n zθθ==+,因为lim cos 2n n θ→∞,lim sin 2n n θ→∞都不存在,所以lim n n z →∞不存在,由定理4.1知,数列{}n z 不收敛.2. 下列级数是否收敛?是否绝对收敛?(1)1!nn i n ∞=∑解:1!!n i n n =,由正项级数的比值判别法知该级数收敛,故级数1!nn i n ∞=∑收敛,且为绝对收敛. (2)2ln nn i n∞=∑解:222cos sin 22ln ln ln n n n n n n i i n n nππ∞∞∞====+∑∑∑,因为2cos11112ln ln 2ln 4ln 6ln 8n n n π∞==-+-++∑是交错级数,根据交错级数的莱布尼兹审敛法知该级数收敛,同样可知,2sin111121ln ln 3ln 5ln 7ln 9n n n π∞==-+-++∑也收敛,故级数2ln nn i n ∞=∑是收敛的. 又22111,ln ln ln 1n n n i n n n n ∞∞===>-∑∑,因为211n n ∞=-∑发散,故级数21ln n n∞=∑发散,从而级数2ln nn i n ∞=∑条件收敛.(3)0cos 2n n in∞=∑解:1110000cos 2222n n n nn n n n n n n n in e e e e --∞∞∞∞+++====+==+∑∑∑∑,因级数102nn n e ∞+=∑发散,故cos 2nn in∞=∑发散. (4)()35!nn i n ∞=+∑解:()35!nn n i n ∞∞==+=∑由正项正项级数比值判别法知该级数收敛,故级数()035!nn i n ∞=+∑收敛,且为绝对收敛.3. 试确定下列幂级数的收敛半径.(1)()01n n n i z ∞=+∑解:1lim 1n n n c i c +→∞=+=故此幂级数的收敛半径R =. (2)0!n n n n z n ∞=∑解:11(1)!11lim lim lim 1(1)!(1)n n n n n n n n c n n c n n en++→∞→∞→∞+=⋅==++,故此幂级数的收敛半径R e =.(3)1in n n e z π∞=∑解:11lim lim 1in n n n innc e c e ππ++→∞→∞==,故此幂级数的收敛半径1R =.(4)221212n nn n z ∞-=-∑解:令2z Z =,则22111212122n n n n n n n n z Z ∞∞--==--=∑∑112112lim lim 2122n n n n nn n c n c ++→∞→∞+==-,故幂级数11212n n n n Z ∞-=-∑的收敛域为2Z <,即22z <,从而幂级数221212n n n n z ∞-=-∑的收敛域为z <收敛半径为R .4. 设级数0n n α∞=∑收敛,而0nn α∞=∑发散,证明0n n n z α∞=∑的收敛半径为1.证明:在点1z =处,0nn n n n z αα∞∞===∑∑,因为0n n α∞=∑收敛,所以0n n n z α∞=∑收敛,故由阿贝尔定理知,1z <时,0n n n z α∞=∑收敛,且为绝对收敛,即nnn z α∞=∑收敛.1z >时,0nn n n n z αα∞∞==>∑∑,因为0n n α∞=∑发散,根据正项级数的比力准则可知,0nn n z α∞=∑发散,从而0n n n z α∞=∑的收敛半径为1,由定理4.6,0n n n z α∞=∑的收敛半径也为1.5. 如果级数0n n n c z ∞=∑在它的收敛圆的圆周上一点0z 处绝对收敛,证明它在收敛圆所围的闭区域上绝对收敛. 证明:0z z <时,由阿贝尔定理,0n n n c z ∞=∑绝对收敛.0z z =时,00nnn n n n c z c z ∞∞===∑∑,由已知条件知,00n n n c z ∞=∑收敛,即nnn cz ∞=∑收敛,亦即0n n n c z ∞=∑绝对收敛.6. 将下列函数展开为z 的幂级数,并指出其收敛区域.(1)221(1)z +解:由于函数221(1)z +的奇点为z i =±,因此它在1z <内处处解析,可以在此圆内展开成z 的幂级数.根据例4.2的结果,可以获得24211(1),11n n z z z z z=-+-+-+<+.将上式两边逐项求导,即得所要求的展开式221(1)z +='24122211123(1),112n n z z nz z z z +-⋅-=-+++-+<+()(). (2)1(0,0)()()a b z a z b ≠≠--解:①a b =时,由于函数1(0,0)()()a b z a z b ≠≠--的奇点为z a =,因此它在z a <内处处解析,可以在此圆内展开成z 的幂级数.='1(1)nn z z a a a⋅++++=111()n n n z a a a -⋅+++=1211,n n n z z a a a-++++<. ②a b ≠时,由于函数1(0,0)()()a b z a z b ≠≠--的奇点为12,z a z b ==,因此它在min{,}z a b <内处处解析,可以在此圆内展开成z 的幂级数.=2121111()nnn n z z z z a b a aa b bb++-----++++-=22111111111[()()],min{,}nn n z z z a b a b b a b a b a ++-+-++-+<-.(3)2cos z解:由于函数2cos z 在复平面内处处解析,所以它在整个复平面内可以展开成z 的幂级数.4822cos 1(1),2!4!(2)!nnz z z z z n =-+-+-+<+∞.(4)shz解:由于函数shz 在复平面内处处解析,所以它在整个复平面内可以展开成z 的幂级数.321321()()()()sin ((1)),3!(21)!3!(21)!n n niz iz z z shz i iz i iz z z n n ++=-=--++-+=++++<+∞++(5)2sin z解:由于函数2sin z 在复平面内处处解析,所以它在整个复平面内可以展开成z 的幂级数.=221(2)(2)(1),22!2(2)!nn z z z n +++-+<+∞⨯⨯.(6)sin z e z 解:由于函数sin z e z 在复平面内处处解析,所以它在整个复平面内可以展开成z 的幂级数.(1)(1)sin 22iz iz i z i zzze e e e e z e i i-+---=⋅==22221(1)(1)(1)(1)(1(1)1(1))22!!2!!n n n n i z i z i z i z i z i z i n n ++--++++++-------=2122(1)(1)(2)22!!n n n i i i iz z z i n ⋅+--++++=32,3z z z z +++<+∞. 7. 求下列函数展开在指定点0z 处的泰勒展式,并写出展式成立的区域.(1)0,2(1)(2)zz z z =++解: 21(1)(2)21z z z z z =-++++,022111(2)222422414nnn z z z z ∞=-==⋅=-+-++∑, 011111(2)212333313nnn z z z z ∞=-==⋅=-+-++∑. 由于函数(1)(2)zz z ++的奇点为121,2z z =-=-,所以这两个展开式在23z -<内处处成立.所以有:210001(2)1(2)11()(2),23(1)(2)243323n n nn n n nn n n z z z z z z z ∞∞∞+===--=-=---<++∑∑∑.(2)021,1z z = 解:由于2111(1)(1)(1)(1),1111n n z z z z z z ==--+-++--+-<-+ 所以'11211()12(1)(1)(1),11n n z n z z z z --=-=--++--+-<.(3)01,143z i z=+- 解:1111134343(1)33133(1)131(1)13z z i i i z i i z i i===⋅---------------=100133(1)(1)13(13)(13)n n n n n n n n z i z i i i i ∞∞+==⋅--=-----∑∑. 展开式成立的区域:3(1)113z i i--<-,即13z i --< (4)0tan ,4z z π=解:'2tan sec z z =,''2tan 2sec tan z z z =,'''22tan 2sec (2tan 1)z z z =+,……,'24tan sec 24z z ππ===,''244tan 2sec tan 2z z zz zππ====,'''22448tan 2sec (2tan 1)3z z zz z ππ===+=……,故有 因为tan z 的奇点为,2z k k Z ππ=+∈,所以这个等式在44z ππ-<的范围内处处成立.8. 将下列函数在指定的圆域内展开成洛朗级数.(1)21,12(1)(2)z z z <<+-解:2221112()(1)(2)5211z z z z z z =--+--++, 222222002221212(1)(1)111n nn n n n z z z z z z∞∞+====-=-++∑∑, 故有2121220001112((1)(1))(1)(2)52n nn n n n n n n z z z z z ∞∞∞+++====-+-+-+-∑∑∑(2)21,01,1(1)z z z z z +<<<<+∞- 解:222112(1)(1)z z z z z z +=+--①在01z <<内 ②在1z <<+∞内 (3)1,011,12(1)(2)z z z z <-<<-<+∞--解:①在011z <-<内, ②在12z <-<+∞内20111111111(1)(1)1(1)(2)22122(2)(2)(2)12nnn n n n z z z z z z z z z z ∞∞+===⋅=⋅=-=-----+-----+-∑∑(4)1sin ,011z z<-<+∞-解:在01z <-<+∞内(5)cos,011zz z <-<+∞- 解:111cos cos(1)cos1cos sin1sin 1111z z z z z =+=----- 在01z <-<+∞内故有9. 将221()(1)f z z =+在z i =的去心邻域内展开成洛朗级数.解:因为函数221()(1)f z z =+的奇点为z i =±,所以它以点z i =为心的去心邻域是圆环域02z i <-<.在02z i <-<内又11001111()()(1)(1)()222(2)(2)12n n n n n n n n z i z i z i z i i i i i i i∞∞++==---=-⋅=--=---++∑∑ 故有222222001111()(1)()(1)()(1)()(2)(2)n n n n n n n n n n f z z i z i z z i i i ∞∞-++==++==⋅--=--+-∑∑ 10.函数()ln f z z =能否在圆环域0(0)z R R <<<<+∞内展开为洛朗级数?为什么?答:不能.函数()ln f z z =的奇点为,0,z z R ≤∈,所以对,0R R ∀<<+∞,0z R <<内都有()f z 的奇点,即()f z 以0z =为环心的处处解析的圆环域不存在,所以函数()ln f z z =不能在圆环域0(0)z R R <<<<+∞内展开为洛朗级数.习题五谜底1. 求下列各函数的孤立奇点,说明其类型,如果是极点,指出它的级. (1)221(1)z z z -+ 解:函数的孤立奇点是0,z z i ==±, 因222222221111111(1)(1)()()()()z z z z z z z z z i z z i z i z z i ----=⋅=⋅=⋅++-++-由性质5.2知,0z =是函数的1级极点,z i =±均是函数的2级极点. (2)3sin zz解:函数的孤立奇点是0z =,因32133sin 1((1))3!(21)!n nz z z z z z n +=-++-+,由极点界说知,0z =是函数的2级极点.(3)ln(1)z z+ 解:函数的孤立奇点是0z =,因0ln(1)lim1z z z→+=,由性质 5.1知,0z =是函数可去奇点. (4)21(1)z z e -解:函数的孤立奇点是2z k i π=,①0k =,即0z =时,因4223(1)2!!n zz z z e z n +-=++++ 所以0z =是2(1)z z e -的3级零点,由性质5.5知,它是21(1)z z e -的3级极点②2z k i π=,0k ≠时,令2()(1)z g z z e =-,'2()2(1)z z g z z e z e =-+,因(2)0g k i π=,'2(2)(2)0g k i k i ππ=≠,由界说5.2知,2(0)z k i k π=≠是()g z 的1级零点,由性质5.5知,它是21(1)z z e -的1级极点(5)2(1)(1)zzz e π++ 解:函数的孤立奇点是(21),z k i k Z =+∈,令2()(1)(1)z g z z e π=++,'2()2(1)(1)z z g z z e e z πππ=+++,''22()2(1)4(1)z z z g z e ze e z πππππ=++++ ①0z i =±时, 0()0g z =,'0()0g z =,''0()0g z ≠,由界说5.2知,0z i =±是()g z 的2级零点,由性质5.5知,它是21(1)(1)zz e π++的2级极点,故0z i =±是2(1)(1)zzz e π++的2级极点.②1(21),1,2,z k i k =+=±时,1()0g z =,'1()0g z ≠,由界说 5.2知,1(21),1,2,z k i k =+=±是()g z 的1级零点,由性质5.5知,它是21(1)(1)zz e π++的1级极点,故是2(1)(1)zzz e π++的1级极点. (6)21sin z解:函数的孤立奇点是0z =,1,2,z z k ==±= 令2()sin g z z =,'2()2cos g z z z =,①0z =时,因64222()sin (1)3!(21)!n nz z g z z z n +==-++-++,所以0z =是()g z 的2级零点,从而它是21sin z的2级极点. ②1,2,z z k ==±=时,()0g z =,'()0g z ≠,由界说 5.2知,1,2,z z k ==±=是()g z 的1级零点,由性质5.5知,它是21sin z 的1级极点. 2. 指出下列各函数的所有零点,并说明其级数.(1)sin z z解:函数的零点是,z k k Z π=∈,记()sin f z z z =,'()sin cos f z z z z =+①0z =时,因4222sin (1)3!(21)!n nz z z z z n +=-++-++,故0z =是sin z z 的2级零点.②,0z k k π=≠时,()0z k f z π==,'()0z k f z π=≠,由界说5.2知, ,0z k k π=≠是sin z z 的1级零点. (2)22z z e解:函数的零点是0z =,因242222(1)2!!n z z z z e z z n =+++++,所以由性质5.4知,0z =是22z z e 的2级零点.(3)2sin (1)z z e z -解:函数的零点是00z =,1z k π=,22z k i π=,0k ≠,记2()sin (1)z f z z e z =-,'22()cos (1)sin [2(1)]z z z f z z e z z e z z e =-++-①0z =时,0z =是sin z 的1级零点,,1z e -的1级零点,2z 的2级零点,所以0z =是2sin (1)z z e z -的4级零点.②1z k π=,0k ≠时,1()0f z =,'1()0f z ≠,由界说5.2知,1z k π=,0k ≠是()f z 的1级零点.③22z k i π=,0k ≠时,1()0f z =,'1()0f z ≠,由界说 5.2知,22z k i π=,0k ≠是()f z 的1级零点.3. 0z =是函数2(sin 2)z shz z -+-的几级极点?答:记()sin 2f z z shz z =+-,则'()cos 2f z z chz =+-,''()sin f z z shz =-+,'''()cos f z z chz =-+,(4)()sin f z z shz =+,(5)()cos f z z chz =+,将0z =代入,得:''''''(4)(0)(0)(0)(0)(0)0f f f f f =====,(5)()0f z ≠,由界说5.2知, 0z =是函数()sin 2f z z shz z =+-的5级零点,故是2(sin 2)z shz z -+-的10级极点.4. 证明:如果0z 是()f z 的(1)m m >级零点,那么0z 是'()f z 的1m -级零点.证明:因为0z 是()f z 的m 级零点,所以'''10000()()()()0m f z f z f z f z -=====,0()0m f z ≠,即''''2000()(())(())0m f z f z f z -====,'10(())0m f z -≠,由界说5.2知,0z 是'()f z 的1m -级零点.5. 求下列函数在有限孤立奇点处的留数. (1)212z z z+- 解:函数的有限孤立奇点是0,2z z ==,且0,2z z ==均是其1级极点.由定理5.2知,0011Re [(),0]lim ()lim22z z z s f z zf z z →→+===-+,0013Re [(),2]lim(2)()lim 2z z z s f z z f z z →→+=-==.(2)4231(1)z z ++解:函数的有限孤立奇点是z i =±,且z i =±是函数的3级极点,由定理5.2,423''''35111112123Re [(),]lim[()()]lim()lim 2!2()2()8z i z i z i z z s f z i z i f z i z i z i →→→+-=-===-++, 423''''35111112123Re [(),]lim[()()]lim()lim 2!2()2()8z i z i z i z z s f z i z i f z i z i z i →-→-→-++-=+===--.(3)241ze z-解:函数的有限孤立奇点是0z =,因22234443211(2)(2)2222(2)2!!2!3!!z n n n e z z z z z z n z z z n --=-----=-----所以由界说5.5知,2414Re [,0]3z e s z -=-.(4)21sin z z解:函数的有限孤立奇点是0z =, 因2232121111(1)1(1)sin ()3!(21)!3!(21)!nnn n z z z z z z n z zn z +---=-+++=-+++++所以由界说5.5知,211Re [sin ,0]6s z z=-. (5)1cos1z- 解:函数的有限孤立奇点是1z =,因。

复变函数讲义-3-习题课

复变函数讲义-3-习题课

f (z) M ,那末 f (z)dz f (z)ds ML.
C
C
机动 目录 上页 下页 返回 结束
29
例9 设C为圆周 z − 1 = 2证明下列不等式.
c
z z
+ 1dz −1
8.
证明 因为 z − 1 = 2,
所以 z + 1 = z − 1 + 2 z − 1 + 2 = 2,
24
2)若封闭曲线C包含0而不包含1,则
由柯西积分公式得
C
ez z(1 −
z)3
dz
=
ez
C
(1 − z)3 d z z
= 2i ez (1 − z)3 z=0
= 2i.
y
O

1x
C
机动 目录 上页 下页 返回 结束
25
3)若封闭曲线C包含1而不包含0,则
f (z) = ez 在C内解析, 由高阶导数公式得 z
机动 目录 上页 下页 返回 结束
20
(2) a在曲线C内,b不在曲线C内
由高阶导数公式,有
1
C
(
z

1 a)n (
z

b)
dz
=
C
(
z−b z − a)n
dz
=
2i
1 (n−1)
(n − 1)! z − b
z=a
=
2i (−1)n−1
(n − 1)!
(n − 1)! (z − b)n
2
一、定积分与不定积分
定积分(参数方程法)常用于函数在积分曲线上有 奇点或在积分区域内部有无穷多奇点情况;不定 积分注意所要求条件

复变函数课后习题答案(全)

复变函数课后习题答案(全)

习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i --(3)131i i i-- (4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,1232, arg arctan , 3131313z z z i ==-=+(2)3(1)(2)1310i i iz i i i -+===---, 因此,31Re , Im 1010z z =-=,1131, arg arctan , 3101010z z z i π==-=--(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,34535, arg arctan , 232i z z z +==-=(4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3zz =-=,10, arg arctan3, 13z z z i π==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)13i -+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)13i -+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5(3)i - (2)100100(1)(1)i i ++-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5)3i (6)1i +解:(1)5(3)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin())16(3)66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--2[cos()sin()](cos sin )332[cos()sin()][cos()sin()]44i i i i ππθθππθθ-+-+=-+--+-2[cos()sin()](cos2sin 2)1212i i ππθθ=-+-+(2)122[cos(2)sin(2)]21212ii eπθππθθ-=-+-=(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- cos10sin10cos19sin19cos(9)sin(9)i i i ϕϕϕϕϕϕ+==+-+- (5)3i 3cossin22i ππ=+11cos (2)sin (2)3232k i k ππππ=+++31, 02231, 122, 2i k i k i k ⎧+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6)1i +2(cossin )44i ππ=+ 4112[cos (2)sin (2)]2424k i k ππππ=+++48482, 02, 1i i e k e k ππ⎧=⎪=⎨⎪-=⎩4. 设121, 3,2iz z i +==-试用三角形式表示12z z 与12z z解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)51,z i += 由此2551k i z i ei π=-=-, (0,1,2,3,4)k =(2)4444(cos sin )za a i ππ=-=+11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), (1), (1), (1)2222a a a ai i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+则2x y z x y+≤≤+证明:首先,显然有22z x y x y =+≤+;其次,因222,x y x y +≥固此有2222()(),x y x y +≥+ 从而222x y z x y +=+≥。

复变函数考试题和答案

复变函数考试题和答案

复变函数考试题和答案****一、选择题(每题5分,共30分)1. 复数 \( z = a + bi \) 的共轭复数为()。

A. \( a - bi \)B. \( a + bi \)C. \( -a + bi \)D. \( -a - bi \)**答案:A**2. 复数 \( z = a + bi \) 的模长为()。

A. \( \sqrt{a^2 + b^2} \)B. \( \sqrt{a^2 - b^2} \)C. \( \sqrt{a^2 + b} \)D. \( \sqrt{a + b^2} \)**答案:A**3. 函数 \( f(z) = \frac{1}{z} \) 在 \( z = 0 \) 处的性质是()。

A. 可导B. 连续C. 可微D. 奇点**答案:D**4. 函数 \( f(z) = z^2 \) 在复平面上是()。

A. 单叶函数B. 多叶函数C. 常数函数D. 线性函数**答案:A**5. 函数 \( f(z) = \sin(z) \) 是()。

A. 整函数B. 亚纯函数C. 非解析函数D. 多项式函数**答案:A**6. 函数 \( f(z) = e^z \) 在复平面上是()。

A. 整函数B. 亚纯函数C. 非解析函数D. 多项式函数**答案:A**二、填空题(每题5分,共20分)1. 复数 \( z = 3 + 4i \) 的共轭复数是 \( \_\_\_\_\_\_\_ \)。

**答案:3 - 4i**2. 复数 \( z = 1 + i \) 的模长是 \( \_\_\_\_\_\_\_ \)。

**答案:\( \sqrt{2} \)**3. 函数 \( f(z) = z^3 \) 在 \( z = 1 \) 处的导数是 \( \_\_\_\_\_\_\_ \)。

**答案:3**4. 函数 \( f(z) = \frac{1}{z-1} \) 的奇点是 \( \_\_\_\_\_\_\_ \)。

复变函数考试题及答案

复变函数考试题及答案

复变函数考试题及答案一、单项选择题(每题2分,共10分)1. 复变函数中,以下哪个选项是解析函数的必要条件?A. 函数在定义域内连续B. 函数在定义域内可导C. 函数在定义域内满足柯西-黎曼方程D. 函数在定义域内处处有界答案:C2. 如果函数f(z)=u(x,y)+iv(x,y)是解析的,则以下哪个等式成立?A. ∂u/∂x = ∂v/∂yB. ∂u/∂y = -∂v/∂xC. ∂u/∂x = -∂v/∂yD. ∂u/∂y = ∂v/∂x答案:B3. 在复平面上,以下哪个区域是单连通的?A. 整个复平面B. 去掉原点的复平面C. 去掉实轴的复平面D. 去掉单位圆的复平面答案:A4. 复变函数的柯西积分定理适用于以下哪种情况?A. 函数在整个复平面上解析B. 函数在简单连通域内解析C. 函数在任意区域解析D. 函数在任意区域连续答案:B5. 对于解析函数f(z)=u(x,y)+iv(x,y),以下哪个等式是正确的?A. ∂u/∂x = ∂v/∂yB. ∂u/∂y = ∂v/∂xC. ∂u/∂x = ∂v/∂yD. ∂u/∂y = -∂v/∂x答案:D二、填空题(每题3分,共15分)1. 如果f(z)是解析函数,且f(z)=z^2,则f'(z)=________。

答案:2z2. 函数f(z)=1/z在z=0处是________。

答案:无定义的3. 函数f(z)=e^z的导数是________。

答案:e^z4. 函数f(z)=z^n(n为正整数)的n阶导数是________。

答案:n!5. 函数f(z)=sin(z)的解析延拓是________。

答案:sin(z)三、计算题(每题10分,共20分)1. 计算积分∮_C z^2 dz,其中C是由z=1和z=i围成的矩形的边界。

答案:02. 计算积分∮_C (z^2-1)/z dz,其中C是单位圆|z|=1的正向边界。

答案:2πi四、证明题(每题15分,共30分)1. 证明如果f(z)是解析函数,且f(z)在某个区域内有界,则f(z)在该区域内是常数函数。

复变函数练习题及答案

复变函数练习题及答案

复变函数卷答案与评分标准一、填空题:1.叙述区域内解析函数的四个等价定理。

定理1 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件:(1)(,)u x y ,(,)v x y 在D 内可微,(2)(,)u x y ,(,)v x y 满足C R -条件。

(3分)定理2 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件:(1),,,x y x y u u v v 在D 内连续,(2)(,)u x y ,(,)v x y 满足C R -条件。

(3分)定理3 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内连续,若闭曲线C 及内部包含于D ,则()0C f z dz =⎰ 。

(3分) 定理4 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内每一点a ,都能展成x a -的幂级数。

(3分)2.叙述刘维尔定理:复平面上的有界整函数必为常数。

(3分)3、方程2z e i =+的解为:11ln 5arctan 222i k i π++,其中k 为整数。

(3分) 4、设()2010sin z f z z+=,则()0Re z s f z ==2010。

(3分) 二、验证计算题(共16分)。

1、验证()22,2u x y x y x =-+为复平面上的调和函数,并求一满足条件()12f i i =-+的解析函数()()(),,f z u x y iv x y =+。

(8分)解:(1)22u x x ∂=+∂,222u x ∂=∂;2u y y∂=-∂,222u y ∂=-∂。

由于22220u u y x∂∂+=∂∂,所以(,)u x y 为复平面上的调和函数。

(4分) (2)因为()f z 为解析函数,则(),u x y 与(),v x y 满足C.-R.方程,则有22v u x y x∂∂==+∂∂,所以(,)2222()v x y x dy xy y C x =+=++⎰ 2,v u y x y∂∂=-=∂∂又2()v y C x x ∂'=+∂ ,所以 ()0C x '=,即()C x 为常数。

复变函数与积分变换(练习题) (答案)

复变函数与积分变换(练习题) (答案)

复变函数与积分变换第一章 练习题1. 计算(1)(2)i i i --;解:(1)103)31)(31()31(3123)2)(1(2i i i i i ii i i i i i i +-=+-+=-=+-=--;(2)10310)2)(1()2)(2(1)1)(1()2)(1()2)(1(i i i i i i i i i i i i i +-=---=----------=--。

2. 解方程组12122(1)43z z i i z iz i -=⎧⎨++=-⎩;解:消元法,)2()1(+⨯i 得:i z i 33)31(1-=+,解得:563)31)(31()31)(33(31331i i i i i ii z --=-+--=+-=,代入)1(得:517656322ii i z --=---⨯=。

3.求1i --、13i -+的模与辐角的主值;解:]arg arctan arctan,arctan arg ππππ,(,,三,二一,四-∈⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=z x y x y xy z , ⎥⎦⎤⎢⎣⎡-+-=--)43s i n ()43c o s (21ππi i ;[])3a r c t a n s i n ()3a r c t a n c o s (1031-+-=+-ππi i 。

4.用复数的三角表示计算312⎛⎫- ⎪ ⎪⎝⎭、; 解:1)sin()cos()3cos()3cos(23133-=-+-=⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫⎝⎛-ππππi i i ; 3,2,1,0,4243s i n 4243c o s 2)43s i n43(c o s 228341=⎪⎪⎪⎪⎭⎫⎝⎛+++=⎥⎦⎤⎢⎣⎡+k k i k i ππππππ,⎪⎭⎫ ⎝⎛+=163sin 163cos 2830ππi z ,⎪⎭⎫ ⎝⎛+=1611sin 1611cos 2831ππi z ,⎪⎭⎫ ⎝⎛+=1619sin 1619cos 2832ππi z ,⎪⎭⎫ ⎝⎛+=1627sin 1627cos 2833ππi z 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初等函数
极限 连续性 可导与解析 判别定理 C-R条件
机动 目录 上页 下页 返回 结束
2
一、复数的计算
1. 几种形式的转化
例1 将复数 z ( 2i )(1 i )7 化为三角形式.
1i 1i
(辐角用主值)
解 2i 1 i 2[cos( ) i sin( )]
1 i
4
4
(1 i )7 i 则 z 1 i.
机动 目录 上页 下页 返回 结束
16
2、f (z)取常值的等价条件
如果 f (z) 在区域 D内解析, 则以下条件彼此等价.
(1) f (z)恒取常值;
(2) f (z) 0;
(3) f (z) 常数;
(4) f (z)解析;
(5) Re[ f (z)] 常数;
(6) Im[ f (z)] 常数;
ln
2
i
sin
4
ln
2
令 k 0 得主值:
(k 0, 1, 2,)
(1 i)(1i)
2e
4
cos
4
ln
2
i
sin
4
ln
2 .
机动 目录 上页 下页 返回 结束
29
练习: 1.方程 1 e z 0 的全部解为
2.Im{ln(3 4i)}
3. 解方程 sinz i cos z 4i .
(C)若 u, v在区域 D 内满足柯西-黎曼方程,则 f (z) u iv 在 D 内解析
(D)若 f (z) 在区域 D 内解析,则 if (z)在 D 内也解析
机动 目录 上页 下页 返回 结束
25
1.设 是复数, 则( C )
(A)z 在复平面上处处解析(B) z 的模为 z (C) z一般是多值函数
证明 令g(z) f (z), 则z0 , z为下半平面的点时,
z0 , z为上半平面zz0
g(z) g(z0) z z0
lim
zz0
f (z) f (z0) z z0
lim(
z z0
f (z) f (z0)) z z0
f (z0 )
由上式知g(z) f (z))在z0可导,且g(z0 ) f (z0 ).
4
2. 幂和方根的计算
例2 将复数 z ( 2i )(1 i )7 化为三角形式, 1i 1i
并求 z6 , 3 z.
解 因为 z 2(cos( 3 ) i sin( 3 )), 所以
4
4
z6 ( 2)6(cos( 3 6) i sin( 3 6))
4
4
8i.
3 2k
3 2k
第一、二章习题
一、复数的计算
二、由方程(不等式)判断对应图形的性质 三、复变函数极限和连续判别 四、映射的像 五、 函数解析性相关性质 六、初等函数
机动 目录 上页 下页 返回 结束
1
复 球 面
扩 充
复 平 面
曲线 与区域
复数 复变函数
代 数 运 算
乘 幂 与 方 根
复 数 表 示 法
代数表示法 三角表示法 指数表示法
练习
1.导函数
f
(z)
u x
i
v x
在区域
D
内解析的
充要条件为
u , v 可微, x x
2u x 2
2v xy
,
2u yx
2v 2x
,
2. 设 f (z) x3 y3 ix2 y2 , 则 f ( 3 3 i) 27 27 i 22 4 4
机动 目录 上页 下页 返回 结束
23
3. 设 f (z) 1 z5 (1 i)z, 则方程 f (z) 0 的所有根为 5
e2iz 1
e2iz e2ki
z k.
(k 0, 1, 2,)
机动 目录 上页 下页 返回 结束
27
例11 求出(2) 2 的值.
解 (2) 2 e 2Ln(2)
e 2ln 2i(2k) e 2ln2{cos[ 2(2k 1)] i sin[ 2(2k 1)]}
(k 0, 1, 2,)
3 z ( 2)1/ 3[cos( 4
) i sin 4
]
3
3
k = 0, 1, 2
机动 目录 上页 下页 返回 结束
5
练习:
1
1. (1 3i)2 .
1
1
2. (16)4 . 3.(4 2 4 2i)3 .
答案:
( k 1 )i
1. 2(e 6 ) (k 0, 1)
1(i2ki )
2. 2e4
x
机动 目录 上页 下页 返回 结束
8
y
(b)
i O 1/2 x
-i
无界单连通域.
(c)
y
. -i
| z (1 i) | 1
-1 O
x
机动 目录 上页 下页 返回 结束
9
三、复变函数极限和连续判别
例4 设 z x iy ,试讨论下列函数的连续性:
f
(z)
x
2 xy 2y
2
,
0,
z0 z0
u(
x,
y)
1
k
2
,
y kx
随 k 值的变化而变化, 所以 lim u( x, y) 不存在, x x0 y y0
所 f (z)在复平面除去原点外连续,在原点处
以不连续.
机动 目录 上页 下页 返回 结束
11
四、映射的像
例5 函数 w 1 z 将 z 平面上的下列曲线变成 w平 面上的什么曲线?
81
9
机动 目录 上页 下页 返回 结束
12
(2) x 2. 解 因为 z x iy 2 iy
所以
w
1 z
1 2 iy
2 iy 4 y2
u iv
2
y
u
4
y2 ,
v 4
y2
因为
u2 v2
4 (4
y2 y2 )2
1 4 y2
u, 2
所以
u2 v2
u 2
0
u
1 4
2
v2
1 16
表示
w平面上以
1 4
,0
为圆心,1
4
为半径的圆.
机动 目录 上页 下页 返回 结束
13
五、 函数解析性相关性质
1 函数解析、可导的判别
例6 函数 f (z) ( x2 y2 x) i(2xy y2 ) 在何处
可导,何处解析.
解 u( x, y) x2 y2 x, ux 2x 1, uy 2 y;
机动 目录 上页 下页 返回 结束
28
例12 试求 (1 i)1i 函数值及其主值:

(1 i) e 1i
e (1i)Ln(1i)
(1i )ln
2
i
4
2k
e e ln
2
4
2 k
i
4
2
kln
2
ln 2 2k i 2kln 2
4 4
2e
2 k 4
cos
4
(k 0,1,2,3)
( 2k 1)i
3.2e 3 4 (k 0,1,2).
机动 目录 上页 下页 返回 结束
6
练习:
求 1 z z2 0 的根.
设复数
那么 z
z 满足arg(z
( A)
2)
3
,arg(z
2)
5
6
,
(A) 1 3i
(C)
1 2
3i 2
(B)
3 1i 22
(D) 3 i
(D)若f (z)与 f (z) 在 D内解析,则 f (z)在 D内是一常数
3.设 f (z) u iv 在区域 D 内是解析的,如果 u v 是实常数,那么f (z)在 D 内( 为常函数 )
机动 目录 上页 下页 返回 结束
22
3 解析函数的导数
f (z) u i v 1 u v . x x i y y
解 因为 z0 0时, 2 xy
u( x, y) x2 y2 ,
v( x, y) 0.
机动 目录 上页 下页 返回 结束
10
u( x, y)和v( x, y)均在( x0 , y0 )处连续,
所以f (z) 在z0 处连续.
z0 = 0时,当 z 沿直线 y kx 趋于零时,
2k
lim
x0
(7) arg f (z) 常数.
(8) au bv c,其中a, b, c是不全为零的实常数 .
机动 目录 上页 下页 返回 结束
17
例8 证明: 已知 f (z) 在 D 内解析,如果在 D 内 arg f (z) = 常数, 则 f (z) 取常值.
证 分两种情况讨论
(1) u = 0时,
20
所以
u u v v 0. x y x y
u, v 均为常数, 故 f (z) 为常数.
练习 1.如果 f (z)在单位圆 z 1内处处为零,且 f (0) 1,那么在 z 1内 f (z) ( C )
(A) 0 (B) 1 (C) 1 (D)任意常数
机动 目录 上页 下页 返回 结束
v y
0
由此可知或者u = v = 0, 从而f (z)为一常数.
机动 目录 上页 下页 返回 结束
19
或者
u v
x u
x v
0
y
y
又f (z)在 D 内解析, 所以满足柯西 – 黎曼方程:
相关文档
最新文档