用ADS软件进行滤波器的设计

合集下载

《ADS设计滤波器》课件

《ADS设计滤波器》课件

重新仿真
进行二次仿真以验证调整后的电 路性能ຫໍສະໝຸດ ADS设计滤波器的注意事项
元器件的选择要合理
根据设计需求选择适合的元器件
仿真设置要正确
准确设置仿真参数,以获取准确的仿真结 果
连接要准确
确保元器件之间的连接正确无误
调整参数要谨慎
在调整元器件参数时要小心谨慎,避免影 响整体电路性能
ADS设计滤波器的示例
2 高通滤波器 4 带阻滤波器
ADS设计滤波器的流程
1
新建Schematic
创建电路原理图
选择合适的元器件
2
根据设计需求选择合适的电子元
器件
3
连接元器件
将元器件正确连接成电路
添加控制器和仿真设置
4
配置控制器以及设置仿真参数
5
进行仿真
运行仿真并观察电路性能
调整元器件参数
6
根据仿真结果调整元器件参数
7
低通滤波器的设计
设计一个低通滤波器来滤除 高频噪声
带通滤波器的设计
设计一个带通滤波器来提取 特定频率范围内的信号
带阻滤波器的设计
设计一个带阻滤波器来抑制 特定频率范围内的信号
总结
1 ADS是RF、微波电路设计的重要工具 2 滤波器在通信、雷达等领域有广泛应用 3 ADS设计滤波器要注意元器件的选择和仿真设置的正确处理
《ADS设计滤波器》PPT 课件
# ADS设计滤波器
什么是ADS?
ADS是高级设计系统(Advanced Design System)的简称,用于RF、微波电路的 设计和仿真。
滤波器的作用
1 抑制不需要的信号,保留有用信号 2 在通信、雷达等领域有广泛应用

ADS低通滤波器设计PPT课件

ADS低通滤波器设计PPT课件

滤波器原理图设计-----画微带线原理图
MLIN选项在左边Palette的TLines-Microstrip中
滤波器原理图设计-----电路参数设置
添加MSUB控件,双击添加参数 H:基板厚度(1.58mm) Er:基板相对介电常数(4.2) Mur:相对磁导率(1) Coud:金属电导率(5.88e7) Hu:封装高度(1.0e33mm) T:金属层厚度(0.035mm) TanD:损耗角正切(0.02) Rough:表面粗糙度(0mm)
滤波器原理图设计-----最终电路图
滤波器原理图设计-----优化仿真
点击优化图标 ,进行优化 稍待片刻即可查看效果
滤波器原理图设计-----优化仿真
然后点击update design 最终参数:
w0 = 2.77887 w1 = 12.6961 w2 = 424.403e-03 w3 = 10.1017 w4 = 475.833e-03 w5 = 10.12 w6 = 358.642e-03
点击 ,设置为
微带滤波器版图生成-----EM仿真
点击simulate,静待几分钟仿真出来的传输特性 出现这个是license的问题,去/thread-471722-1-1.html下载补丁
微带滤波器版图生成-----EM仿真
结论
观察得之滤波器在通带内(0~2.5GHz)插入损耗小于3.439dB,在4~5GHz之间大于28.096dB,满足设计要求
7
0.517
120
12.3
0.391252
2.45949
8
1
50
90
3.11445
16.7722
滤波器原理图设计-----添加变量
用LineCalc计算八段微带线的长和宽后我们要将各个数据添加到变量控件VAR中。 选择Insert->VAR在原理图中添加VAR然后双击,在“Name”文本框中输入变量的名称,“Variable Value”文本框中输入变量的初值,单机【ADD】添加变量 然后单击【Tune/Opt/Stat/Doe..】按钮打开参数优化对话框设置变量的取值范围,选择“Optimation”标签页。其中,“Enable/Disabled”表示该变量是否能被优化,“Minimum Value”表示可优化的最小值,“Maximum Value”表示可优化的最大值

基于ADS和HFSS低通滤波器设计与仿真

基于ADS和HFSS低通滤波器设计与仿真
基于ADS和HFSS软件的低通滤波器 设计与仿真
低通滤波器设计指标:
具有最平坦响应 截止频率fc=3.0GHz 在f=4GHz处,插入损耗IL(S21)<-15dB 在通带内(0-3GHz),回波损耗S11≤-15dB 输入输出阻抗为50Ω,采用6阶巴特沃斯低通原型 采用FR4板材,板厚1.58mm,介电常数εr=4.4,损耗角
XY Plot 2
LPF-Original
0.00
m1 Curve Info
m2
dB(S(2,1))
Setup1 : Sw eep -5.00
Name X Y
从图中可以得到,滤波器
-10.00
m1 2.7400 -1.5064
m2 3.0000 -4.0389
-15.00
m3 4.0000 -20.0776
从图中可以得到,滤波器在
3.0GHz就开始截止了,达到设计指 标 , 在 4GHz 处 , S21=-12.139dB 符 合设计要求。
综上所述,该滤波器已经完全达到设计指标,此时各节微带线 长度与宽度如下表所示:
节数 1 2 3 4 5 6 7 8
W(mm) 3.41 12.74 0.34 10.60 0.50 9.84 0.30 3.41
θ(°) 90 11.8 33.8 44.3 46.1 32.4 12.3 90
W(mm) 3.01 11.05 0.36 11.05 0.36 11.05 0.36 3.01
L(mm) 16.45 2.02 6.64 7.58 9.05 5.54 2.42 16.45
ADS仿真:
根据设计计算得到的微带线尺寸在ADS构建低通滤波器电路如下:
将搭建好的低通滤波器电路运行仿真得到数据: 从图中可以看到,S11和S22小于-15dB带宽范围为0-1.8GHz,远没有 达到设计指标。

ads波导腔体滤波器设计

ads波导腔体滤波器设计

ads波导腔体滤波器设计
ADS软件可以用于波导腔体滤波器的设计。

下面简单介绍一下设计过程:
1. 确定滤波器的参数,包括中心频率、通带带宽、阻带带宽和衰减。

2. 在ADS软件中新建一个“layout”工程,在其中选择一个合适的波导宽度。

3. 将波导布满整个布局区域,并在中央添加两个矩形缺口,调整宽度和长度以达到带宽要求。

4. 运用仿真和优化工具进行电磁仿真和优化。

如果需要更精细的仿真结果,可以引入三维电磁仿真软件。

5. 通过布局编辑器进行布局优化和参数调整,如增加爬行线和扇形盖板、调整缺口形状等。

6. 通过ADS软件的“加工输出”功能将布局数据输出到CNC机器进行加工。

7. 完成加工后,进行测试和调试。

如果滤波器不满足要求,可以返回到步骤3到步骤6进行优化。

以上是波导腔体滤波器设计的基本流程,当然具体细节还需要根据具体情况进行调整。

在设计过程中,需要注意滤波器的可制造性和可靠性。

同时,在设计过程中要注意避免过度优化导致生产成本过高。

ads低通滤波器的设计与仿真

ads低通滤波器的设计与仿真

利用ADS自带的集总方式得出切雪夫 低通滤波器的阶数如下图:
可得阶数为n=11
之后直接利用集总生成切比雪夫滤波器, 然后用如下图的功能把切比雪夫滤波器中的 电感、电容转换为微带线。
转换过程中把电介质设为2.2,基板厚度设为 0.8mm(这里使用的是已经验证可用)。把转 换完的11阶微带电路复制到另一个新建设计 面页,连成如下图所示,并连成如下电路,
设计指标
❖ 截止频率:1.1GHz; ❖ 带内波纹:<0.2dB; ❖ 在阻带频率1.21GHz处,阻带衰减>25dB; ❖ 输入输出阻抗:50Ω。
设计方案
利用之前计算的切比雪夫滤波器原型的 阶数n=9连接电路图,并用ADS自带的微带 计算器计算长宽,结果在优化是始终没办法 使带内波纹小于0.2dB,经过查找资料后以 及上论坛交流。又换成使用椭圆函数滤波器, 结果调出来的波形能达到指标,但波形会形 成带阻波形,只能在一定范围内低通。之后 使用ADS的集总功能自动计算切比雪夫滤波 器要达到指标的阶数为11,经过调试后可用。
参数、变量什么的都设完后自动优化加手动 都达不到理想波形,通过讨论后加上T型接 头才能调出理想波形。
图形改为如下所示,设计变量参数、微 带参数和S参数
设置变量参数如 右图所示
设置如右图 中的控件 MSUB微带 线参数
设置S参数中 扫描的频率范 围和步长如右 图
设置完成后即可单 击工具栏上的simulate按 钮或是点击simulate→simulate,当仿真结束 后,系统会自动弹出一个数据显示窗口,在 数据显示窗口中插入一 个S21参数的矩形图 图形如下
显然波形还达不到指标要求,设置如下自 动优化参数并自动优化
优化后若还不够符合指标,则 把优化的数据填入变量中,继续进 行优化直到达到指标。图形如下

ADS教程第6章

ADS教程第6章

ADS教程第6章实验六、滤波器:设计指导、瞬态和矩量法仿真概述这节将说明在ADS中创建滤波器和使⽤瞬态仿真器的基本操作。

设计指导是⽤来构建⼀个集总元件滤波器,矩量法(Momentum)是⽤来测试微带滤波器。

任务●运⽤设计指导构建⼀个200MHz中频低通集总参数滤波器●构建⼀个1.9GHz射频带通微带滤波器●在微带滤波器中完成瞬态分析●⽤矩量法(Momentum)仿真微带滤波器●选学——DAC(数据通路元件)练习⽬录1.改变项⽬,开始运⾏设计指导 (96)2.放⼊⼀个LPF(低通滤波器)Smart元件并设计滤波器 (97)3. 1.9GHz微带带通滤波器 (99)4.在微带滤波器中的瞬态分析 (101)5.在电路版图(layout)中进⾏矩量法(Momentum)仿真 (104)6.选作:数据通路元件(Data Access Component)的阻抗响应 (110)步骤1.改变项⽬开始运⾏设计指导。

以下步骤将说明⼀个设计指导怎样既快速⼜准确地⽣产⼀个滤波器。

其⽅法与E-syn类似,但对期望的响应和拓扑结构有更多的选择和更强的控制。

a.进⼊ADS主窗⼝,然后点击File>open Project。

b.如果你被提⽰保存所有你当前的⽂档,选择Y es to All,然后打开你先前的任务system_prj。

c.新建⼀名为filter_lpf的原理图。

d.确认该原理图是当前你的屏幕上唯⼀打开的原理图。

现在我们将通过以下三个步骤开始该过程。

●点击命令DesignGuide >Filter。

●出现对话框后,选择Filter Control Window并点击OK。

然后找到新窗⼝Filter DesignGuide。

在下⼀步,你从⾯板放⼊⼀个smart元件之后该窗⼝将被激活。

在滤波器设计指导控制窗⼝中点击Component Palette —All图标(如xia下图所⽰)。

在你的原理图窗⼝中会⽴即出现元件⾯板。

ADS微带滤波器设计方法课件

ADS微带滤波器设计方法课件

进行参数优化
通过调整滤波器参数,如电感、 电容、长度、宽度等,对滤波 器性能进行优化。
进行仿真验证
通过仿真软件对所设计的滤波 器进行性能验证,确保满足设 计要求。
03
ADS微带滤波器设计实践
建立设计工程
确定设计目标
明确滤波器的性能指标,如通带范围、 阻带范围、插入损耗等。
选择合适的微带线结构
设定工作频率和介质参数
根据设计目标和工作频率,设定合适 的介质参数,如厚度、相对介电常数 等。
根据设计需求,选择合适的微带线结 构,如平行耦合线、发卡型等。
参数设置与优化
01
02
03
调整耦合系数
通过调整微带线间的距离、 宽度等参数,优化耦合系 数,以实现理想的滤波器 性能。
优化谐振器长度
调整谐振器的长度,以实 现所需的频率响应。
02
ADS微带滤波器设计基础
微带线理论
微带线定义
01
微带线是一种传输线,它由一个介质基片上的一条金属导带和
两条金属接地边构成。
微带线特性
02
微带线具有低阻抗、高共模抑制比、低辐射等特性,广泛应用
于微波和毫米波频段的电路设计中。
微带线传输模式
03
微带线主要传输准TEM模,即电场和磁场分量在传输方向上为
ADS软件介绍
ADS(Advanced Design System) 是一款微波电路和系统设计软件,由 美国安捷伦公司开发,提供了从电路 设计、仿真、版图绘制到系统仿真的 全流程解决方案。
ADS软件具有友好的用户界面和强大 的功能模块,支持多种设计工具和第 三方软件接口,广泛应用于通信、雷 达、电子战等领域的电路和系统设计。
05

基于ADS的小型化切比雪夫带通滤波器的设计

基于ADS的小型化切比雪夫带通滤波器的设计

前端加装一个放大器装置遥 而在信号进入到放大器之前需要对信号进行滤波遥 切比雪夫带通滤波器具有很好的性能袁能够通过对
信号进行滤波袁得到较为理想的信号遥 本文采用 ADS 射频电路仿真软件对电路进行设计遥
关键词院ADS曰滤波器曰射频电路
中图分类号院TN915
文献标识码院A
文章编号院2096-4390渊2021冤20-0147-02
表 1 各级元件值
LAR=3dB
N
g1
g2
g3
g4
g5
g6
5
3.4817
0.7618
4.5381
0.7618
3.4817
1.0
根据式子 渊 5冤渊 6冤渊 7冤渊 8冤 计算各级元件值对应的原型器件 值遥 得到的值如表 2 所示遥
表 2 各级元件原型器件值
低通原型值
g1
3.4817
g2
0.7618
g3
[4]Shifei Ding,Weixin Bian,Tongfeng Sun,Yu Xue.Fingerprint enhancement rooted in the spectra diffusion by the aid of the
2D adaptive Chebyshev band -pass filter with orientation selective[J].Information Sciences,2017,415-416. [5]戚楠,张睿奇,李胜先.微波带通滤波器直接综合方法[J].空间电 子技术,2017,14(04):7-10.
K
1 S11 2 2
S11S22
S22 2 S12 S21 S12S21
2

ADS滤波器设计

ADS滤波器设计

ADS滤波器设计实验一设计一个满足如下条件的耦合微带线带通滤波器:中心频率f0:2.45GHz,上下边频与中心频率的差值△ f:±50MHz,当f=f0时,li≤-1.5dB;当f=f0±300MHz时,li≥-30dB,微带线介质层厚度h:1mm;介质层介电常数:2.65,输入输出阻抗Zin,Zout均为:50Ω。

要求 1、提供设计原理(即耦合微带线滤波器的设计原理)2、具体的设计过程(用ADS软件分别仿真原理级电路和Layout 板级电路)3、提供两种电路的仿真结果并比较(S11 和 S21)4、设计结果的分析与误差解释5、提供一个包含上述 1-4 要求的 word 文档,并提供 ADS 的耦合微带滤波器设计源文件滤波器是用来分离不同频率信号的一种器件。

它的主要作用是抑制不需要的信号,使其不能通过滤波器,只让需要的信号通过。

在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。

微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。

平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。

一、设计原理:耦合微带线:当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。

根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。

每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。

级连耦合微带线:由于单个耦合微带线滤波器不能提供良好的滤波器响应及陡峭的通带-阻带过渡。

然而可以通过级连这些基本单元最终得到高性能的滤波器,如图1图1集总参数滤波器设计:先计算带通滤波器归一化频率Ω=f0fℎ−fl ·(ff0+f0f),这样就把带通滤波器设计问题转化为低通滤波器设计问题(都是在归一化频率下进行设计),根据需要选择滤波器种类和阶数,查表可得归一化参数g0,g1,g2……gN,gN+1.将集总参数滤波器转化为耦合微带线滤波器:1、先根据上下边频fl和fh,以及中心频率f0=(fl+fh)/2,确定滤波器带宽:BW=(fh-fl)/f02、根据带宽指标计算下列参数:3、利用上述参数计算耦合微带线奇模偶模特性阻抗Z0o丨i,i+1=Z0[1-Z0Ji,i+1+ (Z0 Ji,i+1)²]Z0e丨i,i+1 = Z0[1+Z0Ji,i+1+ (Z0 Ji,i+1)²]4、计算完奇模偶模特征阻抗后利用ADS的微带线计算器即可计算出微带线几何尺寸W,S,L。

基于ADS的平行耦合微带线带通滤波器的设计

基于ADS的平行耦合微带线带通滤波器的设计

基于ADS的平⾏耦合微带线带通滤波器的设计基于ADS的平⾏耦合微带线带通滤波器的设计摘要:本⽂介绍了平⾏耦合微带线带通滤波器的电路结构,阐述了设计带通滤波器的⽅法,最后给出了相对带宽为10%的滤波器设计的实例及仿真分析结果,证明了该⽅法的可⾏性和便捷性。

关键词: ADS; 微带线;带通滤波器;优化0 引⾔微带滤波器具有⼩型化、⾼性能、低成本等优点,在射频电路系统设计中得到⼴泛的应⽤。

其主要技术指标包括传输特性的插⼊损耗及回波损耗,通带内的相移与群时延,寄⽣通带等参数。

传统的设计⽅法是通过经验公式和查表来求得相关参数,⽅法繁琐且精度不⾼。

近年来,随着射频CAD软件的不断发展,微带滤波器的设计也进⼊了⼀个全新的阶段。

借助CAD软件可以避开复杂的理论计算,进⼀步精确和调整设计参数,确保设计出的滤波器特性符合技术要求。

本⽂通过ADS软件对平⾏耦合微带线带通滤波器进⾏优化仿真设计,证明了该⽅法的可⾏性和便捷性。

1微带带通滤波器的理论设计⽅法1.1 微带带通滤波器主要指标和基本设计思想微带滤波器的主要技术指标包括以下⼏个:(1) 通带边界频率与通带内衰减、起伏, 以及阻带边界频率与阻带衰减;(2) 通带的输⼊电压驻波⽐;(3) 通带内的相移与群时延;(4) 寄⽣通带, 它是由于分布参数传输线的周期性频率特性引起的, 即离设计通带⼀定处⼜产⽣了通带。

微波带通滤波器应⽤⼴泛, 结构多样, 但以微带线实现带通滤波器的结构种类有限, 为此,本⽂以平⾏耦合微带线为例来设计微带带通滤波器。

由于单个带通滤波器单元不能提供良好的滤波响应及陡峭的通带- 阻带过渡, ⽽通过级连基本的带通滤波器单元则可以得到⾼性能的滤波效果。

图1所⽰是⼀种多节耦合微带线带通滤波器的结构⽰意图, 这种结构不要求对地连接, 因⽽结构简单, 易于实现, 这是⼀种应⽤⼴泛的滤波器。

整个电路可以印制在很薄(⼩于1mm) 的介质基⽚上;其纵向尺⼨虽和⼯作波长可以⽐拟, 但采⽤⾼介电常数的介质基⽚则可使线上的波长⽐⾃由空间缩⼩⼏倍; 此外, 整个微带电路元件共⽤⼀个接地板, 且只需由导体带条构成电路图形, 因⽽结构⼤为紧凑, ⼤⼤减⼩了其体积和重量。

基于ADS的声表滤波器匹配电路设计分析

基于ADS的声表滤波器匹配电路设计分析

基于ADS的声表滤波器匹配电路设计分析摘要:为进一步提高声表滤波器装置在射频电路实际使用中的性能,不仅要对声表滤波器装置本身进行性能优化处理,同时,其他部分的外部电路同样十分重要,需要保证阻抗匹配可以达到标准水平。

本文以上述内容为核心,针对声表滤波器装置实际使用性能的发挥展开研究,分析在射频电路中的具体应用情况,总结相关经验并归纳出部分常用声表滤波器装置在常规射频电路中的常见阻抗匹配方式,同时也给出两种新的在射频电路中不平衡转平衡状态下的阻抗匹配设定建议,并对二者进行ADS仿真测试,经仿真测试分析后,可证明这两种方法可以有效提升滤波器装置在电路中的使用性能,进而为整个电路提供良好的性能优化保障作用。

关键词:射频电路;声表滤波器;阻抗匹配;ADS前言:新时期背景下,现有移动通信技术领域的发展速度不断加快,声表滤波器装置的应用范围也在不断扩展,在系统应用程度不断加深的情况下,声表滤波器装置的实际使用性能也在面临着更高级别的要求。

但是,关于射频电路实际运行中的应用,还需要对使用性能做出充分考量,为此,设计者一般会将声表滤波器装置设计成多种不同的形式,所以,可将声表滤波器装置视为一个单独的网络,与其相对应的则是输入与输出两个不同端口,在将其应用到实际电路中以后,声表滤波器装置便需要与外部其他电路进行直接连接和阻抗匹配,通过这种方式保证电路使用性能可以达到期望水平。

1 声表滤波器概述目前,声表面波(SAW)滤波器装置在2G接收机设备的前端或者双工器设备和接收滤波器设备中的应用十分常见。

其中,SAW滤波器装置自身具有低插入损耗优势和突出的抑制性能,在实际使用过程中不仅能够达到带宽标准,同时其自身体积与传统类型的腔体结构或者陶瓷滤波器装置对比更小,具有突出优势。

因此,SAW滤波器可以被布设在晶圆上,在这样的条件下,能够有效降低成本,并执行批量生产[1]。

此外,SAW技术还能够支持各种不同频段的专业滤波器或者双工器进行整合处理,布设在单一芯片内,这样的布设优势仅需少量或者根本不需其他的额外工艺即可实现设计目标,在保证使用效果的前提下,具有量多使用优势。

基于HFSS与ADS的微波滤波器设计及仿真

基于HFSS与ADS的微波滤波器设计及仿真

基于HFSS与ADS的微波滤波器设计及仿真抽头式交指线微波滤波器具有较多优良特性:结构紧凑、结实,可靠性好;谐振器间的间隔较大,对加工精度要求不高;一般在没有电容加载情况下,谐振杆的长度近似为&lambda;0/4,第二通带的中心在3&omega;0 上,也有较好的阻带特性;另外,在&omega;=0 和&omega;=&omega;0 的偶数倍上,具有高次衰减极点,因而阻带衰减和截止率都比较大;既可以作为印刷电路形式,又可以用较粗的杆作成自行支撑,而不用介质。

基于上述,交指型滤波器的谐振器既可用矩形杆,也可用圆杆实现。

下面给出利用矩形杆的微波滤波器的设计实例。

经过多位高工的研讨,本微波实训平台设计的滤波器主要是针对前级的天线而来的,即要实现最后的级联。

所以有必要阐述下前级的天线的具体规格:设计的天线是在2.36GHz 附近工作,而我在这里设计的滤波器目的是针对移动通信设计,所要求带宽较窄,令带宽在50MHz 左右,符合天线能提供的范围。

滤波器使用的基板参数还是&epsilon;&gamma;=9.6,H=1.27mm,此时基板上传输线的阻抗50W.根据实训教学的需要及制作成本等因素,确定如下参数:中心频率f0=2.36GHz;带宽为&Delta; f = 5 0 M H z ~ 7 0 M H z ( 计算按50MHz);带内插损Lp&le;3dB;带内驻波&rho;&le;2;带外抑制在f0&plusmn;0.05GHz 处Ls&ge;20dB;体积要求V&le;20 乘以30 乘以100(mm3)输入输出方式SMB.参考上述的指标,采用交指线滤波器设计。

滤波器设计过程中,首先利用等效电路法给出滤波器抽头单元和内部结构的初值,利用HFSS 仿真软件对抽头单元进行精确分析,并进行滤波器结构性的建模,然后结合ADS,利用Passive circuit DG-filters 模型中的interdigita 进行曲线仿真。

写一篇用ads进行微波射频滤波器设计与仿真的实验心得100字

写一篇用ads进行微波射频滤波器设计与仿真的实验心得100字

写一篇用ads进行微波射频滤波器设计与仿真的实验心得
100字
作为一名电子工程师,我经常使用ADS(Advanced Design System)软件进行微波射频滤波器的设计与仿真。

在此,我想分享我的实验心得。

实验目的在于设计并验证一个微波射频滤波器,以满足现代通信系统的需求。

ADS软件具有强大的微波电路设计和仿真功能,为我们提供了便捷的工具。

首先,在ADS中,我们选择合适的滤波器类型(如Butterworth、Chebyshev等),并根据设计指标设置滤波器的频率响应参数。

接下来,利用ADS内置的微带线模型和射频器件库,构建滤波器的电路结构。

在仿真阶段,我们通过调整滤波器的参数,观察其对频率响应、传输特性等性能指标的影响。

根据仿真结果,优化滤波器的设计,直至满足预设指标。

实验过程中,我深刻体会到ADS软件在微波射频滤波器设计中的优势。

通过仿真,我们能快速评估滤波器设计的可行性,并有效提高设计效率。

同时,实验也提醒我要不断学习和掌握ADS的新功能,以便更好地应对实际工程需求。

总之,运用ADS进行微波射频滤波器设计与仿真,不仅提高了我的技术水平,还使我深刻认识到软件在现代通信技术发展中的重要性。

基于ADS的微带线带通滤波器设计

基于ADS的微带线带通滤波器设计

项目名称:基于ADS优化的微带带通滤波器设计一、实验目的(1) 了解低通滤波器、带通滤波器、高通滤波器等滤波器原理(2) 利用ADS2008软件设计,以切比雪夫滤波器为原型,设计一种微带线带通滤波器。

二、实验设备(1) PC机一台;(2) ADS2008软件;三、实验内容和要求(1) 设计一个微带线带通滤波器,以切比雪夫低通滤波器为原型;(2) 中心频率:2G+学号*50MHz;(2G+10*50MHz=2.5GHz)(3) 相对带宽:8%;(2.5GHz*8%=200MHz)四、实验原理1.滤波器原理滤波器的基础是谐振电路,它是一个二端口网络,对通带内频率信号呈现匹配传输,对阻带频率信号失配而进行发射衰减,从而实现信号频谱过滤功能。

典型的频率响应包括低通、高通、带通和带阻特性。

镜像参量法和插入损耗法是设计集总元件滤波器常用的方法。

对于微波应用,这种设计通常必须变更到由传输线段组成的分布元件。

Richard变换和Kuroda恒等关系提供了这个手段。

2.微带线微带线(microstrip1ine)是现在混合微波集成电路和单片微波集成电路使用最频繁的一种平面传输线。

它可用光科程序制作,且容易与其他无源微波电路和有源微波器件集成,从而实现微波部件和系统的集成化。

微带线是在金属化厚度为h的介质基片的一面制作宽度为W,厚度为t的导体带,另一面作接地金属平板而构成的。

3.耦合微带线当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称为耦合传输线。

耦合微带传输线由靠得很近的3个导体构成。

这种结构介质厚度为d,介质相对介电常数为η,,在介质的下面为公共导体接地板,在介质的上面为2个宽度为W、相距为S的中心导体带。

五、实验步骤与结果1.设定滤波器指标中心频率:2.5GHz通带带宽:200MHz(2.4~2.6GHz)输入输出的阻抗:50Ω插入损耗:小于2dB阻带衰减:在距离中心频率300MHz处的衰减大于50dB相对带宽:8%(表示信号带宽为0.2GHz)带内输入输出端口反射系数:小于-15dB2.滤波器选用与微带线的计算0.5dB切比雪夫滤波器,5阶。

基于ads的带阻滤波器设计

基于ads的带阻滤波器设计

电磁波与微波技术课程设计----带阻滤波器的设计与仿真课题:带阻滤波器的设计与仿真指导老师:姓名:学号:目录1.设计要求 (3)2.微带短截线带阻滤波器的理论基础 (3)2.1理查德变换 (4)2.2科洛达规则 (6)3.设计步骤 (7)3.1ADS 简介 (7)3.2初步设计过程 (8)3.3优化设计过程 (14)3.4对比结果 (17)4.心得体会 (17)5.参考文献 (18)1.课程设计要求:1.1 设计题目:带阻滤波器的设计与仿真。

1.2设计方式:分组课外利用ads软件进行设计。

1.3设计时间:第一周至第十七周。

1.4 带阻滤波器中心频率:6GHz;相对带宽:9%;带内波纹:<0.2dB。

1.5 滤波器阻带衰减>25dB;在频率5.5GHz和6.5GHz处,衰减<3dB;输入输出阻抗:50Ω。

2.微带短截线带阻滤波器的理论基础当频率不高时,滤波器主要是由集总元件电感和电容构成,但当频率高于500Mz时,滤波器通常由分布参数元件构成,这是由于两个原因造成的,其一是频率高时电感和电容应选的元件值小,由于寄生参数的影响,如此小的电感和电容已经不能再使用集总参数元件;其二是此时工作波长与滤波器元件的物理尺寸相近,滤波器元件之间的距离不可忽视,需要考虑分布参数效应。

我们这次设计采用短截线方法,将集总元件滤波器变换为分布参数滤波器,其中理查德变换用于将集总元件变换为传输段,科洛达规则可以将各滤波器元件分隔。

2.1 理查德变换通过理查德变换,可以将集总元件的电感和电容用一段终端短路和终端开路的传输线等效。

终端短路和终端开路传输线的输入阻抗具有纯电抗性,利用传输线的这一特性,可以实现集总元件到分布参数元件的变换。

在传输线理论中,终端短路传输线的输入阻抗为:= (1.0)式中当传输线的长度= 时(1.1)将式(1.1)代入式(1.1),可以得到(1.2)式中(1.3)称为归一化频率。

终端短路的一段传输线可以等效为集总元件电感,等效关系为(1.4)式中S = j(1.5)称为理查德变换。

ads滤波器仿真实验报告_图文

ads滤波器仿真实验报告_图文

一.滤波器的基本原理滤波器的基础是谐振电路,它是一个二端口网络,对通带内频率信号呈现匹配传输,对阻带频率信号失配而进行发射衰减,从而实现信号频谱过滤功能。

典型的频率响应包括低通、高通、带通和带阻特性。

镜像参量法和插入损耗法是设计集总元件滤波器常用的方法。

对于微波应用,这种设计通常必须变更到由传输线段组成的分布元件。

Richard变换和Kuroda恒等关系提供了这个手段。

dB;在该式在滤波器中,通常采用工作衰减来描述滤波器的衰减特性,即L A=10lg P inP L中,P in和P L分别为输出端匹配负载时的滤波器输入功率和负载吸收功率。

为了描述衰减特性与频率的相关性,通常使用数学多项式逼近方法来描述滤波器特性,如巴特沃兹、切比雪夫、椭圆函数型、高斯多项式等。

滤波器设计通常需要由衰减特性综合出滤波器低通原型,再将原型低通滤波器转换到要求设计的低通、高通、带通、带阻滤波器,最后用集总参数或分布参数元件实现所设计的滤波器。

滤波器低通原型为电感电容网络。

其中,元件数和元件参数只与通带结束频率、衰减和阻带起始频率、衰减有关。

设计中都采用表格而不用繁杂的计算公式。

表1-1列出了巴特沃兹滤表1-1 巴特沃兹滤波器低通原型元器件值实际设计中,首先需要确定滤波器的阶数,这通常由滤波器阻带某一频率处给定的插入损耗制约。

图1-1所示为最平坦滤波器原型衰减与归一化频率的关系曲线。

图1.1 最大平坦滤波器原型的衰减与归一化频率的关系曲线二、S参量的描述高频S参量和T参量用于表征射频/微波频段二端口网络(或N端口网络)的特性。

基于波的概念,它们为在射频/微波频段分析、测试二端口网络,提供了完整的描述。

由于电磁场方程和大多数微波网络和微波元件的线性,散射波的幅值(即反射波和透射波的幅值)是与入射波的幅值呈线性关系的。

描述该线性关系的矩阵称为“散射矩阵”或S矩阵。

低频网络参量(如Z、Y矩阵等)是以各端口上的净(或总)电压和电流来定义的,而这些概念在射频/微波频段已不切实际,需重新寻找能描述波的叠加的参量来定义网络参量。

基于ads的平行耦合微带线带通滤波器的设计及优化

基于ads的平行耦合微带线带通滤波器的设计及优化

基于ads的平行耦合微带线带通滤波器的设计及优化平行耦合微带线带通滤波器是一种常用的微波滤波器。

它由多个耦合微带线和微带线构成,具有较好的带通特性和较小的插入损耗。

设计和优化这种滤波器通常采用ADS软件,下面分为两个部分进行详细解释。

1.设计部分(1)确定滤波器参数首先需要确定滤波器的工作频率范围、中心频率、通带和阻带带宽等参数。

这些参数可以根据具体应用需求进行确定。

(2)选择线路结构根据确定的滤波器参数,选择合适的线路结构。

常用的线路结构有串联、平行、串平联和并联等,平行耦合结构是实现带通滤波器较为常用的一种。

(3)确定线路尺寸确定线路结构后,需要根据工作频率、介质常数和板厚等参数,计算出每条线路的宽度和长度。

这里需要考虑线路的带宽和损耗等因素,通常采用求解电磁场分布的方法进行计算。

(4)设计耦合结构在平行耦合结构中,需要设计合适的耦合结构来实现合适的耦合强度。

常用的耦合结构有传输线耦合、缝隙耦合、开放环耦合等。

(5)确定滤波器连接方式根据线路结构和耦合结构的设计,确定滤波器的连接方式和序列。

这里需要考虑滤波器的带宽和衰减等因素。

2.优化部分滤波器的优化常常包括两个方面:性能优化和制造优化。

(1)性能优化针对滤波器的频率响应、损耗和抑制等性能,可以采用ADS软件提供的优化工具进行优化。

这里可以采用基于突变搜索和梯度搜索的不同优化算法,以达到滤波器尽可能优化的目的。

(2)制造优化制造优化主要是针对滤波器的制造工艺和工艺容差进行优化,以达到成本和生产效率方面的优化。

通常还需要考虑滤波器的布局、线宽度和间距等制造要素。

在整个设计和优化的过程中,需要进行仿真和测试,以验证滤波器的性能和有效性。

同时,需要充分考虑不同要素的交互影响和优化目标的平衡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工作。
Company Logo
思考题
• 如果测试中发现滤波器通带的中心频率偏高50MHz,则应
当增加还是减小耦合线节的长度,才能使通带移到正确的
频率?
• 信号通过滤波器时产生的衰减可能来自哪几个方面?
Company Logo
• 根据软件设计的结果绘制电路版图,进行版图的仿
真。
Company Logo
ADS软件
• 射频和微波EDA软件工具:Agilent •
公司ADS;Ansoft 公司 HFSS、Designer;Microwave Office; Ansoft Serenade; CST等等。 ADS–(Advanced Design System),包含时域电路仿真 (SPICE -like Simulation)、频域电路仿真 (Harmonic Balance、 Linear Analysis)、三维电磁仿真 (EM Simulation)、通信系 统仿真(Communication System Simulation)和数字信号处理 仿真设计(DSP);支持射频和系统设计工程师开发所有类型 的 RF设计。 设计,DSP 设计和向量仿真。
Company Logo
微带滤波器设计的基本原理
微带滤波器的技术指标包括
• 通带边界频率与通带内衰减和起伏 • 阻带边界频率与阻带衰减 • 通带的输入电压驻波比 • 通带内相移与群时延 • 寄生通带
Company Logo
微带滤波器设计的基本原理
• 边缘耦合的平行耦合线由两条相互平行且靠近的微带线构成。根 •
无源器件的设计及实现-软件仿真
----微波滤波器的设计
Company Logo
实验目的
• 了解微波滤波电路的原理及设计方法。
• 学习使用ADS软件进行微波电路的设计,优化,
仿真。
• 掌握微带滤波器的设计。
Company Logo
实验内容
• 使用ADS软件设计一个微带带通滤波器,并对其参
数进行优化、仿真。
Company Logo
ADS使用小结
• 以上介绍了使用ADS进行微带电路设计的一些基本方 • 在优化仿真过程中,要明确物理概念,避免无意义的 • ADS软件的功能十分强大,应用很广,这里我们只介
绍了其中很少的一部分,如果对其他功能感兴趣的话, 可以看看它的Example Prpject,这样会对它的应 用有更全面的了解。 法,在实际使用软件时还会遇到各种具体的问题,多 看Help是最好的解决方法。
Company Logo
实验理论计算
利用ADS自带的微带线计算工具LineCalc计算得到微带线 的几何尺寸W、S、L。
Company Logo
实验步骤
1 、启动ADS,新建一个 Project,长度单位用默认的 mm。
Company Logo
实验步骤
2、在打开的原理图中按照计算出来的参数连接电路 3、采用Optim进行优化,优化各耦合微带线的参数。
Company Logo
微带滤波器设计的基本原理
级联微带带通滤波电路的主要设计步骤如下:






确定滤波器的参数:根据要求的截止频率ω H和ω L,确定归一 化带宽BW。选择归一化低通滤波电路的原型,得到归一化频率 Ω ,设计参数g1,g2...gN,gN+1。 确定带通滤波器电路中的设计参数耦合传输线的奇模和偶模的 特征阻抗: 根据微带线的偶模和奇模阻抗,按照给定的微带线路板的参数, 使用ADS中的微带线计算器LineCalc计算得到微带线的几何尺寸 W、S、L。 连接好电路,将计算出的W、S、L输入,扫描参数为S11、S12, 进行仿真。 一般来说,理论值的仿真结果和实际结果都有很大出入,需要 进行优化,可以采用Optim工具进行优化。 观察最终的优化结果,直到达到设计要求。
• 主要应用于:射频和微波电路的设计,通信系统的设计,RFIC
Company LogoADS件ADS仿真分析方法包括:
• • • • • •
高频SPICE分析和卷积分析 线性分析 谐波平衡分析
电路包络分析
射频系统分析 电磁仿真分析
Company Logo
ADS软件
Company Logo
设计指标
• 通带3.0-3.1GHz,带内衰减小于2dB,起伏小于1dB,
2.8GHz以下及3.3GHz以上衰减大于40dB,端口反射 系数小于-20dB。
• 微带电路板参数如下:厚度0.8mm,介质相对介电常数
为Er=4.3,相对磁导率为Mur=1,金属电导率 Cond=5.88E +7,封装高度Hu =(1.0e+33) mm, 金属层厚度T=0.03 mm,损耗正切角TanD=1e-4, 表面粗糙度Rough=0mm。
据传输线理论,每条单独的微带线都等价为小段串联电感和小段 并联电容,平行耦合线还需要考虑耦合电容和电感。 每条微带线的特征阻抗为Z0 ,相互耦合的部分长度为L,微带 线的宽度为W,微带之间的距离为S,偶模特征阻抗为Ze ,奇 模特征阻抗为Zo 。使用单个单元电路不能获得良好的频率特性, 可以采用如图所示的对称级联的方法获得良好的频率特性。
相关文档
最新文档