历年初三数学中考思想方法-分类讨论思想方法指导及例题解析及答案

合集下载

中考复习数学思想方法篇(一线教师精编教师版可编辑有详细解析)

中考复习数学思想方法篇(一线教师精编教师版可编辑有详细解析)

数学方法篇一:配方法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.【范例讲析】1.配方法在确定二次根式中字母的取值范围的应用在求二次根式中的字母的取值范围时,经常可以借助配方法,通过平方项是非负数的性质而求解。

例1、求二次根式322+-a a 中字母a 的取值范围分析:根据二次根式的定义,必须被开方数大于等于零,再观察被开方数可以发现可以利用配方法求得。

解:2)1(2)12(32222+-=++-=+-a a a a a因为无论a 取何值,都有0)1(2≥-a 。

所以a 的取值范围是全体实数。

点评:经过配方,观察被开方数,然后利用被开方数必须大于等于零求得所需要的解。

2.配方法在化简二次根式中的应用在二次根式的化简中,也经常使用配方法。

例2、化简526-分析:题中含有两个根号,化简比较困难,但根据题目的结构特征,可以发现526-可以写成2)15(1525-=+-,从而使题目得到化简。

解:1 5 )1 5 ( 1 52 ) 5 ( 1 5 2 5 5 2 6 2 2 2 - = - = + - = + - = - 点评:题型b a 2+一般可以转化为y x y x +=+2)((其中⎩⎨⎧==+b xy ay x )来化简。

3.配方法在证明代数式的值为正数、负数等方面的应用在证明代数式的值为正数或负数,配方法也是一种重要的方法。

例3、不管x 取什么实数,322-+-x x 的值一定是个负数,请说明理由。

分析:本题主要考查利用配方法说明代数式的值恒小于0,说明一个二次三项式恒小于0的方法是通过配方将二次三项式化成“2a -+负数”的形式。

解:2)1(31)12(3)2(322222---=-++--=---=-+-x x x x x x x ∵0)1(2≤--x , ∴02)1(2<---x 。

因此,无论x 取什么实数,322-+-x x 的值是个负数。

中考专题复习数学思想方法

中考专题复习数学思想方法
2.方程、不等式模型(方法型);如果关于x的一元二次方程x² -6x+c=0(c是常数)没有实根,那么c的取值范围是________.
3.映射模型(结构型);如图,直线l是一条河,P,Q两地相距8千米, P,Q两地到l的距离分别为2千米,5千米,欲在l上的某点M处修建一个 水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设 的管道,则铺设的管道最短的是()
(2)数形结合思想
由数想形
1.如图
6,直线 l
:
y
2 3
x
3与直线
y
a
(
a
为常数)的交点在第四象限,则
a 可能在(
)
A.1 a 2
B. 2 a 0
见形C思. 数3 a 2 D. 10 a 4
2.有如图所示的两种广告牌,其中图是由两个等腰直角三角形构成的,
图是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种
【特别提醒】 1.分类中的每一部分是相互独立的. 2.一次分类必须按同一个标准. 3.分类讨论应逐级进行,做到不重、不漏. 4.最后必须归纳小结,综合得出结论.
1. 已知点P到圆的最大距离为11,最小距离为7,则此圆的半径为 多少? 2.(2015·攀枝花中考)如图,在平面直角坐标系中,O为坐标原点,矩 形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD 为等腰三角形,则所有满足条件的点P的坐标为________.
(4)数学建模思想
1.函数模型(定义型);
10.一台印刷机每年印刷的书本数量 y(万册)与它
的使用时间 x(年)成反比例关系,当 x=2 时,y=20,
则 y 与 x 的函数图像大致是(

浙江省中考数学专题复习专题三5大数学思想方法第一节分类讨论思想训练

浙江省中考数学专题复习专题三5大数学思想方法第一节分类讨论思想训练

l
的抛
物线 y2. (1)求抛物线 y2 的表达式; (2)如图 2,在直线 l 上是否存在点 T,使△TAC 是等腰三角形?若存在,请求出所有点 T 的坐标;若不存
在,请说明理由;
(3)点 P 为抛物线 y1 上一动点,过点 P 作 y 轴的平行线交抛物线 y2 于点 Q,点 Q 关于直线 l 的对称点为 R. 若以 P,Q,R 为顶点的三角形与△AMG 全等,求直线 PR 的表达式.
(3)设 Q(m, m2- m),根据相似三角形的判定方法,分两种情况讨论,然后分别解关于 m 的绝对值方程可 42
得到对应的 P 点坐标.
【自主解答】
.
.
.
.
1 4.(2018·新疆乌鲁木齐中考)在平面直角坐标系 xOy 中,抛物线 y=- x2+bx+c 经过点 A(-2,0),
4 B(8,0). (1)求抛物线的表达式; (2)点 C 是抛物线与 y 轴的交点,连结 BC,设点 P 是抛物线上在第一象限内的点,PD⊥BC,垂足为点 D. ①是否存在点 P,使线段 PD 的长度最大?若存在,请求出点 P 的坐标;若不存在,请说明理由; ②当△PDC 与△COA 相似时,求点 P 的坐标.
1 11 即 y2=-4x2+2x-4.
(2)抛物线 y2 的对称轴 l 为 x=1,设 T(1,t). 3
已知 A(-3,0),C(0, ). 4
如图,过点 T 作 TE⊥y 轴于点 E,则
3
3 25
TC2=TE2+CE2=12+( -t)2=t2- t+ ,
4
2 16
.
.
.
.
153 TA2=AB2+TB2=(1+3)2+t2=t2+16,AC2= .

浙江省中考数学复习第二部分题型研究题型一数学思想方法类型一分类讨论思想课件2

浙江省中考数学复习第二部分题型研究题型一数学思想方法类型一分类讨论思想课件2

径画圆,交OB于点P2,则MN=MP2,△MP2N就是以M为顶角顶 点的等腰三角形;③作线段MN的垂直平分线交OB于
点P3,则P3M=P3N,△P3MN是以P3为顶 角顶点的等腰三角形.∴当x=4 2 -4时, 点P也恰好有3个;
例1题解图②
(3)当x>4且以点M为圆心,MN为半径的圆与OB相交时,设
交点分别为P1,P2,①连接MP1和NP1,则MN=MP1=4, △MNP1就是以M为顶角顶点的等腰三角形;②连接MP2和 NP2,则MN=MP2,△MP2N就是以M为顶角顶点的等腰三 角形;③作线段MN的垂直平分线交OB于点P3,连接NP3, MP2,则P3M=P3N,△P3MN是以P3为顶角顶点的等腰三角
第二部分 题型研究
题型一 数学思想方法
类型一 分类讨论思想
Байду номын сангаас
思想阐述
由于研究对象有不同的特征,因而需要对不同属性的 对象进行分类研究;或在研究问题过程中出现了不同情况, 也需要对不同特征的对象进行分类研究或对不同情况进行分 类研究;通过分类讨论,使问题化繁为简,更易于解决. 用 分类讨论思想解决问题的一般步骤是: (1)先明确需研究和 要讨论的对象; (2)正确选择分类的标准,进行合理分类; (3)逐类讨论解决.
形.当以点M为圆心,MN为半径的圆与直线OB只有1个
交点时,此时符合条件的点P共有两个,此时OM=4 2 . ∴x的取值范围是4<x<4 2 . 综上所述,x的值是0或4 2 -4或4<x<4 2 .
例1题解图③
【思维教练】由于等腰三角形是有两边相等的特殊三角形, 因此当题目的腰、底边不确定时,就要分情况讨论.同时 图中的线段MN在运动,要对点M、N运动过程中的几个特 殊位置进行分类讨论.

中考数学专题一 数学思想方法问题 (共70张PPT)

中考数学专题一 数学思想方法问题 (共70张PPT)

【点拨】 如图,作 PE⊥ l1 交 l1 于点 E, 交 l2 于点 F,在 PF 上截取 PC= 8,连接 QC 交 l2 于点 B,作 BA⊥ l1 于点 A,此时 PA+ AB + BQ 最短. 作 QD⊥ PF 于点 D. 在 Rt△ PQD 中 , ∵∠ D = 90° , PQ = 4 30 , PD = 6 + 8 + 4 = 18 , ∴DQ = PQ2- PD2= 156, CD= PD- PC= 18- 8= 10.∵ AB= PC= 8, AB∥ PC,∴四边形 ABCP 是平行四边形,∴ PA= BC,∴ PA+ BQ = CB+ BQ= QC= DQ + CD = 156+ 10 = 16. 【答案】 16
例 1 (2017· 绥化 )在等腰三角形 ABC 中, AD⊥ BC 交直线 BC 1 于点 D,若 AD= BC,则 △ ABC 的顶角的度数为 ____. 2
【点拨】 如图,应分下列三种情况求顶角:(1)若 A 是顶点, 1 如图①, AD= BC,则 AD= BD,则底角为 45° ,则顶角为 90° ; 2
第二部分 专题一
专题突破
强化训练
数学思想方法问题
初中数学中的主要数学思想方法有分类讨论思想、数形结合 思想、方程与函数思想、转化与化归思想等. 1.分类讨论思想 分类讨论思想是指当被研究的问题存在一些不确定的因素, 无法用统一的方法或结论给出统一的表述时,按可能出现的所有 情况来分别讨论,得出各种情况下相应的结论.分类的原则: (1)分类中的每一部分是相互独立的;(2)一次分类必须是同一个标 准;(3)分类讨论应逐级进行.
2.数形结合思想 数形结合思想是指从几何直观的角度,利用几何图形的性质 研究数量关系,寻求代数问题的解决途径,或用数量关系研究几 何图形的性质,解决几何问题,将数量关系和几何图形巧妙地结 合起来,以形助数,以数辅形,使抽象问题直观化,复杂问题简 单化,从而使问题得以解决的一种数学思想.

数学中考专题15 数学思想方法-分类讨论

数学中考专题15    数学思想方法-分类讨论

数学思想方法——分类讨论思想 【考向分析】分类讨论思想是重要的数学思想之一,在具体解题时,对一个较为复的问题往往要采取分类的方法,以达到化难为易的目的,这种方法是较为高级的数学思想方法,能将一个较为复杂的问题转化成较为简单的问题是重要的数学能力之一,在中考的综合题中,分类讨论思想所起的作用不容忽视.【典型例题】例1 如图(1)所示,OA ,OB 是⊙O 的两条半径,且OA ⊥OB ,点C 是OB 延长线上任意一点,过点C 作CD 切⊙O 于点D ,连接AD 交OC 于点E ,(1)求证CD=CE ;(2)若将图(1)中的半径OB 所在直线向上平移交OA 于F ,交⊙O 于B /,其他条件不变,(如图(2)所示,那么上述结论CD=CE 还成立吗?为什么?(3)若将图(1)中的半径OB 所在直一向上平行移动到⊙O 外的CF ,点E 是DA 的延长线与CF 的交点,其他条件不变(如图(3)所示,那么上述结论CD=CE 还成立吗?为什么?· AOE B CD(1)· A OE B /C D(2)F · AOE CD(3)F GF C例2 Rt ABC ∆中,90ACB =∠,M 为AB 中点,将线段BM 绕点B 顺时针旋转90°,得到线段BP ,连CP 、AP ,CP 交于AB 于O (如图1)(1)当AC=BC 时,求证:OPB ∆∽PAB ∆;(2)若BC=2,AC=b ,当b 为多长时,ACB ∆与ABP ∆相似?(3)图1中,将点A 沿直线AC 向下运动(其余条件不变),则Rt ABC ∆、PAB ∆、PBC ∆都会变化,如图2所示,如果点A 一直运动到BC 下方,如图3所示,请在图3中按题意把图画完整。

若CB=2,设AC=x ,BCP ∆的面积为1y ,PAB ∆的面积为2y ,试问1y 、2y 是否都为定值?若是,求出这个定值;若不是,求出其关于x 的函数关系式。

中考数学复习指导:分类讨论思想在一元二次方程中的运用

中考数学复习指导:分类讨论思想在一元二次方程中的运用

例4
若实数 a 、 b 满足 a 2
8a
5
0 , b2
8b
5
b1 0 。求
a1
的值。
a1 b1
解:由方程根的定义, 知 a 、b 是方程 x2 8x 5 0 的两个根, a b 8 ,ab 5 ,
b1 a1 a 1 b1
2
a b 2 a b 2ab 2 ab a b 1
20 。
事实上,题设中的 a 与 b 是可以相等的,当 a b 时,原式 =2。
当 m 1 时,方程 mx2 4 x 4 0 的根为 x1 x2 2 ,
方程 x2 4mx 4m2 4m 5 0 根为 x1 5 , x2 1 ,均为整数, m 1 。
评注:本例是根据方程的根是否为整数进行分类讨论。
例 3 已知关于 x 的方程: x2
m2 m 2x
0。
4
⑴求证:无论 m 取什么实数值,这个方程总有两个相异实根。
分类讨论思想在一元二次方程中的运用
在数学中,常常要根据研究对象的性质差异,分别对各种不同的情况予以分析的思想 方法叫分类讨论。本文以一元二次方程为例,谈谈分类讨论思想在解题中的运用。
例 1 已知方程 m2x2 2m 1 x 1 0有实数根,求 m 的取值范围。
分析:字母系数的取值范围问题,首先引起警觉,想到分类讨论。因为这里并没有指 明是二次方程,故要考虑是一次方程的可能。
种⑴前置式,即“二次方程” ;⑵后置式,即“两实数根” 。这都表明是二次方程,不需讨
论,但切不可忽视二次项系数不为零的要求。本例是根据二次项系数是否为零进行分类讨
论。
例 2 当 m 是什么整数时,关于 x 的一元二次方程 mx2 4x 4 0 与

中考数学专题复习一分类讨论思想PPT课件

中考数学专题复习一分类讨论思想PPT课件
过点A作AD⊥BC,垂足为D, ∵∠ACB=75°-∠B=45°, sinACD AD,
AC
∴AD=AC×sin 45°, 在Rt△ABD中,∠B=30°,
∴AB=2AD=2AC×sin 45°=750 2 m.
答案:750 2 m
【知识归纳】解直角三角形实际应用的两点技能 1.转化:利用直角三角形或构造直角三角形解决实际问题,一 般先把实际问题转化为数学问题,若题目中无直角三角形,需 要添加辅助线(如作三角形的高等)构造直角三角形,再利用解 直角三角形的知识求解. 2.前提:解直角三角形时结合图形分清图形中哪个三角形是直 角三角形,哪条边是角的对边、斜边、邻边,此外正确理解俯 角、仰角、坡度、坡角等名词术语是解答此类题目的前提条件.
5.一次函数:已知一次函数与坐标轴围成的三角形的面积,求k 的值,常分直线交于坐标轴正半轴和负半轴讨论;确定反比例函 数与一次函数交点个数,常分一、三象限或二、四象限两种情 况讨论. 6.圆:圆的一条弦(直径除外)对两条弧,常分优弧和劣弧两种情 况讨论;求圆中两条平行弦的距离,常分两弦在圆心的同旁和两 旁两种情况讨论;圆与圆的相切,此时要考虑分外切和内切两种 情况讨论.
4.在几何中的应用:对于几何问题,我们常通过图形,找出边、 角的数量关系,通过边、角的数量关系,得出图形的性质等.
【例2】(2013·兰州中考)已知反比例函数y1= k 的图象与
x
一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2). (1)求这两个函数的解析式. (2)视察图象,当x>0时,直接 写出y1>y2时自变量x的取值范围. (3)如果点C与点A关于x轴对称, 求△ABC的面积.
5.(2013·十堰中考)如图,在小山的东侧A点有一个热气球,由

中考数学专题复习:数学思想方法

中考数学专题复习:数学思想方法

专题01 数学思想方法【要点提炼】一、【分类讨论的思想方法】有些问题包含的对象比较复杂,很难用一种情况概括它的全貌,这时往往按照一种标准把问题分成几类,分别进行讨论,再综合起来进行说明,这种思想方法称为分类讨论思想。

二、【数形结合思想】数形结合思想就是数学问题的题设与结论之间的内在联系,既分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,使问题得到解决。

在进行二次根式的化简时,可以利用数轴确定字母的取值范围,然后对式子进行化简。

三、【整体思想】整体思想是一种重要的思想方法,它把研究对象的一部分(或全部)视为整体,在解题时,则把注意力和着眼点放在问题整体结构上,从而触及问题的本质,避开不必要的计算,使问题得以简化。

四、【转化的思想方法】如果a.b互为相反数,那么a+b=O,a= -b;如果c,d互为倒数,那么cd=l,c=1/d;如果|x|=a(a >0),那么x=a或-a.【专题训练】一、单选题(共10小题)1.将一元二次方程x2+4x+2=0配方后可得到方程()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=6 D.(x+2)2=6【答案】B【解答】解:x2+4x+2=0,x2+4x=﹣2,x2+4x+4=2,(x+2)2=2.故选:B.【知识点】解一元二次方程-配方法2.若对所有的实数x,x2+ax+a恒为正,则()A.a<0 B.a>4 C.a<0或a>4 D.0<a<4【答案】D【解答】解:令y=x2+ax+a,这个函数开口向上,式子的值恒大于0的条件是:△=a2﹣4a<0,解得:0<a<4.故选:D.【知识点】配方法的应用3.已知a,b,c为有理数,当a+b+c=0,abc<0,求的值为()A.1或﹣3 B.1,﹣1或﹣3 C.﹣1或3 D.1,﹣1,3或﹣3【答案】A【解答】解:∵a+b+c=0,∴b+c=﹣a、a+c=﹣b、a+b=﹣c,∵abc<0,∴a、b、c三数中有2个正数、1个负数,则原式=+﹣=﹣1﹣1﹣1=﹣3或1﹣1+1=1或﹣1+1+1=1.故选:A.【知识点】绝对值、代数式求值4.若a﹣b=3,ab=1,则a3b﹣2a2b2+ab3的值为()A.3 B.4 C.9 D.12【答案】C【解答】解:a3b﹣2a3b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2将a﹣b=3,ab=1代入,原式=1×32=9,故选:C.【知识点】整式的混合运算—化简求值5.实数a、b在数轴上的位置如图所示,化简的结果是()A.﹣2 B.0 C.﹣2a D.2b【答案】A【解答】解:由数轴可知﹣2<a<﹣1,1<b<2,∴a+1<0,b﹣1>0,a﹣b<0,∴=|a+1|+|b﹣1|﹣|a﹣b|=﹣(a+1)+(b﹣1)+(a﹣b)=﹣a﹣1+b﹣1+a﹣b=﹣2故选:A.【知识点】二次根式的性质与化简、实数与数轴6.若一个正比例函数的图象经过点A(1,﹣2),B(m,4)两点,则m的值为()A.2 B.﹣2 C.8 D.﹣8【答案】B【解答】解:设正比例函数的解析式为y=kx(k≠0),将A(1,﹣2)代入y=kx,得:﹣2=k,∴正比例函数解析式为y=﹣2x.当y=4时,﹣2m=4,解得:m=﹣2.故选:B.【知识点】待定系数法求正比例函数解析式7.下列分式方程无解的是()A.B.C.D.【答案】B【解答】解:∵方程A去分母,得2x=3(x﹣3),解得x=9,当x=9时,x(x﹣3)≠0,所以原方程的解为x=9;方程B去分母,得x2﹣1=2x﹣2,解得x=1,当x=1时,(x﹣1)(x2﹣1)=0,所以原方程无解;方程C去分母,得x+3﹣4x=0,解得x=1,当x=1时,2x(x+3)≠0,所以原方程的解为x=1;方程D去分母,得3x=2x+3x+3,解得x=﹣,当x=﹣时,3x+3≠0,所以原方程的解为x=﹣.故选:B.【知识点】分式方程的解8.当时,x+y的值为()A.2 B.5 C.D.【答案】D【解答】解:∵+=﹣,∴两边平方得出x+y+2=8﹣2,∵=﹣,∴两边同乘2,得2=2﹣2,∴x+y+2﹣2=8﹣2,则x+y=8﹣4+2.故选:D.【知识点】二次根式的化简求值9.已知变量y与x的关系满足下表,那么能反映y与x之间的函数关系的解析式是()x…﹣2 ﹣10 1 2 …y…4 3 2 1 0…A.y=﹣2x B.y=x+4 C.y=﹣x+2 D.y=2x﹣2【答案】C【解答】解:设y与x之间的函数关系的解析式是y=kx+b(k≠0),则,解得,所以,y与x之间的函数关系的解析式是y=﹣x+2.故选:C.【知识点】待定系数法求一次函数解析式10.如图,在平面直角坐标系xOy中,已知点A(﹣9,7),B(﹣3,0),点P在x轴的正半轴上运动,将线段AB沿直线AP翻折到AC,当点C恰好落在y轴上时,直线AP对应的函数表达式可以是()A.y=x+8 B.y=﹣C.y=﹣x+1 D.y=﹣x+4【答案】B【解答】解:连接BC,交P A于Q,由题意可知,P A垂直平分BC,设直线P A的解析式为y=kx+b,把A(﹣9,7)代入得,7=﹣9k+b,∴b=9k+7,∴直线P A的解析式为y=kx+9k+7,设直线BC的解析式为y=﹣x+n,把B(﹣3,0)代入得0=+n,∴n=﹣,∴C(0,﹣),∴Q(﹣,﹣),∵Q在直线P A上,∴﹣=﹣k+9k+7,整理得,15k2+14k+3=0,解得k1=﹣,k2=﹣,∴直线P A的解析式为y=﹣x+,或y=﹣x+4,故选:B.【知识点】待定系数法求一次函数解析式二、填空题(共8小题)11.用配方法解方程x2﹣2x﹣6=0,原方程可化为﹣.【答案】(x-1)2=7【解答】解:方程变形得:x2﹣2x=6,配方得:x2﹣2x+1=7,即(x﹣1)2=7.故答案为:(x﹣1)2=7.【知识点】解一元二次方程-配方法12.如图,字母b的取值如图所示,化简:|b﹣1|+=.【答案】4【解答】解:由数轴得2<b<5,所以原式=|b﹣1|+=|b﹣1|+|b﹣5|=b﹣1+5﹣b=4.故答案为4.【知识点】实数与数轴、二次根式的性质与化简13.若关于x的方程﹣1=有无解,则m=﹣﹣.【解答】解:去分母得:2mx+x2﹣x2+3x=2x﹣6,整理得:(2m+1)x=﹣6,当2m+1=0,即m=﹣时,整式方程无解,即分式方程无解;当2m+1≠0,即m≠﹣时,x=﹣,由分式方程无解,得到x=0或x=3,把x=0代入整式方程无解;把x=3代入整式方程得:m=﹣,综上,m=﹣或﹣,故答案为:﹣或﹣【知识点】分式方程的解14.如图,点P、A、B、C在同一平面内,点A、B、C在同一直线上,且PC⊥AC,在点A处测得点P在北偏东60°方向上,在点B处测得点P在北偏东30°方向上,若AP=12千米,则A,B两点的距离为千米.【解答】解:∵PC⊥AC,在点A处测得点P在北偏东60°方向上,∴∠PCA=90°,∠P AC=30°,∵AP=12千米,∴PC=6千米,AC=6千米,∵在点B处测得点P在北偏东30°方向上,∠PCB=90°,PC=6千米,∴∠PBC=60°,∴BC===2千米,∴AB=AC﹣BC=6﹣2=4(千米),故答案为:4千米.【知识点】解直角三角形的应用-方向角问题15.如图,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠B=30°,∠ADC=60°,BC=3,则BD的长度为.【解答】解:∵∠C=90°,∠ADC=60°,∴∠DAC=30°,∴CD=AD,∵∠B=30°,∠ADC=60°,∴∠BAD=30°,∴BD=AD,∴BD=2CD,∵BC=3,∴CD+2CD=3,∴CD=,∴DB=2,故答案为:2.【知识点】勾股定理、含30度角的直角三角形16.在平面直角坐标系xOy中,一次函数y=k1x+b(k1,b均为常数)与正比例函数y=k2x(k2为常数)的图象如图所示,则关于x的不等式k2x<k1x+b的解集为.【答案】x<3【解答】解:两条直线的交点坐标为(3,﹣1),且当x<3时,直线y=k2x在直线y=k1x+b的下方,故不等式k2x<k1x+b的解集为x<3.故答案为x<3.【知识点】一次函数与一元一次不等式、一次函数的图象17.如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°.若劣弧的长为,则图中阴影部分的面积为.【解答】解:连接OA,如图,∵AD=AB,∴∠B=∠D=30°,∵OA=OB,∴∠OAB=∠B=30°,∴∠AOC=2∠B=60°,∵劣弧的长为,∴=,解得OC=2,∵∠D=30°,∠DOA=60°,∴∠OAD=90°,∴AD=OA=2,∴图中阴影部分的面积=S△AOD﹣S扇形AOC=×2×2﹣=2﹣π.故答案为2﹣π.【知识点】弧长的计算、扇形面积的计算、圆周角定理18.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴为直线x=﹣1.则该抛物线的解析式为﹣﹣.【答案】y=-x2-2x+3【解答】解:∵抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),对称轴为直线x=﹣1,∴A点坐标为(﹣3,0),设抛物线解析式为y=a(x+3)(x﹣1),把C(0,3)代入得3=a×3×(﹣1),解得a=﹣1,∴抛物线解析式为y=﹣(x+3)(x﹣1),即y=﹣x2﹣2x+3.故答案为y=﹣x2﹣2x+3.【知识点】抛物线与x轴的交点、待定系数法求二次函数解析式、二次函数的性质三、解答题(共8小题)19.解不等式组:并把解集在数轴上表示出来.【解答】解;解不等式x+1<2,得:x<1,解不等式2(1﹣x)≤6,得:x≥﹣2,则不等式组的解集为﹣2≤x<1,将不等式组的解集表示在数轴上如下:【知识点】在数轴上表示不等式的解集、解一元一次不等式组20.(1)解方程:.(2)关于x的分式方程无解,求a的值.【解答】解:(1)方程整理得:+=+,即=,当2x+8=0,即x=﹣4时,方程成立;当2x+8≠0,即x≠﹣4时,方程无解,经检验x=﹣4是分式方程的解;(2)去分母得:x2﹣ax﹣3x+3=x2﹣x,即﹣ax﹣3x+3=﹣x,由分式方程无解,得到x=0或x﹣1=0,解得:x=0或x=1,把x=0代入整式方程得:无解;把x=1代入整式方程得:a=0,则a的值为1.【知识点】分式方程的解、解分式方程21.某农场要建一个长方形ABCD的养鸡场,鸡场的一边靠墙(墙长25m)另外三边用木栏围成,木栏长40m.(1)若养鸡场面积为168m2,求鸡场垂直于墙的一边AB的长.(2)养鸡场面积能达到最大吗?如果能,请你用配方法求出;如果不能,请说明理由.【解答】解:(1)设鸡场垂直于墙的一边AB的长为x 米,则x(40﹣2x)=168,整理得:x2﹣20x+84=0,解得:x1=14,x2=6,∵墙长25m,∴0≤BC≤25,即0≤40﹣2x≤25,解得:7.5≤x≤20,∴x=14.答:鸡场垂直于墙的一边AB的长为14米.(2)围成养鸡场面积为S,则S=x(40﹣2x)=﹣2x2+40x=﹣2(x2﹣20x)=﹣2(x2﹣20x+102)+2×102=﹣2(x﹣10)2+200,∵﹣2(x﹣10)2≤0,∴当x=10时,S有最大值200.即鸡场垂直于墙的一边AB的长为10米时,围成养鸡场面积最大,最大值200米2.【知识点】一元二次方程的应用、二次函数的应用、配方法的应用22.如图,已知四边形ABCD是平行四边形,△AOB是等边三角形.(1)求证:四边形ABCD是矩形.(2)若AB=5cm,求四边形ABCD的面积.【解答】解:(1)平行四边形ABCD是矩形.理由如下:∵四边形ABCD是平行四边形(已知),∴AO=CO,BO=DO(平行四边形的对角线互相平分),∵△AOB是等边三角形(已知),∴OA=OB=OC=OD(等量代换),∴AC=BD(等量代换),∴平行四边形ABCD是矩形(对角线相等的平行四边形是矩形);(2)因为AB=5,在Rt△ABC中,由题意可知,AC=10,则BC==5,所以平行四边形ABCD的面积S=5×5=25(cm2).【知识点】等边三角形的性质、矩形的判定与性质、平行四边形的性质23.如图,等腰△ABC中,AC=BC=8,点D、E分别在边AB、BC上(不与顶点重合),且∠CDE=∠A=∠B,CE=5,设AD=x,BD=y.(1)求y关于x的函数关系式(不用写x的取值范围);(2)当AB=10时,求AD的值.【解答】解:(1)∵CB=8,CE=5,∴BE=CB﹣CE=3,∵∠ADB是△ADC的一个外角,∴∠BAE+∠CDE=∠A+∠ACD,∵∠CDE=∠A,∴∠ACD=∠BDE,∵∠A=∠B,∴△ACD∽△BDE,∴=,即=,整理得,y=;(2)当AB=10,即x+y=10时,10﹣x=,整理得,x2﹣10x+24=0,解得,x1=4,x2=6,则AD的值为4或6.【知识点】等腰三角形的性质、相似三角形的判定与性质24.四边形ABCD内接于⊙O,AC为其中一条对角线.(Ⅰ)如图①,若∠BAD=70°,BC=CD.求∠CAD的大小;(Ⅱ)如图②,若AD经过圆心O,连接OC,AB=BC,OC∥AB,求∠ACO的大小.【解答】解:(1)∵BC=CD,∴=,∴∠CAD=∠CAB=∠BAD=35°;(2)连接BD,∵AB=BC,∴∠BAC=∠BCA,∵OC∥AB,∴∠BAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠BAC=∠BCA=∠OAC,由圆周角定理得,∠BCA=∠BDA,∴∠BAC=∠BDA=∠OAC,∵AD是⊙O的直径,∴∠ABD=90°,∴∠ACO=30°.【知识点】圆心角、弧、弦的关系、圆内接四边形的性质、圆周角定理25.如图,在⊙O中,过半径OD的中点C作AB⊥OD交⊙O于A、B两点,且AB=.(1)求OD的长;(2)计算阴影部分的面积.【解答】解:(1)∵AB⊥OD,∴∠OCB=90°,AC=BC=AB=,∵点C为OD的中点,∴OC=OB,∵cos∠COB==,∴∠COB=60°,∴OC=BC=×=1,∴OB=2OC=2,∴OD=OB=2;(2)阴影部分的面积=S扇形BOD﹣S△COB=﹣××1=π﹣.【知识点】勾股定理、垂径定理、扇形面积的计算26.如图,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,抛物线的顶点为P.已知B(1,0),C(0,﹣3).请解答下列问题:(1)求抛物线的解析式,并直接写出点P的坐标;(2)抛物线的对称轴与x轴交于点E,连接AP,AP的垂直平分线交直线PE于点M,则线段EM 的长为.注:抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣,顶点坐标是(﹣,).【解答】解:(1)∵抛物线经过点B(1,0),C(0,﹣3),代入得:,解得:,∴抛物线表达式为:y=x2+2x﹣3=(x+1)2﹣4,∴顶点P的坐标为(﹣1,﹣4);(2)∵直线PE为抛物线对称轴,∴E(﹣1,0),∵B(1,0),∴A(﹣3,0),∴AP==,∵MN垂直平分AP,∴AN=NP=,∠PNM=90°,∵∠APE=∠MPN,∴△PMN∽△P AE,∴,即,解得:PM=,∴EM=PE﹣PM=4﹣=,故答案为:.【知识点】二次函数图象与系数的关系、线段垂直平分线的性质、待定系数法求二次函数解析式、抛物线与x轴的交点、二次函数图象上点的坐标特征。

中考数学《第36讲:分类讨论型问题》总复习讲解含真题分类汇编解析

中考数学《第36讲:分类讨论型问题》总复习讲解含真题分类汇编解析

第36讲分类讨论型问题(建议该讲放第21讲后教学)内容特性分类讨论思想就是将要研究的数学对象按照一定的标准划分为若干不同的情形,然后逐类进行研究和求解的一种数学解题思想.对于存在的一些不确定因素而无法解答或结论不能给予统一表述的数学问题,我们往往将问题划分为若干类或若干个局部问题来解决.解题策略很多数学问题很难从整体上去解决,若将其划分为所包含的各个局部问题,就可以逐个予以解决.分类讨论在解题策略上就是分而治之各个击破.具体是:(1)确定分类对象;(2)进行合理分类(理清分类“界限”,选择分类标准,并做到不重复、不遗漏);(3)逐类进行讨论;(4)归纳并得出结论.基本思想分类讨论的基本方法是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对各个分类逐步进行讨论,分层进行,获取阶段性结果;最后进行归纳小结,综合得出结论.类型一由计算化简时,运用法则、定理和原理的限制引起的讨论例1(·南通模拟)矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为()A.3cm2B.4cm2C.12cm2D.4cm2或12cm2【解后感悟】解此题的关键是求出AB=AE,注意AE=1或3不确定,要进行分类讨论.1.(1)若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为____________________.(2)已知平面上有⊙O及一点P,点P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为cm.(3)若|a|=3,|b|=2,且a>b,则a+b=()A.5或-1 B.-5或1 C.5或1 D.-5或-1类型二在一个动态变化过程中,出现不同情况引起的讨论例2为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)0.3超过30平方米不超过m平方米部分(45≤m≤60)0.5超过m平方米部分0.7根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60时,求m的取值范围.【解后感悟】本题是房款=房屋单价×购房面积在实际生活中的运用,由于单价随人均面积而变化,所以用分段函数的解析式来描述.同时建立不等式组求解,解答本题时求出函数解析式是关键.2.(1)在平面直角坐标系中,直线y=-x+2与反比例函数y=1x的图象有唯一公共点,若直线y=-x+b与反比例函数y=1x的图象有2个公共点,则b的取值范围是()A.b>2 B.-2<b<2 C.b>2或b<-2 D.b<-2(2)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD 的直线l从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t(秒),下列能反映S与t之间函数关系的图象是()3.已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y轴相交于点C,且点A,C在一次函数y2=43x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.类型三由三角形的形状、关系不确定性引起的讨论例3(·湖州)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x和y=9x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=1x的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是________.【解后感悟】解题的关键是用k表示点A、B、C的坐标,再进行分类讨论.4.(1)在平面直角坐标系中,O为坐标原点,点A的坐标为(1,3),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.8(2)(·北流模拟)如图,在Rt△ABC中,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA 全等,则AP=.(3)(·临淄模拟)如图,在正方形ABCD中,M是BC边上的动点,N在CD上,且CN=14CD ,若AB =1,设BM =x ,当x = 时,以A 、B 、M 为顶点的三角形和以N 、C 、M 为顶点的三角形相似.类型四 由特殊四边形的形状不确定性引起的讨论例4 (·鄂州模拟)如图1,在四边形ABCD 中,AD ∥BC ,AB =8cm ,AD =16cm ,BC =22cm ,∠ABC =90°,点P 从点A 出发,以1cm /s 的速度向点D 运动,点Q 从点C 同时出发,以3cm /s 的速度向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒.(1)当t 为何值时,四边形ABQP 成为矩形?(2)当t 为何值时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形?(3)四边形PBQD 是否能成为菱形?若能,求出t 的值;若不能,请说明理由,并探究如何改变Q 点的速度(匀速运动),使四边形PBQD 在某一时刻为菱形,求点Q 的速度.【解后感悟】解本题的关键是用方程(组)的思想解决问题,涉及四边形的知识,同时也是存在性问题,解答时要注意分类讨论及数形结合.5.(1)(·盐城模拟)在平面直角坐标系中有三点A(1,1),B(1,3),C(3,2),在直角坐标系中再找一个点D ,使这四个点构成平行四边形,则D 点坐标为 .(2)(·江阴模拟)如图,在等边三角形ABC 中,BC =6cm ,射线AG ∥BC ,点E 从点A 出发沿射线AG 以1cm /s 的速度运动,点F 从点B 出发沿射线BC 以2cm /s 的速度运动.如果点E 、F 同时出发,设运动时间为t(s ),当t = s 时,以A 、C 、E 、F 为顶点的四边形是平行四边形.(3) (·金华模拟)如图,B(6,4)在函数y =12x +1的图象上,A(5,2),点C 在x 轴上,点D 在函数y =12x +1上,以A 、B 、C 、D 四个点为顶点构成平行四边形,写出所有满足条件的D 点的坐标 .(4)(·萧山模拟)已知在平面直角坐标系中,点A 、B 、C 、D 的坐标依次为(-1,0),(m ,n),(-1,10),(-7,p),且p ≤n.若以A 、B 、C 、D 四个点为顶点的四边形是菱形,则n 的值是 .类型五 由直线与圆的位置关系不确定性引起的讨论例5 如图,已知⊙O 的半径为6cm ,射线PM 经过点O ,OP =10cm ,射线PN 与⊙O 相切于点Q.A 、B 两点同时从点P 出发,点A 以5cm /s 的速度沿射线PM 方向运动,点B 以4cm /s 的速度沿射线PN 方向运动.设运动时间为t(s ).(1)求PQ 的长;(2)当t 为何值时,直线AB 与⊙O 相切?【解后感悟】本题是直线与圆的位置关系应用,题目设置具有创新性.解决本题的关键是抓住直线与圆的两种情况位置关系,及其对应数量关系进行分析.6.(·泗洪模拟)如图,已知⊙P 的半径为2,圆心P 在抛物线y =12x 2-1上运动,当⊙P与x 轴相切时,圆心P 的坐标为 .【压轴把关题】如图,在平面直角坐标系中,点A ,B 的坐标分别是(-3,0),(0,6),动点P 从点O 出发,沿x 轴正方向以每秒1个单位的速度运动,同时动点C 从点B 出发,沿射线BO 方向以每秒2个单位的速度运动.以CP ,CO 为邻边构造▱PCOD ,在线段OP 延长线上取点E ,使PE =AO ,设点P 运动的时间为t 秒.(1)当点C 运动到线段OB 的中点时,求t 的值及点E 的坐标; (2)当点C 在线段OB 上时,求证:四边形ADEC 为平行四边形;(3)在线段PE 上取点F ,使PF =1,过点F 作MN ⊥PE ,截取FM =2,FN =1,且点M ,N 分别在第一、四象限,在运动过程中,设▱PCOD 的面积为S.①当点M ,N 中,有一点落在四边形ADEC 的边上时,求出所有满足条件的t 的值; ②若点M ,N 中恰好只有一个点落在四边形ADEC 内部(不包括边界)时,直接写出S 的取值范围.【方法与对策】本题是四边形的综合题,对于第(3)题解题的关键是正确分几种不同情况求解.①当点C在BO上时,第一种情况,当点M在CE边上时,由△EMF∽△ECO求解,第二种情况,当点N在DE边上时,由△EFN∽△EPD求解;【分类讨论应不重复、不遗漏】在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有________条.参考答案第36讲 分类讨论型问题【例题精析】例1 ∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,AD ∥BC ,∴∠AEB =∠CBE ,∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∴∠AEB =∠ABE ,∴AB =AE ,①当AE =1cm 时,AB =1cm =CD ,AD =1cm +3cm =4cm =BC ,此时矩形的面积是1cm ×4cm =4cm 2;②当AE =3cm 时,AB =3cm =CD ,AD =4cm =BC ,此时矩形的面积是:3cm ×4cm =12cm 2;故选D .例2 (1)由题意,得三口之家应缴购房款为:0.3×90+0.5×30=42(万元); (2)由题意,得①当0≤x ≤30时,y =0.3×3x =0.9x ;②当30<x ≤m 时,y =0.9×30+0.5×3×(x -30)=1.5x -18;③当x >m 时,y =0.9×30+0.5×3(m -30)+0.7×3×(x -m)=2.1x -18-0.6m.∴y =⎩⎪⎨⎪⎧0.9x (0≤x ≤30)1.5x -18(30<x ≤m )2.1x -18-0.6m (x>m )(45≤m ≤60). (3)由题意,得①当50≤m ≤60时,y =1.5×50-18=57(舍).②当45≤m <50时,y =2.1×50-0.6m -18=87-0.6m.∵57<y ≤60,∴57<87-0.6m ≤60,∴45≤m <50.综合①②得45≤m <50.例3 ∵点B 是y =kx 和y =9x 的交点,y =kx =9x ,解得:x =3k ,y =3k ,∴点B 坐标为⎝⎛⎭⎫3k ,3k ,点A 是y =kx 和y =1x 的交点,y =kx =1x ,解得:x =1k ,y =k ,∴点A坐标为⎝⎛⎭⎫1k ,k ,∵BD ⊥x 轴,∴点C 横坐标为3k,纵坐标为13k=k3,∴点C 坐标为⎝ ⎛⎭⎪⎫3k ,k 3,∴BA ≠AC ,若△ABC 是等腰三角形,①AB =BC ,则⎝⎛⎭⎫3k -1k 2+(3k -k )2=3k -k 3,解得:k =377;②AC =BC ,则⎝⎛⎭⎫3k -1k 2+⎝⎛⎭⎫k 3-k 2=3k -k 3,解得:k =155;故答案为k =377或155.例4 (1)∵∠ABC =90°,AP ∥BQ ,∴当AP =BQ 时,四边形ABQP 成为矩形,由运动知,AP =t ,CQ =3t ,∴BQ =22-3t ,∴t =22-3t ,解得t =112.∴当t =112时,四边形ABQP成为矩形; (2)当P 、Q 两点与A 、B 两点构成的四边形是平行四边形时,就是(1)中的情形,此时t =112.当P 、Q 两点与C 、D 两点构成的四边形是平行四边形时,∵PD ∥QC ,∴当PD =QC 时,四边形PQCD 为平行四边形.此时,16-t =3t ,t =4;当P 、Q 两点与B 、D 两点构成的四边形是平行四边形时,同理,16-t =22-3t ,t =3;当P 、Q 两点与A 、C 两点构成的四边形是平行四边形时,同理,t =3t ,t =0,不符合题意;故当t =112或t =4或t =3时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形. (3)四边形PBQD 不能成为菱形.理由如下:∵PD ∥BQ ,∴当PD =BQ =BP 时,四边形PBQD 能成为菱形.由PD =BQ ,得16-t =22-3t ,解得t =3,当t =3时,PD =BQ =13,AP =AD -PD =16-13=3.在Rt △ABP 中,AB =8,根据勾股定理得,BP =AB 2+AP 2=64+9=73≠13,∴四边形PBQD 不能成为菱形;如果Q 点的速度改变为v cm /s 时,能够使四边形PBQD 在时刻t s 为菱形,由题意得,⎩⎨⎧16-t =22-vt ,16-t =64+t 2,解得⎩⎪⎨⎪⎧t =6,v =2.故点Q 的速度为2cm /s 时,能够使四边形PBQD 在某一时刻为菱形.例5 (1)连结OQ ,∵PN 与⊙O 相切于点Q ,∴OQ ⊥PN ,即∠OQP =90°.∵OP =10,OQ =6,∴PQ =102-62=8(cm ). (2)过点O 作OC ⊥AB ,垂足为C.∵点A 的运动速度为5cm /s ,点B 的运动速度为4cm /s ,运动时间为t s ,∴PA =5t ,PB =4t.∵PO =10,PQ =8,∴PA PO =PB PQ =t2.∵∠P =∠P ,∴△PAB ∽△POQ ,∴∠PBA =∠PQO =90°.∵∠BQO =∠CBQ =∠OCB =90°,∴四边形OCBQ 为矩形,∴BQ =OC.∵⊙O 的半径为6,∴BQ =OC =6时,直线AB 与⊙O 相切.①当AB 运动到如图1所示的位置时,BQ =PQ -PB =8-4t ,由BQ =6,得8-4t =6,t =0.5.②当AB 运动到如图2所示的位置时,BQ =PB -PQ =4t -8,由BQ =6,得4t -8=6,t =3.5.综上,当t =0.5s 或3.5s 时,直线AB 与⊙O 相切.【变式拓展】1.(1)0或-1 (2)4或2 (3)C 2.(1)C (2)D3.根据OC 长为8可得一次函数中的n 的值为8或-8.分类讨论:①n =8时,易得A(-6,0),如图1,∵抛物线经过点A 、C ,且与x 轴交点A 、B 在原点的两侧,∴抛物线开口向下,则a <0,∵AB =16,且A(-6,0),∴B(10,0),而A 、B 关于对称轴对称,∴对称轴为直线x =-6+102=2,要使y 1随着x 的增大而减小,∵a <0,∴x ≥2;②n =-8时,易得A(6,0),如图2,∵抛物线过A 、C 两点,且与x 轴交点A ,B 在原点两侧,∴抛物线开口向上,则a >0,∵AB =16,且A(6,0),∴B(-10,0),而A 、B 关于对称轴对称,∴对称轴为直线x =6-102=-2,要使y 1随着x 的增大而减小,且a >0,∴x ≤-2.4.(1)C (2)6或12 (3)12或455.(1)(3,0)或(-1,2)或(3,4) (2)2或6 (3)(2,2)或(-6,-2)或(10,6) (4)2,5,186.(6,2)或(-6,2)【热点题型】【分析与解】(1)∵OB =6,C 是OB 的中点,∴BC =12OB =3.∴2t =3,即t =32s .∴OE =32+3=92,E(92,0). (2)如图1,连结CD 交OP 于点G ,在▱PCOD 中,CG =DG ,OG =PG ,∵AO =PE ,∴AG =EG .∴四边形ADEC 是平行四边形. (3)①(Ⅰ)当点C 在线段BO 上时,第一种情况:如图2,当点M 在CE 边上时,∵MF ∥OC ,∴△EMF ∽△ECO.∴MFCO=EF EO ,即26-2t =23+t,解得t =1.第二种情况:如图3,当点N 在DE 边时,∵NF ∥PD ,∴△EFN ∽△EPD.∴FN PD =EF EP 即16-2t =23,解得t =94.(Ⅱ)当点C 在BO 的延长线上时,第一种情况:如图4,当点M 在DE 边上时,∵MF ∥PD ,∴EMF ∽△EDP.∴MF DP =EF EP 即22t -6=23,解得t =92.第二种情况:如图5,当点N 在CE 边上时,∵NF ∥OC ,∴△EFN ∽△EOC.∴FN OC =EF EO 即12t -6=23+t ,解得t =5.综上所述,所有满足条件的t 的值为1,94,92,5.②278<S ≤92或272<S ≤20.【错误警示】当PD∥BC时,△APD∽△ABC,当PE∥AC时,△BPE∽△BAC,连结PC,∵∠A=36°,AB=AC,点P在AC的垂直平分线上,∴AP=PC,∠ABC=∠ACB =72°,∴∠ACP=∠PAC=36°,∴∠PCB=36°,∴∠B=∠B,∠PCB=∠A,∴△CPB ∽△ACB,故过点P的△ABC的相似线最多有3条.故答案为:3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考中的数学思想方法----分类讨论思想
一、概述:
当我们面对一大堆杂乱的人民币时,我们一般会先分10元,5元,2元,1元,5角,…… 等不同面值把人民币整理成一叠叠的,再分别数出各叠钱数,最后把各叠的钱数加起来得出这一堆人民币的总值。

这样做,比随意一张张地数的方法要快且准确的多,因为这种方法里渗透了分类讨论的思想。

在数学中,分类思想是根据数学本质属性的相同点和不同点,把数学的研究对象区分为不同种类的一种数学思想,正确应用分类思想,是完整解题的基础。

而在中考中,分类讨论思想也贯穿其中,几乎在全国各地的重考试卷中都会有这类试题,命题者经常利用分类讨论题来加大试卷的区分度,很多压轴题也都涉及分类讨论,由此可见分类思想的重要性,下面精选了几道有代表性的试题予以说明。

二、例题导解:
1、直角三角形的两条边长分别为6和8,那么这个三角形的外接圆半径等于 .③ 解:①当6、8是直角三角形的两条直角边时,斜边长为10,
此时这个三角形的外接圆半径等于2
1╳ 10 =5 ②当6是这个三角形的直角边,8是斜边时,此时这个三角形
的外接圆半径等于2
1╳ 8=4 2、在△ABC 中,∠B =25°,AD 是BC 边上的高,并且AD BD DC 2=·,则∠BCA 的度
数为____________。

解:①如图1,当△ABC 是锐角三角形时,
∠BCA=90°-25°=65°
①如图2,当△ABC 是钝角三角形时,
∠BCA=90°+25°=115°
图1 图2
3、如图1,已知Rt ABC △中,30CAB ∠=o
,5BC =.过点A 作AE AB ⊥,且15AE =,连接BE 交AC 于点P .
(1)求PA 的长;
(2)以点A 为圆心,AP 为半径作⊙A ,试判断BE 与⊙A 是否相切,并说明理由;
(3)如图2,过点C 作CD AE ⊥,垂足为D .以点A 为圆心,r 为半径作⊙A ;以点C 为圆心,R 为半径作⊙C .若r 和R 的大小是可变化的,并且在变化过程中保持⊙A 和⊙C 相.切.,且使D 点在⊙A 的内部,B 点在⊙A 的外部,求r 和R 的变化范围.
(1)Q 在Rt ABC △中,30
5CAB BC ∠==o ,, 210AC BC ∴==.
AE BC Q ∥,APE CPB ∴△∽△.
::3:1PA PC AE BC ∴==.
:3:4PA AC ∴=,3101542PA ⨯=
=. (2)BE 与⊙A 相切.
Q 在Rt ABE △
中,AB =15AE =,
tan AE ABE AB ∴∠===60ABE ∴∠=o . 又30PAB ∠=o Q ,9090ABE PAB APB ∴∠+∠=∴∠=o o ,
, BE ∴与⊙A 相切.
(3
)因为5AD AB ==,,所以r
的变化范围为5r <<.
当⊙A 与⊙C 外切时,10R r +=,所以R
的变化范围为105R -<<; 当⊙A 与⊙C 内切时,10R r -=,所以R
的变化范围为1510R <<+
4、直角坐标系中,已知点P (-2,-1),
点T (t ,0)是x 轴上的一个动点.
(1) 求点P 关于原点的对称点P '的坐标;
C D 图1 图2
(2) 当t 取何值时,△P 'TO 是等腰三角形?
解:(1)点P 关于原点的对称点P '的坐标为(2,1).
(2)5='P O .
(a )动点T 在原点左侧. 当51='=O P O T 时,△TO P '是等腰三角形.
∴点)0,5(1-T .
(b )动点T 在原点右侧.
①当P T O T '=22时,△TO P '是等腰三角形.
得:)0,4
5(2T . ② 当O P O T '=3时,△TO P '是等腰三角形.
得:点)0,5(3T .
③ 当O P P T '='4时,△TO P '是等腰三角形.
得:点)0,4(4T .
综上所述,
符合条件的t 的值为4,5,4
5,
5-. 5、如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A (3,0),B (0,3)两点, ,点C 为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D . (1)求直线AB 的解析式;
(2)若S 梯形OBCD =433
,求点C 的坐标; (3)在第一象限内是否存在点P ,使得以P ,O,B 为顶点的
三角形与△OBA 相似.若存在,请求出所有符合条件
的点P 的坐标;若不存在,请说明理由.
解:(1)直线AB 解析式为:y=3
3-x+3.
(2)方法一:设点C坐标为(x ,33-x+3),那么OD =x ,CD =3
3-x+3. ∴OBCD S 梯形=()2
CD CD OB ⨯+=3632+-x . 由题意:3632+-x =3
34,解得4,221==x x (舍去) ∴ C(2,3
3) 方法二:∵ 23321=⨯=
∆OB OA S AOB ,OBCD S 梯形=334,∴63=∆ACD S . 由OA=3OB ,得∠BAO =30°,AD=3CD .
∴ ACD S ∆=2
1CD×AD =223CD =63.可得CD =33. ∴ AD=1,OD =2.∴C (2,
33). (3)当∠OBP =Rt ∠时,如图
①若△BOP ∽△OBA ,则∠BOP =∠BAO=30°,BP=3OB=3,
∴1P (3,3
3). ②若△BPO ∽△OBA ,则∠BPO =∠BAO=30°,OP=
33OB=1. ∴2P (1,3).
当∠OPB =Rt ∠时
③ 过点P 作OP ⊥BC 于点P(如图),此时△PBO ∽△OBA ,∠BOP =∠BAO =30° 过点P 作PM ⊥OA 于点M .
方法一: 在Rt △PBO 中,BP =21OB =23,OP =3BP =2
3. ∵ 在Rt △P MO 中,∠OPM =30°,
∴ OM =21OP =43;PM =3OM =433.∴3P (43,433).。

相关文档
最新文档