JVM内存分配过程与原理详解(雷惊风)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
JVM内存分配过程与原理解析
之前对java虚拟机对于内存的分配与管理不是很了解,这段时间工作不是很忙,想借此机会深入的了解一下,在网上看了很多文章,对其详情也有了一定的认识,但是只是看看肯定是不行的,为了加深印象同时使自己能够理解的更深刻,我决定写这篇文章,同时希望对大家也有一定的帮助。
文章里引用了其他前辈的一些资源,在这里表示感谢,那么我们就先从内存区域说起吧!
一.内存分区。
首先Java程序运行Java代码是发生在JVM上的,JMV相当于是java程序与操作系统的桥梁,JVM具有平台无关特性,所以java程序便可以在不同的操作系统上运行。
Java的内存分配就是发生在JVM上的。
对于java的内存回收我们并不用像其他有些语言一样手动回收,虚拟机就帮我们解决了,也正因为如此,如果我们写代码的时候不注意,很容易出现内存泄漏或者内存溢出(OOM),一旦出现问题,排查也不是很容易,所以只有了解了java的内存机制,才能更好的处理代码,优化代码。
下边我们看一下java内存的几个部分,如下图:
由上图可知java内存共由java堆区(Heap)、java栈区(Stack)、方法区(Method Area)、本地方法栈(Native Method Stack)、程序计数器五部分组成,下面我们一一简单的讲解一下每一个区间的不同作用。
1.java堆区
首先要讲的就是我们的java堆,也就是人们常说的堆栈堆栈里边的堆,通过上图可知堆区是JVM中所有线程共享的内存区域,当运行一个应用程序的时候就会初始化一个相应的堆区,堆区可以动态扩展,如果我们需要的内存不够了,并且内存不能扩展了,那么就会报OOM了。
引用java虚拟机规范中的一段话:所有的对象实例和数据都要在堆上进行分配。
比如我们通过new来创建一个对象,创建出来的对象只包含属于各自的成员变量,并不包括成员方法。
因为同一个类型的不同对象拥有各自的成员变量,存储在各自的堆中,但是他们共享该类的方法,并不是每创建一个对象就把成员方法复制一次。
给对象分配内存就是把一块确定大小的从堆内存中划分出来,一般有两种方式:
①指针碰撞法:假设堆中内存是完整的,已分配的内存和空闲内存分别在不同的一侧,
通过一个指针作为分界点,需要分配内存时,仅仅需要把指针往空闲的一端移动与对象大小相等的距离。
②空闲列表法:事实上,Java堆的内存并不是完整的,已分配的内存和空闲内存相互交错,JVM通过维护一个列表,记录可用的内存块信息,当需要分配内存时,从列表中找到一个足够大的内存块分配给对象实例,并更新列表上的记录。
然而
创建是一个非常频繁的行为,进行堆内存分配时还需要考虑多线程并发问题,可能出现正在给对象A分配内存,指针或记录还未更新,对象B又同时分配到原来的内存,解决这个问题有两种方案:1、采用CAS保证数据更新操作的原子性;2、把内存分配按照线程进行划分,在不同的空间中进行,每个线程在Java堆中预先分配一个内存块,称为本地线程分配缓冲(Thread Local Allocation Buffer, TLAB)。
在堆中分配的内存,是由java虚拟机管理回收的。
在堆中产生一个对象或数组,在栈中我们可以写多个不同的引用变量指向他,那么我们多个引用相当于指向了堆内存中的同一个内存地址,那么我们用“==”作比较时,就会返回true。
我们的引用变量在栈区中分配,当程序执行完我们的某个引用变量时,我们的引用变量便会自动释放,而他指向的堆区的对象不会被回收或者说不会被马上回收,而是在后续的某个不确定的时刻GC去检查该对象还有没有被引用,如果没有被引用才会回收所占内存区域。
这也是java比较占内存的一个原因。
2.Java栈区
由上图可知,栈区是线程私有的,也就是说,每一个线程都会对应一个自己的栈区,生命周期也线程相同,栈中只保存基础数据类型的对象和自定义对象的引用(不是对象),也就是指针,对象都存放在堆区中,每个栈中的数据(原始类型和对象引用)都是私有的,其他栈不能访问。
虚拟机栈描述的是Java方法执行的内存模型:每个线程在执行一个方法时会创建一个对应的栈帧(Stack Frame),栈帧负责存储局部变量变量表、操作数栈、动态链接和方法返回地址等信息。
每个方法的调用过程,相当于栈帧在Java 栈的入栈和出栈过程。
当在一段代码块定义一个变量时,Java就在栈中为这个变量分配内存空间,当该变量退出该作用域后,Java会自动释放掉为该变量所分配的内存空间,该内存空间可以立即被另作他用。
Java的数学计算是在内存栈里操作的。
3.方法区
方法区也是线程共享的区域,用于存储已经被虚拟机加载的类信息,常量,静态变量和即时编译器(JIT)编译后的代码等数据。
Java虚拟机把方法区描述为堆的一个逻辑分区,不过方法区有一个别名Non-Heap(非堆),用于区别于Java堆区。
方法区包含所有的class和static变量。
运行时常量池是方法区的一部分,Class文件中除了有类的版本,字段,方法,接口等信息以外,还有一项信息是常量池用于存储编译器生成的各种字面量和符号引用,这部分信息将在类加载后存放到方法区的运行时常量池中。
Java
虚拟机对类的每一部分(包括常量池)都有严格的规定,每个字节用于存储哪种数据都必须有规范上的要求,这样才能够被虚拟机认可,装载和执行。
一般来说,除了保存Class文件中描述的符号引用外,还会把翻译出来的直接引用也存储在运行时常量池中。
运行时常量池相对于Class文件常量池的另外一个重要特征是具备动态性,Java虚拟机并不要求常量只能在编译期产生,也就是并非预置入Class文件常量池的内容才能进入方法区的运行时常量池中,运行期间也可将新的常量放入常量池中。
常量池是方法区的一部分,所以受到内存的限制,当无法申请到足够内存时会抛出OutOfMemoryError异常。
4.本地方法栈
本地方法栈和虚拟机栈基本类似,只不过Java虚拟机栈执行的是Java代码(字节码),本地方法栈中执行的是本地方法的服务。
本地方法栈中也会抛出StackOverflowError 和OutOfMemory异常。
5.程序计数器
程序计数器是线程私有的,每个线程都有独立的指令计数器,计数器记录着虚拟机正在执行的字节码指令的地址,分支、循环、跳转、异常处理和线程恢复等操作都依赖
这个计数器完成。
如果线程执行的是native方法,这个计数器则为空。
java虚拟机的多线程是通过轮流切换并分配处理器执行时间来完成,一个处理器同一时间只会执行一条线程中的指令。
为了线程恢复后能够恢复正确的执行位置,每条线程都需要一个独立的程序计数器,以确保线程之间互不影响。
所以程序计数器是“线程私有”的内存。
如果虚拟机正在执行的是一个Java方法,则计数器指定的是字节码指令对应的地址,如果正在执行的是一个本地方法,则计数器指定问空undefined。
程序计数器区域是Java虚拟机中唯一没有定义OutOfMemory异常的区域。
到这里我们的java内存分区就说完了,那么我们从网上摘一个例子给大家加深一下理解,如下程序代码:
上图左侧为程序内存分部情况,右边为代码及执行情况,当代码执行到右边代码红点处时,内存共进行了如下三步操作(就不自己写了,前人总结的已经很好了):
1.JVM自动寻找main方法,执行第一句代码,创建一个Test类的实例,在栈中分配一块内存,存放一个指向堆区对象的引用变量(指针110925),java中的引用变量就是C 语言中指针的一个包装,所以引用变量中存放的还是堆内存中对象的地址。
2.创建一个int型的变量date,由于是基本类型,直接在栈中存放date对应的值9。
3.创建两个BirthDate类的实例d1、d2,在栈中分别存放了对应的指针指向各自的对象。
他们在实例化时调用了有参数的构造方法,因此对象中有自定义初始值。
代码继续向下走:
调用test对象的change1方法,并且以date为参数。
JVM读到这段代码时,检测到i
是局部变量,因此会把i放在栈中,并且把date的值赋给i。
把1234赋给i。
很简单的一步。
change1方法执行完毕,立即释放局部变量i所占用的栈空间。
调用test对象的change2方法,以实例d1为参数。
JVM检测到change2方法中的b参数为局部变量,立即加入到栈中,由于是引用类型的变量,所以b中保存的是d1中的指针,此时b和d1指向同一个堆中的对象。
在b和d1之间传递是指针。
change2方法中又实例化了一个BirthDate对象,并且赋给b。
在内部执行过程是:在堆区new了一个对象,并且把该对象的指针保存在栈中的b对应空间,此时实例b不再指向实例d1所指向的对象,但是实例d1所指向的对象并无变化,这样无法对d1造成任何影响。
change2方法执行完毕,立即释放局部引用变量b所占的栈空间,注意只是释放了栈空间,堆空间要等待自动回收。
调用test实例的change3方法,以实例d2为参数。
同理,JVM会在栈中为局部引用变量b分配空间,并且把d2中的指针存放在b中,此时d2和b指向同一个对象。
再调用实例b的setDay方法,其实就是调用d2指向的对象的setDay方法。
调用实例b的setDay方法会影响d2,因为二者指向的是同一个对象。
change3方法执行完毕,立即释放局部引用变量b。
通过以上一个在实际代码中运行的例子,相信大家对堆栈的内存分配有了更加深刻的理解。
下边我们了解一下基本类型和基本类型的包装类的一写关于常量池的知识:基本类型有:byte、short、char、int、long、boolean。
基本类型的包装类分别是:Byte、Short、Character、Integer、Long、Boolean。
注意区分大小写。
二者的区别是:基本类型体现在程序中是普通变量,基本类型的包装类是类,体现在程序中是引用变量。
因此二者在内存中的存储位置不同:基本类型存储在栈中,而基本类型包装类存储在堆中。
上边提到的这些包装类都实现了常量池技术,而两种浮点数类型的包装类则没有实现。
另外,String类型也实现了常量池技术。
举例帮大家理解:
public class test {
public static void main(String[] args) {
objPoolTest();
}
public static void objPoolTest() {
int i = 40;
int i0 = 40;
Integer i1 = 40;
Integer i2 = 40;
Integer i3 = 0;
Integer i4 = new Integer(40);
Integer i5 = new Integer(40);
Integer i6 = new Integer(0);
Double d1=1.0;
Double d2=1.0;
//在java中对于引用变量来说“==”就是判断这两个引用变量所引用的是不是同一个对象
System.out.println("i==i0\t" + (i == i0));
System.out.println("i1==i2\t" + (i1 == i2));
System.out.println("i1==i2+i3\t" + (i1 == i2 + i3));
System.out.println("i4==i5\t" + (i4 == i5));
System.out.println("i4==i5+i6\t" + (i4 == i5 + i6));
System.out.println("d1==d2\t" + (d1==d2));
System.out.println();
}
}
运行结果如下:
i==i0 true
i1==i2 true
i1==i2+i3 true
i4==i5 false
i4==i5+i6 true
d1==d2 false
分析一下上述结果:
1.i和i0均是普通类型(int)的变量,所以数据直接存储在栈中,而栈有一个很重要的特性:栈中的数据可以共享。
当我们定义了int i = 40;,再定义int i0 = 40;这时候会自动检查栈中是否有40这个数据,如果有,i0会直接指向i的40,不会再添加一个新的40。
2.i1和i2均是引用类型,在栈中存储指针,因为Integer是包装类。
由于Integer包装类实现了常量池技术,因此i1、i2的40均是从常量池中获取的,均指向同一个地址,因此i1==12。
3.很明显这是一个加法运算,Java的数学运算都是在栈中进行的,Java会自动对i1、i2进行拆箱操作转化成整型,因此i1在数值上等于i2+i3。
4.i4和i5均是引用类型,在栈中存储指针,因为Integer是包装类。
但是由于他们各自都是new出来的,因此不再从常量池寻找数据,而是从堆中各自new一个对象,然后各自保存指向对象的指针,所以i4和i5不相等,因为他们所存地址不同,所引用到的对象不同。
5.这也是一个加法运算,和3同理。
6.d1和d2均是引用类型,在栈中存储指针,因为Double是包装类。
但Double包装类没有实现常量池技术,因此Doubled1=1.0;相当于Double d1=new Double(1.0);,是从堆new一个对象,d2同理。
因此d1和d2存放的指针不同,指向的对象不同,所以不相等。
注意:
1.以上提到的几种基本类型包装类均实现了常量池技术,但他们维护的常量仅仅是【-128至127】这个范围内的常量,如果常量值超过这个范围,就会从堆中创建对象,不再从常量池中取。
比如,把上边例子改成Integer i1 = 400; Integer i2 = 400;,很明显超过
了127,无法从常量池获取常量,就要从堆中new新的Integer对象,这时i1和i2就不相等了。
2.String类型也实现了常量池技术,但是稍微有点不同。
String型是先检测常量池中有没有对应字符串,如果有,则取出来;如果没有,则把当前的添加进去。
下边是String的几个例子:
String a = "a1";
String b = "a" + 1;
System.out.println((a == b)); //result = true
String a = "atrue";
String b = "a" + "true";
System.out.println((a == b)); //result = true
String a = "a3.4";
String b = "a" + 3.4;
System.out.println((a == b)); //result = true
分析:JVM对于字符串常量的"+"号连接,将程序编译期,JVM就将常量字符串的"+"连接优化为连接后的值,拿"a" + 1来说,经编译器优化后在class中就已经是a1。
在编译期其字符串常量的值就确定下来,故上面程序最终的结果都为true。
String a = "ab";
String bb = "b";
String b = "a" + bb;
System.out.println((a == b)); //result = false
分析:JVM对于字符串引用,由于在字符串的"+"连接中,有字符串引用存在,而引用的值在程序编译期是无法确定的,即"a" + bb无法被编译器优化,只有在程序运行期来动态分配并将连接后的新地址赋给b。
所以上面程序的结果也就为false。
String a = "ab";
final String bb = "b";
String b = "a" + bb;
System.out.println((a == b)); //result = true
分析:和[3]中唯一不同的是bb字符串加了final修饰,对于final修饰的变量,它在编译时被解析为常量值的一个本地拷贝存储到自己的常量池中或嵌入到它的字节码流中。
所以此时的"a" + bb和"a" + "b"效果是一样的。
故上面程序的结果为true。
String a = "ab";
final String bb = getBB();
String b = "a" + bb;
System.out.println((a == b)); //result = false
private static String getBB() {
return "b";
}
分析:JVM对于字符串引用bb,它的值在编译期无法确定,只有在程序运行期调用方法后,将方法的返回值和"a"来动态连接并分配地址为b,故上面程序的结果为false。
到现在为止,相信您对java虚拟机内存分配有了一个新的了解,这篇文章到此就结束了,谢谢大家的关注。