电抗器与电容器匹配问题
电抗器与电容器匹配问题

将电抗器与电容器串联构成去谐系统可以避免这些谐振现象。
去谐系统的自振频率介于最低的谐波频率和基波频率之间,对于高于去谐系统自振频率的谐波而言,去谐系统表现为感性,避免了谐振;对于50Hz的基波频率而言,它呈容性,因而无功功率可以得到补偿。
此串联电抗器不但能抑制合闸时的瞬时涌流,而且可抑制、吸收谐波电流,具有滤波作用,大大提高了电网的运行安全性。
然而,串抗与电容器不能随意组合,若不考虑电容装置接入处电网的实际情况,采用“一刀切”的配置方式(如电容器一律配用电抗率为5%~6%的串抗),往往适得其反,招致某次谐波的严重放大甚至发生谐振,危及装置与系统的安全。
由于电力谐波存在的普遍性,复杂性和随机性,以及电容装置所在电网结构与特性的差异,使得电容装置的谐波响应及其串抗电抗率的选择成为疑难的问题,也是人们着力研究的课题。
电容器组投入串抗后改变了电路的特性,串抗既有其抑制涌流和谐波的优点,又有其额外增加的电能损耗和建设投资与运行费用的缺点。
所以对于新扩建的电容装置,或者已经投运的电容装置中的串抗选用方案,进行技术经济比较是很有必要的。
虽然现有的成果尚不足为电容装置工程设计中串抗的选用作出量化的规定,但是随着研究工作的深入,实际运行经验的积累,业已提出许多为人共识的见解,或行之有效的措施,或可供借鉴的教训。
下面总结电容器串联电抗器时,电抗率选择的一般规律。
1.电网谐波中以3次为主根据《并联电容器装置设计规范》,当电网谐波以3次及以上为主时,一般为12%;也可根据实际情况采用%~6%与12%两种电抗器:(1)3次谐波含量较小,可选择%~1%的串联电抗器,但应验算电容器投入后3次谐波放大量是否超过或接近限值,并有一定裕度。
(2)3次谐波含量较大,已经超过或接近限值,可以选用12%或%~6%串联电抗器混合装设。
2. 电网谐波中以3、5次为主(1)3次谐波含量较小,5次谐波含量较大,选择%~6%的串联电抗器,尽量不使用%~1%的串联电抗器;(2)3次谐波含量略大,5次谐波含量较小,选择%~1%的串联电抗器,但应验算电容器投入后3次谐波放大是否超过或接近限值,并有一定裕度。
并联电容器和电抗器选取注意事项

并联电容器和电抗器选取注意事项01并联电容器的选取并联电容器是无功功率补偿装置的主体, 其质量的好坏, 运行的可靠性, 将直接影响整套装置的使用效果和寿命。
要选择一种优质的电容器应从以下几个方面考虑:(1)电容器额定电压的确定由于并联电容器需要长期、全额在电网中工作, 而电容器的实际工作电压与其使用寿命又有直接的关系, 根据可靠性试验理论可知:当电容器的工作电压每提高10%, 其寿命将减少一半。
所以, 确定电容器的额定电压是非常重要的。
电容器额定电压的选取由下列因素决定:a. 供电网的电压水平;b. 谐波背景, 当电容器在含有谐波的环境下工作时, 谐波电压将叠加到电容器的基波电压上, 会使电容器的实际工作电压升高(Uc=U+SUi);c. 是否加装串联电抗器。
为限制投切电容器时的合闸涌流, 为抑制谐波避免谐振或为消除(吸收)谐波, 都需要在电容器支路中串联电抗器。
由电工学原理可知, 当电容器与电抗器组成串联回路再接入电网时, 电容器两端的电压将高于电网电压, 其升高幅度由所串联电抗器的电抗率(P)来决定:Uc=U/(1-P) 。
综合以上因素, 笔者认为在低压0.4kV电网中(变压器实际输出电压会高于0.4kV)设置的无功功率补偿装置中安装的电容器, 在一般情况下应选择额定电压为0.45kV系列的产品, 而用于谐波抑制或滤波装置中的电容器, 根据串联电抗器的电抗率不同, 其额定电压应选择0.48kV或0.525kV系列的产品。
(2)电容器额定温度等级的确定电容器工作时其周围的温度(略高于环境温度), 对电容器使用寿命的影响是很大的, 因为, 根据绝缘材料的寿命理论:当电容器的工作温度每升高7-10℃时, 其寿命将缩短一半。
但由于温度对电容器寿命的影响是缓慢的, 所以经常被忽视。
在电容器产品国家及行业标准中仅列出A、B、C、D四个温度等级, 而实际应用中, 有许多场合(如箱变、高温地区等)的环境温度已高于D级(+55℃)。
电抗器串电容器常识

摘要:为进一步搞好设备的配套改造,加强设备管理,实现供电系统的经济运行,减少整个供电系统设备的损耗,获得最佳经济效益的设备运行方式,对抑制谐波串联电抗器的选用进行了较为详细的阐述。
本文主要对具体抑制谐波串联电抗器的选用情况和TSC动态无功补偿进行了解析。
关键词:电网功率因数节能降耗科学谐波治理设备 TSC和TSF动态无功补偿补偿用并联电容器对谐波电压最为敏感,谐波电压加速电容器老化,缩短使用寿命。
谐波电流将使电容器过负荷、出现不允许的温升,特别严重的是当电容器组与系统产生并联谐振时电流急速增加,开关跳闸、熔断器熔断、电容器无法运行。
为避免并联谐振的发生,电容器串联电抗器。
它的电抗率按背景谐波次数选取。
电网的背景谐波为5次及以上时,宜选取4.5% ~ 6%;电网的背景谐波为3次及以上时,宜选取12%一、电抗率K值的确定1. 系统中谐波很少,只是限制合闸涌流时则选K=0.5~1%即可满足要求。
它对5次谐波电流放大严重,对3次谐波放大轻微。
2. 系统中谐波不可忽视时,应查明供电系统的背景谐波含量,在合理确定K值。
电抗率的配置应使电容器接入处谐波阻抗呈感性。
电网背景谐波为5次及以上时,应配置K=4.5~6%。
通常5次谐波最大,7次谐波次之,3次较小。
国内外通常采用K=4.5~6%。
配置K=6%的电抗器抑制5次谐波效果好,但明显的放大3次谐波及谐振点为204Hz,与5次谐波的频率250Hz,裕量大。
配置4.5%的电抗器对3次谐波轻微放大,因此在抑制5次及以上谐波,同时又要兼顾减小对3次谐波的放大是适宜的。
它的谐振点235Hz与5次谐波间距较小。
电网背景谐波为3次及以上时应串联K=12%的电抗器。
在电抗器电容器串联回路中,电抗器的感抗X LN与谐波次数虚正比;电容器容抗X CN与谐波次数成反比。
为了抑制5次及以上谐波。
则要使5次及以上谐波器串联回路的谐振次数小于5次。
这样,对于5次及以上谐波,电杭器电容器串联回路呈感性,消除了并联谐振的产生条件;对于基波,电抗器电容器串联回路呈容性,保持无功补偿作用。
电容器选配电抗器

100
CKSG-1.4/0.525-14% 10
1.4 12.3 210 150 192
100
CKSG-1.8/0.525-14% 13
1.8 9.6 240 150 210
150
CKSG-2.1/0.525-14% 15
2.1 8.2 240 157 230
150
CKSG-2.8/0.525-14% 20
1 依据标准:GB/T10229-1988 JB5346-1998 串联电抗器标准 2 电抗器型号:CKSG-1.8/0.45-6% 3 电抗器品牌:上海民恩 4 额定容量:1.8kVar 5 相数:三相 6 频率:50HZ 7 系统额定电压:0.4KV 8 配套电容器额定电压: 0.45KV 9 配套电容器额定容量: 30kvar 电容器型号:BSMJ0.45-30-3 10 电抗器额定端电压: 15.6V 11 额定电抗率: 6%
4、湿度:<95% RH 电容器选配电抗器-自愈式低压并联电力电容器安装运行要求: 1、额定电压的选择 电容器的额定电压应不低于电容器接入电网的最高运行电压,为了降低谐波而接入串联电抗 器时,电容器端子上的电压将高于电网电压,此时应选用额定电压较高的电容器。在选取额 定电压时,应留出适当的安全裕度,这一点十分重要,因为电介质上的电压不适当地升高, 电容器的特性和寿命将受到不利影响。 2、运行温度 对电容器的运行温度及环境温度应予以注意,因为它对电容器的使用寿命有很大影响,超过 上限温度将加速介质的电化学老化。电容器安装场所应便于对流和辐射来散发电容器所产生 的热量。环境温度不能满足要求时,应采取有效降温措施,如果无法改善冷却温度,则必须 使用特别设计的或较高额定电压的电容器。 3、过电压 对易受到高的雷电过电压,电容器应采用避雷器作适当保护,并尽量靠近电容器安装。当电 容器固定连接在电动机上时,为了防止电动机从电源切断后发生自激产生高于系统电压很多 的电压,建议选择电容器额定电流小于电动机的空载电流,一般为 90%为宜。 4、过电流 电容器绝不可在电流超过额定电流 1.3 倍的情况下运行。过电流可能由基波电压过高、谐波 或者是两者共同作用引起的。为确保电容器的使用寿命,即使电流在 1.3 倍以内,但仍超过 额定电流值,请慎用。最好在安装前后,测定电压波形和网络特性,当有谐波源(例如大型 整流器、逆变器等)时,应按谐波的严重程度,采取相应的措施加以限制(如选择串联电抗 器)
无功补偿电抗器和电容器的配合

5 7.5 10 12 14 15 16 20 24 25 30 35 40 45 50 60 80
0.3 0.45 0.6 0.72 0.84 0.9 0.96 1.2 1.44 1.5 1.8 2.1 2.4 2.7 3 3.6 4.8
电抗率为12%的主要规格(CKSG型,400v系统,三相,电抗率为12%,匹配电容器额 电抗器型号 匹配电容器容量(kvar) 电抗器容量(kvar)
00v系统,三相,电抗率为6%,匹配电容器额定电压450V) 电感量(mH) 额定电流(A) 实际无功补偿容量 (kvar) 实际电容两端电压 Ug=400V/(1-电抗率),然 后按电容无功容量与电压 平方成正比来计算,然后 再减去电抗的感性无功得 出尽容性无功。 4.17 6.26 8.34 10.01 11.68 12.51 13.34 16.68 20.02 20.85 25.02 29.19 33.36 37.53 41.70 50.04 66.72
公式: QL=(QC/480V)V (2*3.14*50*L) 3×17.61 3×11.74 3×8.81 3×7.34 3×6.29 3×5.87 3×5.5 3×4.4 3×3.67 3×3.52 3×2.94 3×2.52 3×2.2 3×1.96 3×1.76 3×1.47 3×1.1 6 9 12 14.4 16.8 18 19.2 24.1 28.9 30.1 36.1 42.1 48.1 54.1 60.1 72.2 96.2
制作日期:2015-1-5
5 7.5 10 12 14 15 16 20 24 25 30 35 40 45 50 60 80
0.6 0.9 1.2 1.44 1.68 1.8 1.92 2.4 2.88 3 3.6 4.2 4.8 5.4 6 7.2 9.6
多台电容器组并列时电抗器的选配

多台电容器组并列时电抗器的选配
一条母线上装设两组及以上电容器组时,为防止一组电容器在投切和故障跳闸的情况下,引起另一台电容器的电压异常升高而损坏电容器组,一般电容器组应配置相应的电抗器。
当系统中无谐波源时,为防止电容器组投切时产生的过电压,结合对电容器组正常运行时的静态过电压、无功过补偿时电容器端的电压升高的情况分析计算,一般选用0.5%~1%的电抗器就能满足要求。
系统中有谐波源时,应根据谐波源的情况确定具体抑制谐波的措施,配置原则是能够消除和抑制主要次数的谐波,同时对其它次谐波引起的电压升高,电容器组能承受。
上海昌日电子科技有限公司是专业制造高低压电抗器厂家,欢迎新老顾客来电咨询。
种类有输入电抗器,输出电抗器,直流电抗器,串联电抗器,高压串联电抗器等厂家直销价格低,品质优。
现货供应,欢迎新老顾客咨询。
无功补偿电容器组串联电抗器的参数匹配_刘书铭

振,影响设备的安全和系统的稳定。 通过对某一变电站进行电力电容器投切试验和现场测试,得出无功补偿
电容器组串联电抗器的参数不匹配是引起该案例中电容器熔丝群爆的直接原因。 提出在有限流电抗器的情
况下,电容器的设计除了选择合适的串抗率外,还应考虑电容器组等效串抗率,并结合现场实际情况,给出了
相应的解决措施。 同时分析了电容器组在不同串抗率的情况下,并联补偿支路各次谐波的情况。
第 32 卷第 4 期 2012 年 4 月
电力自动化设备
Electric Power Automation Equipment
Vol.32 No.4 Apr. 2012
无功补偿电容器组串联电抗器的参数匹配
刘书铭,李琼林,杜习周,余晓鹏,张晓东 (河南电力试验研究院,河南 郑州 450052)
摘要: 串联电抗器是无功补偿电容器中重要的组成部分,串抗率选择不当,可能会使电容器组与系统发生谐
10
UC / kV UB / kV UA / kV
0
- 10 10
0
- 10 10
0
- 10 0
0.02 0.04 0.06 0.08 0.10 0.12 t/s
(a) 电压波形
UC 谐波 UB 谐波 UA 谐波 含有 含有 含有 率 /% 率/% 率/%
3
2
1
0 3
2
1
0
3
2
1
0
5
10
15
20
25
谐波次数
(b) 频谱
图 5 第 3 组电容器投运时母线电压稳态波形及频谱
Fig.5 Bus voltage stable-state waveform and its spectrum when the third capacitor bank is put into operation
电容器与电抗器匹配问题探讨

电容器与电抗器匹配问题探讨作者:刘汶兴刘君莲来源:《中国新技术新产品》2014年第20期摘要:随着工业生产规模的不断增加,对供电公司电力需求提出了更高的要求。
然而,面对电容器组与电力系统发生的谐振,分析电容器与电抗器的匹配问题显得尤为重要。
串联电抗器是无功补偿电容器的重要组成部分,若串联电抗器的电抗率选择不当,容易因谐波电流放大而严重影响电力设备的安全性和系统的稳定性。
因此,本文对电容器与电抗器的匹配问题进行分析,以供参考。
关键词:串联电抗器;电容器;无功补偿;谐波电流;匹配问题中图分类号:TM47,TM53 文献标识码:A引言在实际运行中,若串联电抗器的串抗率选择不当,容易因谐波问题发生保险熔断、爆炸等事故,这就要求在分析电容器组与电抗器的参数匹配问题时必须结合电容器现场实际情况,科学合理地选择串联电抗器的电抗率和电容器组等效串抗率,以保证电容器设备运行的安全性。
1 电容器对谐波电流放大的机理分析电容器对谐波电流放大的理论分析如图1所示。
其中,Xs代表电力系统等值基波短路电抗,h代表谐波次数,Ih代表第h次谐波电流,XL代表串联电抗器产生的基波电抗,而Xc代表电容器组产生的基波容抗。
通过定义K=XL/Xc公式,K代表电容器组串联电抗器的电抗率,通过分析图1的电路图,可以发现当电容器支路中谐波容抗和感抗相等时,电路中串联电抗器第h次谐波将发生串联谐振,发生的谐振次数为:(1)在串联谐振下,电容器支路形成滤波回路,此时流经电力系统产生的谐波电流为0。
然而,当电容器组支路产生的谐波阻抗与电力系统产生的谐波感抗相等时,电容器支路第h次谐波发生并联谐振,发生的谐振次数为:(2)从理论上分析,此时电容器中产生的谐波电流趋于无穷大,在实际运行中,电容器支路产生的谐波电流远远大于电力设备所能承受的有限制。
另外,由于并联电容器的容量主要由无功优化确定,并且Xs主要是通过外部电力系统的设置确定的,Xs可以作为不可变量,所以只有串联电抗器的电抗率K可调。
串联电抗器电容器组的故障分析6.5

串联电抗器电容器组的故障分析6.5目前低压电容器装置通常在电容支路串联6%(7%,13%)电抗器,用于阻止谐波电流进入电容支路。
在电容器运行过程中,经常发生电容器烧毁,支路熔断器熔断,电抗器烧毁的事故,下面是某企业部分故障现场的情况。
分析有以下原因:1) 串联电抗器的线性度问题。
如果电抗的频率阻抗进入饱和区,则电容和电抗串联谐振频率可能跑偏,对应某次谐波频率,变为了吸收某次谐波的滤波电路,导致电流过大而烧毁,损坏的首先是熔断器,其次是电容器和电抗器。
解决方法:-- 订货时应提出电抗器的电密和磁密的参数,保证电抗的线性度。
-- 电容柜应安装电流谐波保护器,监测电流的异常变化。
2) 电抗器参数不合理。
订货时只是简单提出串联6%或7%的电抗,由电抗器厂家计算具体参数,而电抗器厂家由于价格竞争,往往采用低性能的硅钢片,同时磁密取得太高。
应该具体给出XL占XC的百分比,然后由用户计算出电抗量,额定电流和功率,提供给电抗器厂家。
3) 电容器容值变化。
质量较差的电容器其容值衰减很快,例如串联7%电抗的电容支路,其谐振频率为189Hz, 当容值衰减20%时,谐振频率变为227Hz, 当容值衰减30%时,谐振频率变为245Hz,此时如果电网中有5次谐波,则会导致电容器过流。
解决方法:-- 经常检测电容器的容值,更换容值变化大的电容器。
-- 电容柜安装电流谐波保护器,监测电流的变化。
4)上级电网和本级串电抗的电容器形成滤波电路导致电容器过流。
5) 多个电容支路发生并联谐振。
如果第1个支路的串联谐振频率为189Hz, 第2个支路串联谐振频率为210Hz,则会在189Hz和210Hz之间产生很高的谐振电压,会击穿电容器和电抗器的绝缘,甚至导致避雷器动作导通。
上图中共2条电容支路,1条谐振次数为4.5,另1条谐振次数为5.5,则2条支路的并联谐振次数为5次,导致5次谐波放大。
见红色曲线。
纵轴为2条支路合成阻抗与电网阻抗的比值,横轴为谐波次数。
并联补偿电容器和电抗器运行标准

并联补偿电容器和电抗器运行标准一、补偿电容器组的调度原则1当母线电压低于调度下达的电压曲线时,应优先退出电抗器,再投入电容器。
2当母线电压高于调度下达的电压曲线时,应优先退出电容器,再投入电抗器。
3调整母线电压时,应优先采用投入或退出电容器(电抗器),然后再调整主变压器分接头。
4正常情况下,刚停电的电容器组,若需再次投入运行,必须间隔5min以上。
5电容器停送电操作前,应将该组无功补偿自动投切功能退出。
6电容器组停电接地前,应待放电完毕后方可进行验电接地。
二、补偿电容器组的运行标准1、允许过电压:电容器组允许连续运行的过电压为1.1倍额定电压,及它可以在1.1倍额定电压下长期运行。
2、允许过电流:电容器组允许在1.3倍额定电流下长期运行。
在允许超过额定电流的30%中,10%是由允许的工频过电压引起,20%是由高次谐波电压所引起。
3、允许温升:室温要求控制在-40~40℃,电容器外壳及箱壁的温度通常不准超过55℃。
三、电容器的操作及对壳体温度的控制1、操作补偿电容器组的注意事项(1)正常情况下,全所停电操作时,应先拉开电容器开关,然后拉开各路出线开关。
(2)正常情况下,全所恢复送电时,应先合各路出线开关,后合电容器组的开关。
(3)事故情况下,全所无电后,必须将电容器的控制断路器拉开。
(4)补偿电容器组的控制断路器跳闸后,不准强送;保护熔丝熔断后,在未查明原因前,也不准更换熔丝送电。
(5)补偿电容器组禁止带电荷合闸。
电容器组再次合闸时,必须在断路3min以后进行。
2、电容器室温的温度控制一般电容器室的温度要求控制在-40~40℃,具体还要遵守制造厂家的规定。
当电容器室温超过40℃时,应将电容器组的控制开关断开、退出运行;同时需加强通风,使电容器室的温度能迅速下降。
四、电容器运行中的巡视检查和故障退出(一)对运行中的电容器组的巡视检查对运行中的电容器组应进行日常巡视检查、定期停电检查以及特殊巡视检查。
电容柜电抗器和电容器

低压配电并联电容器补偿回路所串电抗器的合理选择前言在笔者所接触的低压配电施工图中,发现施工图中有一个共性,那就是配电变压器低压侧母线上均接入无功补偿电容器柜。
但令人费解的是,所串电抗器无任何规格要求,无技术参数的注明,只是在图中画了一个电抗器的符号而已。
而所标电容器的容量,也只是电容器铭牌容量而已,实际运行时,最大能补偿多少无功功率,也不得而知。
应引起注意的是,电抗器与电容器不能随意组合,它要根据所处低压电网负荷情况,变压器容量,用电设备的性质,所产生谐波的种类及各次谐波含量,应要进行谐波测量后,才能对症下药,决定电抗器如何选择。
但往往是低压配电与电容补偿同期进行,根本无法先进行谐波测量,然后进行电抗器的选择。
退一步说,即使电网投入运行,进行谐波测量,但用电设备是变动的,电网结构也是变化的,造成谐波的次数及大小有其随意性,复杂性。
因此正确选用电容器所用的串联电抗器也成为疑难问题,这无疑是一个比较复杂的系统工程,不是随便一个电抗器的符号或口头说明要加电抗器那么简单了。
不得随意配合,否则适得其反,造成谐波放大,严重时会引发谐振,危及电容器及系统安全,而且浪费了投资。
有鉴于此,笔者对如何正确选用电容器串联电抗器的问题,将本人研究的一点心得,撰写成文,以候教于高明。
电力系统谐波分析及谐波危害电力系统产生谐波的原因主要是用电设备的非线性特点。
所谓非线性,即所施电压与其通过的电流非线性关系。
例如变压器的励磁回路,当变压器的铁芯过饱和时,励磁曲线是非正弦的。
当电压为正弦波时,励磁电流为非正弦波,即尖顶波,它含有各次谐波。
非线性负载的还有各种整流装置,电力机车的整流设备,电弧炼钢炉,EPS UPS及各种逆变器等。
目前办公室里电子设备很多,这里存在开关电源及整流装置,其电流成分也包含有各次谐波,另外办公场所日光灯及车间内各种照明用的气体放电灯,它们也是谐波电流的制造者。
日光灯铁芯镇流器及过电压运行的电机也是谐波制造者。
补偿电抗器对电容式电压互感器误差的影响

补偿电抗器对电容式电压互感器误差的影响摘要:变电站是电力系统中变换电压、接受和分配电能、控制电力流向及调整电压的电力设施。
变电站内除变压器、母线、断路器等设备外,还装有大量电容、电感等电网无功元件。
为提高电网功率因数,降低变压器及输送线路损耗,提高供电效率,无功设备投切是电网运行中最频繁的操作,但由此产生的过电压现象也非常普遍,其中切除并联电抗器的操作过电压尤为严重,由真空断路器投切电抗器引发的开关爆炸、电抗器绝缘击穿等故障时有发生。
基于此,对补偿电抗器对电容式电压互感器误差的影响进行研究,以供参考。
关键词:补偿电抗器;电容式电压;互感器;误差引言电抗器就其磁路结构而言,有空心电抗器和带间隙的铁心电抗器两种,空心电抗器的磁路主要由非铁磁材料构成,其电感值不随电流变化而变化,但其电感值往往较小;而带间隙的铁心电抗器的磁路由带间隙的铁心柱构成,电感值可以达到较大的值,但当其电流超过一定数值时,若铁心和气隙设计不当,将造成铁心饱和,损耗增加,其工频电感值和交流电阻值均会发生急剧变化,影响了对电压互感器的误差补偿。
1电抗器Z交流电阻产生机理如果补偿电压互感器负载误差需要较高的低压电感值,对于电缆电感,其体积、长度和交流电阻值较高,质量系数q往往较低,不能满足误差补偿要求。
电导率高的铁芯线圈的主电路由同一线圈的电感值较高、交流电阻值较低的铁磁材料组成,质量系数q可以达到较高的值,并且更容易满足负载误差补偿要求。
2故障分析(1)过电压原因分析,根据现场检查和故障录波信息,该故障是由于3号电抗器开关的上、下极间绝缘子的绝缘相对薄弱,真空泡内的电弧被拉断后,极间外绝缘无法承受较高的过电压水平,A,B相极间首先发生绝缘闪络所致。
极间外绝缘上的电弧导致周围空气发生光电离和热电离,绝缘水平大幅下降,导致A,B相间发生短路(发生在A,B相母线侧导体间)。
相间短路的电流更大,释放的能量也更多,迅速导致三相短路(发生在B,C相母线侧导体间),并对地放电(发生在C相母线侧导体对开关柜接地外壳以及A相母线侧导体对金属接地板之间)。
感性、容性无功功率,并联电抗器、电容器无功补偿的相关问题

感性、容性无功功率,并联电抗器、电容器无功补偿的相关问题以下是本人最近纠结的问题,还望各位星星指正:1:在实际应用中,我们通常把感性无功默认为正。
所以通常说的无功,既为感性无功。
2:发出感性无功,可以理解为消耗容性无功。
其机理可以根据电流电压的参考方面来确定。
3:电感负载是消耗感性无功的。
关于这个结论,我们可以从电力系统的负载主要为感性负载,当电力系统重载运行时,缺感性无功功率,从而发电机需要发出更多感性无功来认知。
但是,对于这点,我有自己的不解:既然是同向的电压和电流流经感性负载后,电压超前电流,造成了感性无功。
那么何来消耗感性无功一说,应该是发出感性无功吧?这个理解是哪儿出现了问题?望指正。
4:并联电抗器的主要作用是降低长线路空载或者轻载时的线路末端升高的电压。
其大概机理是:长线路空载或者轻载时,线路的对地电容和相间电容在线路上起到了主导作用,产生了容升效应,从而使线路末端电压升高。
这里,讲述一下我对容升效应的理解:电容在线路上,吸收容性无功,相当于提供感性无功,以此和“电力系统缺感性无功时电压下降,发电机发出感性无功以维持电压平衡”的机理保持一致。
而并联电抗器来吸收这种情况下过剩的感性无功,达到降低电压的作用。
说明一下,这个理解方式,可以保证感性无功过剩会导致电压升高这个说法,不会出现矛盾。
我看其他地方说在该情况下发生的线路末端电压升高是因为容性无功过剩的原因。
如果是这样理解的话,岂不是在电网电压下降时,发电机应该发出大量容性无功而不是感性无功了?5:并联电容器的主要作用是提高功率因数,改善电压质量。
其大概机理是:和感性负载并联使用,电容器消耗容性无功,相当于发出感性无功,即补偿感性负载所需的感性无功,从而提高功率因素。
当然,引起电压变化的原因很多,我这里仅仅从感性、容性无功对此线性的分析,如有不妥,希望各位指正。
并联电抗器,并联电容器这些无功补偿方式,说到底,是为了避免无功电流在线路中不合理地流动,引起的线路损耗过多。
无功补偿电容电抗接线方法

无功补偿电容电抗接线方法1.引言1.1 概述概述:无功补偿是电力系统中重要的技术之一,它的主要作用是改善电力系统的功率因数,提高电能的利用率。
电力系统中的无功功率流由电容器和电抗器来进行调节,通过引入适当的电容和电抗接线方法,可以实现无功补偿的目的。
本文将重点研究无功补偿电容电抗接线方法,其中电容接线和电抗接线是无功补偿的重要手段。
电容接线将电容器与电力系统的节点相连,可以实现电力系统的无功补偿;电抗接线则利用电抗器与电力系统的节点相连,用来调整系统的电流和电压相位差。
在电容接线方法中,我们将着重研究串联补偿和并联补偿两种策略。
串联补偿通过将电容器串联于负载线路上,消耗电流的无功功率,提高负载线路的功率因数。
并联补偿则将电容器直接并联于电力系统的电源侧,通过电容器的电流来产生无功功率,提高电力系统的功率因数。
电抗接线方法主要包括串联接线和并联接线两种方式。
串联接线方式将电抗器连接到电力系统的节点处,可以调整系统的电流相位差,减小无功功率的流动。
并联接线方式则将电抗器直接并联至电力系统的负载端,通过电抗器的电流来补偿电力系统的无功功率,提高系统功率因数。
通过研究电容电抗接线方法,可以有效地调整电力系统的无功功率流,改善电力网络的功率因数,提高电力系统的稳定性和经济性。
本文将详细阐述各种无功补偿电容电抗接线方法的原理、特点和应用,以期为电力系统的无功补偿提供理论指导和技术支持。
文章结构部分的内容应该包括以下几个方面:1.2 文章结构本文主要分为引言、正文和结论三个部分。
其中,引言部分主要概述了本文的内容和目的;正文部分介绍了无功补偿的概述和电容电抗接线方法;最后,结论部分对全文进行总结,并对未来可能的研究方向进行展望。
具体来说,引言部分会简要介绍无功补偿的概念和重要性,以及电容电抗接线方法在无功补偿中的应用。
同时,还会说明本文的目的和意义,为读者了解全文做出引导。
正文部分将详细介绍无功补偿的概述,包括无功补偿的基本原理、作用和常见的无功补偿设备。
电容与电抗的关系

电容与电抗的关系
电容和电抗是电学中的两个重要概念,它们在电路中起着不同的作用。
电容是指电路中存储电荷的能力,而电抗则是指电路中对交流电的阻抗。
它们之间有着密切的关系。
从物理角度来看,电容和电抗都与电场有关。
电容是由两个带电的导体板之间的电场形成的。
这两个板之间的距离越近,电容就越大;板的面积越大,电容也越大。
电抗则是电路中电感元件导致的电场变化所产生的阻抗,它与电感器的线圈数、面积和材料有关。
从数学公式上来看,电容和电抗的关系可以用以下公式表示:
电容C = Q/V
电抗X = 2πfL
其中,C代表电容,Q代表电荷量,V代表电压;X代表电抗,f 代表频率,L代表电感。
可以看出,电容和电抗的公式中都涉及到了频率,这是因为它们都是交流电路中的物理量。
频率越高,电容的阻抗越小,电抗的阻抗则越大。
总之,电容和电抗在电路中发挥着重要的作用,它们之间有着密切的关系。
了解它们的关系,有助于更好地理解电学原理。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将电抗器与电容器串联构成去谐系统可以避免这些谐振现象。
去谐系统的自振频率介于最低的谐波频率和基波频率之间,对于高于去谐系统自振频率的谐波而言,去谐系统表现为感性,避免了谐振;对于50Hz的基波频率而言,它呈容性,因而无功功率可以得到补偿。
此串联电抗器不但能抑制合闸时的瞬时涌流,而且可抑制、吸收谐波电流,具有滤波作用,大大提高了电网的运行安全性。
然而,串抗与电容器不能随意组合,若不考虑电容装置接入处电网的实际情况,采用“一刀切”的配置方式(如电容器一律配用电抗率为5%~6%的串抗),往往适得其反,招致某次谐波的严重放大甚至发生谐振,危及装置与系统的安全。
由于电力谐波存在的普遍性,复杂性和随机性,以及电容装置所在电网结构与特性的差异,使得电容装置的谐波响应及其串抗电抗率的选择成为疑难的问题,也是人们着力研究的课题。
电容器组投入串抗后改变了电路的特性,串抗既有其抑制涌流和谐波的优点,又有其额外增加的电能损耗和建设投资与运行费用的缺点。
所以对于新扩建的电容装置,或者已经投运的电容装置中的串抗选用方案,进行技术经济比较是很有必要的。
虽然现有的成果尚不足为电容装置工程设计中串抗的选用作出量化的规定,但是随着研究工作的深入,实际运行经验的积累,业已提出许多为人共识的见解,或行之有效的措施,或可供借鉴的教训。
下面总结电容器串联电抗器时,电抗率选择的一般规律。
1.电网谐波中以3次为主
根据《并联电容器装置设计规范》,当电网谐波以3次及以上为主时,一般为12%;也可根据实际情况采用%~6%与12%两种电抗器:
(1)3次谐波含量较小,可选择%~1%的串联电抗器,但应验算电容器投入后3次谐波放大量是否超过或接近限值,并有一定裕度。
(2)3次谐波含量较大,已经超过或接近限值,可以选用12%或%~6%串联电抗器混合装设。
2. 电网谐波中以3、5次为主
(1)3次谐波含量较小,5次谐波含量较大,选择%~6%的串联电抗器,尽量不使用%~1%的串联电抗器;
(2)3次谐波含量略大,5次谐波含量较小,选择%~1%的串联电抗器,但应验算电容器投入后3次谐波放大是否超过或接近限值,并有一定裕度。
3. 电网谐波以5次及以上为主
(1)5次谐波含量较小,应选择%~6%的串联电抗器;
(2)5次谐波含量较大,应选择%的串联电抗器。
对于采用%~1%的串两电抗器,要防止对5次、7次谐波的严重放大伙谐振。
对于采用%~6%的串联电抗器,要防止怼次谐波的严重放大或谐振。
当系统中无谐波源时,为防止电容器组投切时产生的过电压和对电容器组正常运行时的静态过电压、无功过补时电容器端的电压升高的情况分析计算,可选用%~1%的电抗器。
根据以上的选择原则,对无功补偿装置中的串联电抗器有以下建议:
(1)新建变电所的电容器装置中串联电抗器的选择必须慎重,不能与电容器任意组合,必须考虑电容器装置接入处的谐波背景。
(2)对于已经投运的电容器装置,其串联电抗器选择是否合理须进一步验算,并组织现场实测,了解电网谐波背景的变化。
对于电抗率选择合理的电容器装置不得随意增大或减小电容器组的容量。
(3)电容器组容量变化很大时,可选用于电容器同步调整分接头的电抗器或选择电抗器混合装设。
通过对电容器组正常运行时的静态过电压情况和无功过补时电容器端的电压升高的分析计算,选用%~1%的w电抗器,防止电容器组投切时产生的过电压。
并联电容器串电抗器具有调谐作用,单得根据谐波成分来定,如果是5、7次以上谐波需配7%的调谐电抗。
如果是3次谐波比较重,得配14%的调谐电抗。
在选择匹配过程中,电容、电抗最好是选择同一厂家生产的。