等比数列求和ppt课件

合集下载

等比数列求和公式PPT教学课件

等比数列求和公式PPT教学课件

解:当x≠0,x≠1,y≠1时
(x 1 ) (x2 1 ) ... (xn 1 )yΒιβλιοθήκη y2yn(x
x2
...
xn
)
(1 y
1 y2
...
1 yn
)
x(1 xn ) 1 x
1 y
(1
1 yn
)
1 1
y
x xn1 1x
yn 1 yn1 yn
练习: 求下式的和
(2 35) (4 352 ) (6 353) ... (2n 35n )
=a1+q(a1+a1q+…+a1qn-2)
=a1+q(Sn-an)
sn
a1 anq 1q
当公比q 1时,Sn na1
Sn
a1
(1 q 1 q
n
)
(q
1)
na1(q 1)
an a1qn1
Sn
a1 anq 1 q
(q
1) .
na1(q 1)
Sn
a1
(1 q 1q
n
)
(q
(1) (2)
(2) (1)得:1 q2n
1 qn
82
1 q2n 821 qn 82 1 qn
qn 81 q 1
a1 0, q 1 {an}是递增数列
an 54
a1q n1
54
a1 q
qn
54
a1
2 3
q由 a1(1 81) 1 q
80得:
a1 2,q 3
例4:已知Sn是等比数列{an }的前n项和, S3, S9 , S6成等差数列,
求证:a , a , a 成等差数列。 285

等比数列的前n项和PPT课件

等比数列的前n项和PPT课件
等比数列的前n项和ppt课件
xx年xx月xx日
contents
目录
• 引言 • 等比数列的前n项和公式推导 • 等比数列的前n项和的应用 • 特殊等比数列的前n项和 • 等比数列的前n项和求解方法 • 习题解答与练习
01
引言
课程背景
教学内容的重要性
等比数列是数学中的一个重要概念,其前n项和在数学、物理 、工程等领域有着广泛的应用。
特殊情况
当公比q不等于1时,等比数列的前n项和公式为 Sn=a1(1-q^n)/(1-q)。
05
等比数列的前n项和求解方法
利用公式求解等比数列的前n项和
公式法
利用等比数列的前n项和公式求解,当已知等比数列的首项a1和公比q时,可以直 接套用公式求出前n项和。
记忆口诀
为了方便记忆,可以总结一个简单的记忆口诀:“首项乘1减公比除以1减公比的 n次方”,这个口诀可以快速帮助我们记忆公式。
02
等比数列的前n项和公式推导
公比为r的等比数列求和公式推导
公式推导
$S_n = \frac{a_1}{1-r} * (1 - r^n)$
VS
推导步骤
将等比数列的每一项分别代入求和公式中 ,得到$S_n = a_1 + a_2 + \cdots + a_n$,再将$a_1 = ar, a_2 = ar^2, \cdots, a_n = ar^n$代入$S_n$中,经过 化简得到最终的求和公式。
04
特殊等比数列的前n项和
等差数列的前n项和公式
公式总结
等差数列的前n项和公式为Sn=n/2(a1+an),其中n为项数, a1为首项,an为末项。
公式证明
通过采用倒序相加法,将前n项和与后n项和相加,得到 2Sn=n(a1+an),从而得到前n项和公式。

4.3.2.1等比数列的前n项和公式课件(人教版)

4.3.2.1等比数列的前n项和公式课件(人教版)
1-3n 解:(1)由题设知{an}是首项为 1,公比为 3 的等比数列,所以 an=3n-1,Sn= 1-3 =
12(3n-1). (2)因为 b1=a2=3,b3=1+3+9=13,b3-b1=10=2d,
所以公差 d=5, 故 T20=20×3+20×219×5=1 010.
6.将数列{an}中的所有项按“第一行三项,以下每一行比上一行多一项”的规则 排成如下数表. 记表中的第一列数a1,a4,a8,…构成的数列为{bn},已知: ①在数列{bn}中,b1=1,对于任何n∈N*,都有(n+1)·bn+1-nbn=0; ②表中每一行的数从左到右均构成公比为q(q>0)的等比数列; ③a66=25.
当已知a1,q与an时,用Sn=a11--aqnq 比较方便.
在公差不为零的等差数列{an}中,a1=1,且a1,a2,a5成等比数列. (1)求{an}的通项公式. (2)设bn=2an,求数列{bn}的前n项和Sn.
【解析】(1)设等差数列{an}的公差为d,由已知得a22 =a1a5, 则(a1+d)2=a1(a1+4d),将a1=1代入并化简得d2-2d=0,解得d=2或d=0(舍去). 所以an=1+(n-1)×2=2n-1. (2)由(1)知bn=22n-1,所以bn+1=22n+1,所以bbn+n 1 =22n+1-(2n-1)=4,所以数列{bn} 是首项为2,公比为4的等比数列.
∴an=3an-1(n≥2),
∴数列{an}是首项 a1=-2,公比 q=3 的等比数列,
∴S5=a1
1-q5 1-q
-2× 1-35 =
1-3
=-242.故选 B.
5.设数列{an}满足:a1=1,an+1=3an,n∈N*. (1)求{an}的通项公式及前n项和Sn; (2)已知{bn}是等差数列,Tn为其前n项和,且b1=a2,b3=a1+a2+a3,求T20.

等比数列的前n项和PPT课件

等比数列的前n项和PPT课件

讲授新课
1 2 22 23 24 263
这一格放 的麦粒可 以堆成一 座山!!!
263
湖南省长沙市一中卫星远程学校
讲授新课
分析: 由于每格的麦粒数都是前一格的2倍,
共有64格每格所放的麦粒数依次为:
湖南省长沙市一中卫星远程学校
讲授新课
分析: 由于每格的麦粒数都是前一格的2倍,
共有64格每格所放的麦粒数依次为:
1, 2, 22 , 23 , , 263.
湖南省长沙市一中卫星远程学校
讲授新课
分析: 由于每格的麦粒数都是前一格的2倍,
共有64格每格所放的麦粒数依次为:
1, 2, 22 , 23 , , 263.
它是以1为首项,公比是2的等比数列,
湖南省长沙市一中卫星远程学校
讲授新课
分析: 由于每格的麦粒数都是前一格的2倍,
湖南省长沙市一中卫星远程学校
等比数列的前n项和公式的推导1
一般地,设等比数列a1, 它的前n项和是
a2,
a3,
…,
an这…种求和
的方法,就
是错位相
减法!
湖南省长沙市一中卫星远程学校
等比数列的前n项和公式的推导1
一般地,设等比数列a1, a2, a3, …, an… 它的前n项和是
∴当q≠1时,

湖南省长沙市一中卫星远程学校
讲授新课
请同学们考虑如何求出这个和?
S64 1 2 22 23 263 ① 2S64 2(1 2 22 23 263 )
即 2S64 2 22 23 263 264 ②
由②-①可得:
2S64 S64 (2 22 23 263 264) (1 2 22 23 263 )

等比数列求和(1)PPT课件

等比数列求和(1)PPT课件
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
Thank You
在别人的演说中思考,在自己的故事里成长
例题 分析
例3:求和: Sn 1 a a2 a3 an1(a 0)
解: ①当a=1时,Sn 11 1 n
n个1
②当a≠1时,
1• (1 an ) 1 an
Sn
1 a
1 a
n
(a 1)
学以
致用
Sn
1 an
1 a
(a 1)
求和:(x
1) (x2 y
1 y2
)
(
x
n
1 yn

上式有何特点?
求和首先就是要消去… …,如何消呢?
如果①式两边同乘以2得
2S64=2+22+23+···+263+264 ② 分析、 比较①、②两式,有什么特征?
两式有很多项完全相同
你有什么办法消去这些相同项?所得结论如何?
错位相减法﹗
S64 1 2 22 23 263. (1)
2S64 2(1 2 22 23 263).
⑴即-⑵2S同64 学 2们能22否给23这种求 2和63方法26取4. 一个(名2)字 S64 2S64 1 264

等比数列求和公式及性质课件PPT

等比数列求和公式及性质课件PPT
的符号相反。
公比为负数的等比数列求和公式: S = a_1 * (1 - q^n) / (1 - q)
公比为负数的等比数列具有特殊 的性质,如对称性、周期性等。
公比为1的性质
当公比q=1时,等比 数列退化为等差数列, 各项相等。
公比为1的等比数列 具有特殊的性质,如 对称性、周期性等。
公比为1的等比数列 求和公式:S = n * a_1
研究电磁波的传播特性
在研究电磁波的传播特性时,常常需要用到等比 数列求和公式来求解与波动相关的数学模型。
在经济中的应用
分析股票价格波动
评估投资回报
在股票市场中,股票价格常常呈现一 定的波动规律,利用等比数列求和公 式可以分析股票价格的波动规律。
在投资领域中,利用等比数列求和公 式可以评估投资回报的长期收益,为 投资者提供参考。
4. 在等比数列中,两个相同项之间的项数可以确定为n, 那么这两项之间的所有项的和可以表示为a_n * (q^n - 1) / (q - 1)。
等比数列的通项公式
总结词
等比数列的通项公式是用来表示等比数列中每一项的数学表达式。
详细描述
等比数列的通项公式为a_n = a_1 * q^(n-1),其中a_1是首项,q是公比,n是 项数。这个公式可以用来计算等比数列中的任何一项,只要知道首项、公比和 项数。
差数列、等比数列的性质、通项公式等。
在物理中的应用
1 2 3
解决与周期性运动相关的问题
等比数列求和公式在物理学中有广泛的应用,如 求解与周期性运动相关的问题,如简谐运动、波 动等。
分析量子力学中的概率幅
在量子力学中,概率幅常常以等比数列的形式出 现,利用等比数列求和公式可以方便地计算出概 率幅之和。

等比数列的求和公式第一课时ppt

等比数列的求和公式第一课时ppt

11 2n 1 2
n 1
×
1 2 4 8 16 ( 2)

1 1 2n 1 2
×
a a (3)a
n个
例1、已知 a n 是等比数列,求出下列各量
1 1 (1)已知 a1 2 , q 2 , n 5 ,求
(1 q)Sn a1 a1q
n
n
a a q a ( 1 q ) 1 n 当q≠1时, S 1 n 1 q 1 q

等比数列an 的前n项和需要进行分类讨论 当q=1时,等比数列an an 0 为一个常数 列,前n项的和 Sn na1
a1 (1 q n ) 当q≠1时, Sn 1 q
a1 1 q n q 1 Sn 1 q na q 1 1
a1 an q 1 q Sn na 1 q 1 q 1
判断下列数列 an 的求和是否正确
( 1) 1 2 2 2
2n
2
乘公比 错位相减
等比数列的 前n项和公式
q≠1,q=1 分类讨论
数学 源于生活
数学 用于生活
a1 a n q a1 (1 q n ) q 1 1q 1 q Sn 或 Sn na na q 1 1 1
知三求二 方 程 思 想
q 1 q 1
3 a3 例2、已知在等比数列an 中, 2 1
S 3 4 ,求 a 1 2
思考:
1 1 1 1 求数列 1 , 2 , 3 , 4 , 的前n项的和. 2 4 8 16
• 例3.在等比数列 an 中,a1 an 66 , • a2 an1 128 且 sn 126 ,求项数 • n 和公比 q

等比数列前n项和的求和公式 ppt课件

等比数列前n项和的求和公式 ppt课件

旧等问题都与最其 新课件有关。
13
作业:
1、等比数 an的 列前 n项和S为 n, 已知 S1,S3,S2成等差数 (1)求an公比 q;
(2)若a1a3 3,求Sn.
2、P6: 1 第 1和5题.
最新课件
14
最新课件
15
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
(1)+(2)得
2Sn( a1 an ) (a 1 an) (a1 a n)
n个
n(a1an)
即得
Snn(a12 an)n1a n(n 2 1)d
最新课件
7
等比数列的前n项和
等比数列的通项公式
a n a 1 q n 1
前n项和公式
(a 1 ,q 0)
n1a
q 1 ;
S n a 1 ( 1 1 q q n ) a 1 1 a q n q q 1 .
16
Sn
n(a1 2
an )
na1
n(n 1) 2
d
倒序相加法
n 1a
q 1 ;
S n a 1 ( 1 1 q q n ) a 1 1 a q n q q 1 .
错位相减法
会知三求二;
实际生活中:、 等等 差比 数数 列列是生 日活 常中 经的 济重
的数学模型。款 例、 如贷 :款 存、购款 物、 分保 期险 付、资
最新课件
3
这猴子是不是
又在耍我 第一天出1元入100万,第二 天出2元入100万,第三天出 4元入100万,······,哇,发
了······
最新课件
4
算一算
这笔交易
是猪八戒占大便宜, 还是孙悟空有谋略,在欺负他呢

等比数列求和公式PPT教学课件(1)

等比数列求和公式PPT教学课件(1)
拉余着强我一饮同三喝酒大。我白勉而强喝别了。三大杯就告别。
问问他其们姓的姓氏名,,原是是金金陵陵人在人此,地作客客此。 。
及下船,舟子喃喃曰:“莫说相公痴,更有痴似相 公我走者上。自己”船的时候,替我驾船的人喃喃自语地说:“不要说先生痴,还有像你一样
痴的人 。”
思考:
叙事是本文的线索,请同学们在文中找出记叙文 的要素——看雪的时间、目的地、人物、事件?
解:由已知,每年的产量组成了一个首 项为5,公比为1.1
5(11.1n ) 30,整理得1.1n 1.6 11.1
的等比数列。故有
两边取对数:
n lg1.1 lg1.6,即n
lg 1.6 lg 1.1
0.20 0.04
( 5 年).
典型练习题
1.已知数列lgx+lgx2+ lgx3+…+ lgx10=11
一、知识回顾:
1等比数列的an定 1 义 q : an
2通项公式a:n a1qn1
3等比中项:
a,G,b成等比 G2 ab G ab
二、等比数列求和公式 :
1+2+22+23+24+…+263=?
S64=1+2+4+8+…+262+263
①① 2得到:
2S64=2+4+8+16…+263+264 ②对①、②进行比较.
(强饮三大白)自己本不善饮,但对此景,当此 时逢此人,却不可不饮,而且连饮三大杯,由此 我们可以想象“酒逢知己千杯少”的名惊喜、愉 悦(湖中焉得更有此人)这一惊叹虽发之于二客, 实为作者的心声,但见作者笔之巧。也可感受到 作者的惆怅。知己难觅,难求。为此古人曾发 “人生得一知己足矣”的感慨,而我不经意之间, 却遇到了,但紧接着却又是无奈的分别并且难有 后约之期。想及如此,怎能不令人惆怅、怅惘!

等比数列前n项和的求和公式 PPT课件

等比数列前n项和的求和公式 PPT课件

当 n 1时,有 a1 2a1 1 , 即 a1 1 ;
当 n 2时,有 a1 a2 2a2 1, 即 a2 2 ;

q a2 2 2 ,
a1 1
因此
an
a q n1 1
1 2 n1
2 n 1
.
.
11
小试牛刀
求下列数列前n项的和. (1) 3, 11, 111,217,
4 8 16 32
了······
这猴子是不是 又在耍我
.
4
算一算
这笔交易
是猪八戒占大便宜, 还是孙悟空有谋略,在欺负他呢
.
5
我们知道:
猪八戒收到的资金:
1003030(0万 0 )元
需返还孙悟空的资金:
? 1 2 2 2 2 3 2 2 9
.
6
倒序相加法
S n a 1 ( a 1 d ) ( a 1 ( n 2 ) d ) ( a 1 ( n 1 ) d ) (1) S n ( a 1 ( n 1 ) d ) ( a 1 ( n 2 ) d ) ( a 1 d ) a 1 (2)
(2)11, 31, 51,71 , 2 4 8 16
.
12
等差、等比数列对比
ana1(n1)d
ana1qn1 (a1,q0)
Sn
n(a1 2
an )
na1
n(n 1) 2
d
倒序相加法
n 1a
q 1 ;
S n a 1 ( 1 1 q q n ) a 1 1 a q n q q 1 .
.
1
师兄弟都成亿万富翁啦! 我也要成立一个“高老
庄集团”
.
2
猴哥, 能不能 帮帮 我······

4.3.2等比数列的前n项和公式课件(人教版)

4.3.2等比数列的前n项和公式课件(人教版)

有了上述公式,就可以解决本节开头提出的问题了. 由a1 1,q 2,n 64,
可得
S64
1 (1 264 ) 1 2
264
1
1.84 1019.
如果一千颗麦粒的质量约为40克,那么以上这些麦粒的总质量超过了7000亿吨, 约是202X-202X年度世界小麦产量的981倍.因此,国王根本不可能实现他的诺言.
思考:对于等比数列的相关量a1,q,n,an,S n ,已知几个量就可以确定其他量?
(1)若 (2)若
a1 a1
1227,,q a912,2求143S,8 q;
0,求 S8;
(3)若
a1
8,q
1 2
,Sn
31,求 2
n.
a1
q
n
an
Sn
(1)
1 2
1
8


2
知 三
1
(2) 27

9
243

求 二
(3) 8
1 2


31
2
例题讲授,学以致用
例2. 已知等比数列 an 的公比 q 1 ,前 n 项和为 Sn.
证明 Sn , S2n Sn , S3n S2n 成等比数列,并求这个数列的公比.
证明:利用等比数列 an前 n 项和 Sn 的定义,得
Sn a1 a2 a3 an a1 a1q a1q2 a1qn1 a1(1 q q2 qn1),
公比 q(q 1)
首项 , 公比
a1 ,末项
q(q 1)
an
首项 a1,项数 n ,
公比 q(q 1)
Sn
a1(1 qn ) 1 q
Sn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9
例1 .写出等比数列 1,-3,9,-27…的前n项和公式并求
出数列的前8项的和。
解:因为a1
1,q
3 1
3,所以等比数列的前
n项和公式为:
Sn
1[1 (3)n ] 1 (3)
1 (3)n 4

S8
1 ( 3)8 4
1640
10
课堂练习 1.求等比数列中,
(1)已知
a1
4
,q
1 2
Sn a1 a1q a1q2 a1qn1
两边同乘以q,得
qSn a1q a1q2 a1qn1 a1qn
两式相减,得
Sn a1(1 qn ) (q 1) 1 q
7
这位聪明的宰相到底要求的是多少麦粒呢?
1 2 22 23 262 263 ?
这实际上是求首项为1,公比为2的等比数列的前64项的和。
1 2 22 23 262 263 ?
那 究 竟 有 多 少 颗 麦 粒 呢?
4
诱发探究
设等比数列an的公比为q,由等比数列的概念
知an 1 qan,所以有
a2 a1q
a3 a2q
a4 a3q
an an 1q
观察上式你能想出如何表示前n项和吗? 5
公式的推导
把上面(n-1)个式子的左右两边相加,得
14
作业布置:
必做: 课本P17-18 练习6.3.3 1.2题
选做:
等比数列中,S3
7 2
, S6
623,求an。
15
李仲全
16
1 16
,
的前n项的和.
解:
Sn
11 2
2
1 4
31 8
4 1 16
(n
1 2n
)
反思
(1
1) 2
(2
1) 4
(3
1) 8
(n
1 2n
)
(1 2 3
n)
(1 2
1 4
1 8
1 2n
)
n(n 1) 2
1 [1 (1)n ] 22
1 1
n
2
2
n
1
1 2n
2
分组求和
12
选用公式、变用公式、理解内化
S64 1 2 22 23 263 2S64 2 22 23 263 264
S64 264 1 =18,446,744,073,709,551,615
这位宰相所要求的,竟是全世界在两千年内所产 的小麦的总和!
8
深化对公式的认识和理解:
等比数列的前n项和公
式当q 1时,
a2 a3 a4 ...... an q(a1 a2 a3 ...... an 1)
即 Sn a1 q(Sn an)
Sn qSn a1 qan
na1
q 1
Sn当 当
qqa1(1111时 时qq, ,n )SSnn
q
a1(1 q
11 q
na1
n
)
6
公式证明(错位相减法)
,求S10。
(2)已知 a1 1 , ak 243 , q 3 ,求Sk。
解:(1)
S10
a1(1 q10 ) 1 q
4[1 (1)10 ] 2
1 1
1023 128
2
(2)
Sk
a1 ak q 1 q
1 243 3 13
364
11
拓展训练 、深化认识
求数列1
1 2
,
2
1, 4
3
1, 8
4
变式练习:求和
(1
1) (2 x
1 x2 )
(n
1 xn
)(
n
N
x
0)
13
归纳总结、内化知识
小结
当q 1时,
1、等比数列前n项和:
Sn
a1 anq 1 q
Sn
a1(1 qn ) 1 q
当q 1时,Sn na1.
2、注意选择适当的公式,必要是分情况讨论。
3、学会建立等比数列的数学模型,来解决实际问题。
Sn
a1 anq 1 q
当q 1时, Sn na1.
Sn
a1(1 qn ) 1 q
(1) a1, an , q, Sn 和各已知 a1, n, q, Sn
三个可求第四个。
(2)注意求和公式是qn,不要和通项公
式中的qn1混淆。
(3)注意q是否等于1,如果不确定,就要
分q 1和q 1两种情况讨论。
陛下,请您在这张棋盘的第一 个小格内,赏给我一粒麦子; 在第二个小格内给两粒,第三 格内给四粒,照这样下去,每 一小格都比前一小格加一倍。 陛下啊,把这样摆满棋盘上所 有64格的麦粒,都赏给您的仆 人罢!
3
第1格: 1 第2格: 2
第3格: 22
第4格: 23
……
第63格: 262
第64格: 263
第六章 数列
等比数列的前n项和 公式的推导和应用
1
知识回顾:
(1)等比数列定义:
an an 1

q(n
2, q
0)
(2)等比数列通项公式:an a1 q n1 (a1, q 0)
(3)等差数列的前n项和公式的推导方法: 倒序相加法
2
数学小故事
相传,古印度的舍罕王打算重赏国际 象棋的发明者——宰相西萨·班·达依尔。 于是,这位宰相跪在国王面前说:
相关文档
最新文档