液化石油气储罐参数
液化石油气存放要求
![液化石油气存放要求](https://img.taocdn.com/s3/m/02ec8162bed5b9f3f80f1c5d.png)
一、液化石油气
根据消防要求,液化石油气存放达到1立方(500kg)以上(即8个50kg或28个15kg的储罐数量),需到当地消防备案,而且要达到以下设计规范要求,《城镇燃气设计规范-GB50028-2006》:
8.5.2采用自然气化方式,且瓶组气化站配置气瓶的总容积小于1m3时,瓶组间可设置在与建筑物(住宅、重要公共建筑和高层民用建筑除外)外墙毗连的单层专用房间内,并应符合下列要求:1建筑耐火等级不应低于二级;
3瓶组间、气化间与值班室的防火间距不限。
当两者毗连时,应采用无门、窗洞口的防火墙隔开。
8.5.4瓶组气化站的瓶组间不得设置在地下和半地下室内。
8.5.5瓶组气化站的气化间宜与瓶组间合建一幢建筑,两者间的隔墙不得开门窗洞口,且隔墙耐火极限不应低于3h。
瓶组间、气化间与建、构筑物的防火间距应按本规范第8.5.3条的规定执行。
8.5.6设置在露天的空温式气化器与瓶组间的防火间距不限,与明火、散发火花地点和其它建、构筑物的防火间距可按本规范第8.5.3条气瓶总容积小于或等于2m3一档的规定执行。
8.5.7瓶组气化站的四周宜设置非实体围墙,其底部实体部分高度不应低于0.6m。
围墙应采用
不燃烧材料。
8.5.8气化装置的总供气能力应根据高峰小时用气量确定。
气化装置的配置台数不应少于2台,且应有1台备用。
二、柴油
根据柴油的闪点,达到危险源存放临届点为5000吨,在小于这个数量时,存放要求必须要按,与明火点最小安全间距为25米,
对卧式储罐!1、要有安全告知牌;2、如果是室外要有遮阴措施;3,要有防静电措施;4、要。
液化石油气储罐设计
![液化石油气储罐设计](https://img.taocdn.com/s3/m/1fdb2bff910ef12d2af9e75e.png)
第一章 工艺设计参数的确定液化石油气的主要组成部分由于石油产地的不同,各地石油气组成成分也不同。
取其大致比例如下:表一 组成成分 异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戊烷 正戊烷 乙炔 各成分百分比0.012.2549.323.4821.963.791.190.02对于设计温度下各成分的饱和蒸气压力如下:表二,各温度下各组分的饱和蒸气压力 温度,℃ 饱和蒸汽压力,MPa异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戊烷 正戊烷 乙炔 -25 0 1.3 0.2 0.06 0.04 0.025 0.007 0 -20 0 1.38 0.27 0.075 0.048 0.03 0.009 0 0 0 2.355 0.466 0.153 0.102 0.034 0.024 0 20 0 3.721 0.833 0.294 0.205 0.076 0.058 0 5071.7440.670.50.20.160.00111、设计温度根据本设计工艺要求,使用地点为太原市的室外,用途为液化石油气储配站工作温度为-20—48℃,介质为易燃易爆的气体。
从表中我们可以明显看出,温度从50℃降到-25℃时,各种成分的饱和蒸气压力下降的很厉害,可以推断,在低温状态下,由饱和蒸气压力引起的应力水平不会很高。
由上述条件选择危险温度为设计温度。
为保证正常工作,对设计温度留一定的富裕量。
所以,取最高设计温度t=50℃,最低设计温度t=﹣25℃。
根据储罐所处环境,最高温度为危险温度,所以选t=50℃为设计温度。
1、设计压力该储罐用于液化石油气储配供气站,因此属于常温压力储存。
工作压力为相应温度下的饱和蒸气压。
因此,不需要设保温层。
根据道尔顿分压定律,我们不难计算出各种温度下液化石油气中各种成分的饱和蒸气分压,如表三:表三,各种成分在相应温度下的饱和蒸气分压温度, ℃饱和蒸气分压, MPa异辛烷 乙烷 丙烷 异丁烷 正丁烷 异戍烷 正戍烷乙烯 -25 0 0.029 0.0946 0.014 0.0088 0.00095 0.000083 0 -20 0 0.031 0.127 0.0176 0.0105 0.00114 0.000109 0 0 0 0.053 0.2204 0.0359 0.0224 0.00129 0.000256 0 20 0 0.084 0.394 0.069 0.045 0.00288 0.00063 0 500 0.158 0.0825 0.1573 0.1098 0.007580.0019 0有上述分压可计算再设计温度t=50℃时,总的高和蒸汽压力P=in i i py ∑81===0.01%×0+2.25%×7+47.3%×1.744+23.48%×0.67+21.96%×0.5+3.79%×0.2+1.19%×0.16+0.02%×0.0011=1.25901 MPa因为:P异丁烷(0.2)<P液化气(1.25901)<P丙烷(1.744)当液化石油气在50℃时的饱和蒸汽压力高于异丁烷在50℃时的饱和蒸汽压力时,若无保冷设施,则取50℃时丙烷的饱和蒸汽压力作为设计压力。
100立方液化石油气储罐参数
![100立方液化石油气储罐参数](https://img.taocdn.com/s3/m/f53ab737bfd5b9f3f90f76c66137ee06eff94e06.png)
100立方液化石油气储罐参数
一个100立方液化石油气储罐包括以下主要参数:
1. 储罐容量:100立方为该储罐的容量,单位为立方米。
这是指储罐可以容纳的最大液化石油气体积。
2. 储罐设计压力:指储罐的设计压力,单位为千帕。
通常情况下,储罐的设计压力为2.5MPa,这是指储罐可以承受的最大压力。
在实际使用中,储罐的工作压力应该低于设计压力。
3. 储罐直径:指储罐的直径,单位为米。
储罐直径的大小通常决定了储罐的体积和重量。
4. 储罐长度:指储罐的长度,单位为米。
长度也是储罐体积和重量的重要决定因素之一。
5. 储罐壁厚:指储罐壁的厚度,单位为毫米。
储罐壁厚的大小通常决定了储罐的耐用性和安全性。
6. 储罐重量:指储罐的重量,单位为吨。
储罐重量通常包括储罐本身和其中储存的液化石油气的重量。
7. 储罐材质:储罐的材质通常是碳钢,不锈钢等钢材,具有良好的耐腐蚀性和耐高压性能。
8. 储罐附件:储罐通常包括很多附件,如进气管、排气管、压力表、温度计、安全阀、液位计等,这些附件可以监控和控制储罐内石油气的压力、温度和液位等参数。
对于液化石油气储罐来说,其容量、设计压力、直径、长度、壁厚、重量、材质和附件等参数都是非常重要的,这些参数的合理设计和使用可以保证储罐的正常运行和安全性。
燃气常用数据与参数
![燃气常用数据与参数](https://img.taocdn.com/s3/m/40d724ea856a561252d36ff6.png)
燃烧器
人工煤气
天然气
液化石油气
矿井气、液化气混空气
天然气、油田伴生气
低压
1.0
1.0
2.0
2.8或5.0
中压
10或30
10或30
20或30
30或100
燃气钢管固定件的最大间距
公称直径(mm)
无保温成层管道的固定件的最大间距(m)
DN15
2.5
DN20
3.0
DN25
3.5
DN32
4.0
DN40
4.5
4燃气热水炉间是指室内设置微正压室燃式燃气热水器炉的建筑,当设置其他燃烧方式的燃气热水炉时,其放火间距应不小于30m;
5与空气式气化器的放火间距,从地上储罐区的防护墙或地下储罐室外侧算起应不小于4m。
地下燃气管道与建筑物、构筑物或相邻管道之间的水平净距(m)
项目
地下燃气管道压力(MP a)
低压
<0.01
1.0
1.0
>35kV
2.0
2.0
2.0
5.0
5.0
通信照明电杆(至电杆中心)
1.0
1.0
1.0
1.0
1.0
铁路路提坡脚
5.0
5.0
5.0
5.0
5.0
有轨电车钢轨
2.0
2.0
2.0
2.0
2.0
街树
0.75
0.75
0.75
1.2
1.2
架空管道与铁路、道路、其他管线交叉时的垂直净距
建筑物和管线名称
最小垂直净距(m)
当日口压力为0.7kg/cm2
229
至
330mmW.C
20立方米石油液化气储罐
![20立方米石油液化气储罐](https://img.taocdn.com/s3/m/e6f453ee04a1b0717fd5dd2d.png)
设计摘要储罐是石油液化气储存的重要设备之一,石油液化气主要成分:乙烯、乙烷、丙烷、丙烯、丁烷、丁烯等;这些化学成分都对工艺设备腐蚀,在生产过程中设备盛装的介质还具有高温、高压、高真空、易燃易爆的特性,甚至是有毒的气体或液体。
根据以上的特点,确定其设备结构、工艺参数、零部件。
在设备生产过程中,没有连续运转的安全可靠性,在一定的操作条件下(如温度、压力等)有足够的机械强度;具有优良的耐腐蚀性能;具有良好的密封性能;高效率、低耗能。
关键词:储罐设备结构工艺参数机械强度耐腐蚀强度密封性能前言在与普通机械设备相比,对于处理如气体、液体等流体材料为主的化工设备,其所处的工艺条件和过程都比较复杂。
尤其在化学工业、石油化工部门使用的设备,多数情况下是在高温、低温、高压、高真空、强腐蚀、易燃易爆、有毒的苛刻条件下操作,加之生产过程具有连续性和自动化程度高的特点,这就需要要求在役设备既要安全可靠地运行,又要满足工艺过程的要求,同时还应具有较高的经济技术指标以及易于操作和维护的特点。
生产过程苛刻的操作条件决定了设备必须可靠运行,为了保证其安全运行,防止事故发生,化工设备应该具有足够的能力来承受使用寿命内可能遇到的各种外来载荷。
就是要求所使用的设备具有足够强度、韧性和刚度,以及良好的密封性和耐腐蚀性。
化工设备是由不同的材料制造而成的,其安全性与材料的强度密度切相关。
在相同的设计条件下,提高材料强度无疑可以保证设备具有较高的安全性。
由于材料、焊接和使用等方面的原因,化工设备不可避免地会出现各种各样的缺陷;在选材时充分考虑材料在破坏前吸收变形能量的能力水平,并注意材料强度和韧性的合理搭配。
设备的设计应该确保具有足够的强度抵抗变形能力。
在相同工艺条件下,为了获得较好的效果,设备可以使用不同的结构内件、附件等。
并充分利用材料性能,使用简单和易于保证质量的制造方法,减少加工量,降低制造成本。
化工设备除了要满足工艺条件和考虑经济性能,使设备操作简单,便于维护和控制;在结构设计上就应该考虑易损零部件的可维护性和可修理性。
液化石油气储罐的基本参数和结构
![液化石油气储罐的基本参数和结构](https://img.taocdn.com/s3/m/fcc17dddccbff121dc368364.png)
液化石油气储罐的基本参数和结构一、介质特性液化石油气是在石油天然气开采和炼制过程中,作为副产品而取得到的以丙烷、丁烷为主要成分的碳氢化合物。
在常温常压下为气体,只有在加压或降温的条件下,才变成液体,故称为液化石油气(LPG)。
常温下,液化石油气中的乙烷、乙烯、丙烷、丁烯、丁烷等均为无色无嗅的气体,他们都比水轻,且不溶于水。
液化石油气中的刺鼻味是由在运输及储存过程中特意加入的硫醇和醚等成分产生的,便于泄漏时使用者察觉判断。
A.液化石油气的组成(体积%)氢气5~6、甲烷10、乙烷3~5、乙烯3、丙烷16~20、丙烯6~11、丁烷42~46、丁烯5~6,含5个碳原子以上烃类5~12(残液,戊烷及戊烷以上碳氢化合物)。
B.比重:液化石油气是由多种碳氢化合物组成的,所以液化石油气的液态比重即为各组成成份的平均比重, 如在常温20℃时, 液态丙烷的比重为0.50, 液态丁烷的比重为0.56~0.58, 因此, 液化石油气的液态比重大体可认为在0.51左右, 即为水的一半。
气态的液化石油气比重是空气的1.5~2倍,它扩散后处于空气的下部,可以由高处流向低洼的地方,积存在通风不好和不易扩散的地方。
C.体积膨胀系数液体一般受热膨胀,温度越高膨胀得越厉害。
液化石油气的膨胀系数是水的16倍左右。
根据计算,如果装满液化石油气的情况下,温度每升高1℃,压力就会上升2~3Mpa。
D.饱和蒸气压正常的液化石油气储罐内的压力,就是液化石油气的饱和蒸气压。
所谓的饱和蒸气压,是指在一定的温度下,液化石油气的气态、液态互相平衡时的蒸气压力,即液体的蒸发速度同气体的凝聚速度相等时的压力。
液化石油气的饱和蒸气压随着温度的变化而变化的,温度升高,饱和蒸气压变大。
(丁烷、丁烯0.79MPa 丙烷1.62MPa)根据TSG21《固容规》的规定:常温储存混合液化石油气压力容器规定温度下的工作压力,按照不低于50℃时混合液化石油气组分的实际饱和蒸气压来确定,设计单位在设计图样上注明限定的组分和对应的压力。
0236-2010 液化石油气球形储罐及附属设施设计规定
![0236-2010 液化石油气球形储罐及附属设施设计规定](https://img.taocdn.com/s3/m/b756a6add1f34693daef3eba.png)
Q/SY 中国石油天然气股份有限公司企业标准Q/SY TZ 0236—2010液化石油气球形储罐及附属设施设计规定Design Specification ofLiquefied Petroleum Gas Spherical Tanks and Auxiliary Facilities2010-07-01发布2010-08-01实施目次前言 (III)引言 (IV)1 范围 (1)2 规范性引用文件 (1)3 术语和定义 (1)4 球罐的设计 (2)4.1 基本规定 (2)4.2 球壳及其受压元件的材料 (2)4.3 球罐的结构 (2)4.4 球罐的开口 (3)4.5 球罐的制造与组焊 (3)5 安全附件 (4)5.1 总体要求 (4)5.2 安全阀 (4)5.3 压力检测仪表 (4)5.4 液位检测仪表 (4)5.5 温度计 (4)5.6 梯子平台 (5)6 阀门及工艺管线 (5)6.1 设计原则 (5)6.2 进口工艺管线 (5)6.3 出口工艺管线 (5)6.4 切水工艺管线 (5)6.5 注水工艺管线 (5)6.6 气相平衡工艺管线 (5)6.7 放空工艺管线 (6)6.8 取样口 (6)6.9 其它 (6)7 控制系统 (6)8 厂区布置及消防系统 (6)8.1 设计依据 (6)8.2 厂区布置 (6)8.3 球罐区布置 (7)8.4 防护墙 (7)8.5 消防系统 (8)8.6 检测系统和静电释放 (8)9 装卸栈台的要求 (8)附录A(资料性附录)液化石油气球罐及附件流程图 (9)前言本标准依据GB/T 1.1-2009规定的起草规则编制。
本标准由塔里木油田公司标准化技术委员会提出。
本标准由质量安全环保处归口。
本标准起草单位:中国石油塔里木油田公司、兰州石油机械研究所。
本标准主要起草人:李循迹、陈东风、邹应勇、雷霆、任天树、寇国、宣培传、赵现如、刘福录、朱保国、王万磊。
引言为规范中国石油天然气股份有限公司塔里木油田分公司液化石油气球罐及附属设施的设计,提高液化石油气球罐及附属设施的使用安全性,避免或减少事故的发生,特制定本标准。
液化石油气存放要求
![液化石油气存放要求](https://img.taocdn.com/s3/m/3ac502cfd15abe23482f4d58.png)
一、液化石油气根据消防要求,液化石油气存放达到1立方(500kg)以上(即8个50kg或28个15kg的储罐数量),需到当地消防备案,而且要达到以下设计规范要求,《城镇燃气设计规范-GB50028-2006》:8.5.2 采用自然气化方式,且瓶组气化站配置气瓶的总容积小于1 m3时,瓶组间可设置在与建筑物(住宅、重要公共建筑和高层民用建筑除外)外墙毗连的单层专用房间内,并应符合下列要求:1 建筑耐火等级不应低于二级;2 应是通风良好,并设有直通室外的门;3 与其他房间相邻的墙应为无门、窗洞口的防火墙;4 应配置可燃气体浓度检测报警器;5 室温不应高于45℃,且不应低于0℃。
注:当瓶组气化间独立设置,且面向相邻建筑的外墙为无门、窗洞口的防火墙时,其防火间距不限。
8.5.3 当瓶组气化站配置气瓶的总容积超过1 m3时,应将其设置在高度不低于2.2m 的独立瓶组间内。
独立瓶组间与建、构筑物的防火间距不应小于表8.5.3的规定。
表8.5.3 独立瓶组间与建、构筑物的防火间距(m)注:1 气瓶总容积应按配置气瓶个数与单瓶几何容积的乘积计算。
2 当瓶组间的气瓶总容积大于4m3时,宜采用储罐,其防火间距按本规范第8.4.3和第8.4.4条的有关规定执行;3 瓶组间、气化间与值班室的防火间距不限。
当两者毗连时,应采用无门、窗洞口的防火墙隔开。
8.5.4 瓶组气化站的瓶组间不得设置在地下和半地下室内。
8.5.5 瓶组气化站的气化间宜与瓶组间合建一幢建筑,两者间的隔墙不得开门窗洞口,且隔墙耐火极限不应低于3h。
瓶组间、气化间与建、构筑物的防火间距应按本规范第8.5.3条的规定执行。
8.5.6 设置在露天的空温式气化器与瓶组间的防火间距不限,与明火、散发火花地点和其它建、构筑物的防火间距可按本规范第8.5.3 条气瓶总容积小于或等于2 m3一档的规定执行。
8.5.7 瓶组气化站的四周宜设置非实体围墙,其底部实体部分高度不应低于0.6m。
液化石油气卧式储罐课程设计
![液化石油气卧式储罐课程设计](https://img.taocdn.com/s3/m/10f96f0702768e9950e7386d.png)
前言随着我国石油化工行业的快速发展,液化石油气作为炼油化工的副产品,以其经济高效、清洁环保以及灵活方便的优势占据着城乡能源市场,储配站的液化石油气通常采用球形储罐或卧式储罐进行储存。
液化石油气是一种低碳的烃类混合物,主要由乙烷、乙烯、丙烷、丙烯、丁烷、丁烯及少量的戊烷、戊烯等组成。
常温常压下是气态,在加压和降低温度的条件下变成液体。
气态相对密度为空气的2倍,液化石油气的饱和蒸气压随温度升高而急剧增加,其膨胀系数较大,一般为水的10倍以上,气化后体积膨胀250~300倍。
液化石油气是一种极易燃烧、爆炸的石油化工原料,其储罐属于具有较大危险的储存容器之一。
因此,在满足设施功能要求下,储罐具有良好的安全性是设计的首要问题。
目前我国普遍采用的常温压力贮罐一般有两种形式:球形储罐和圆筒形储罐。
球形储罐与圆筒形储罐相比,前者具有投资少,金属耗量少,占地面积少等优点,但加工制造及安装复杂,焊接工作量大,故安装费用较高。
一般储存总量大于500m3或单罐容积大于200m3时选用球形储罐比较经济。
而圆筒形贮罐具有加工制造安装简单,安装费用少等优点,但金属耗量大占地面积大。
所以在总贮量小于500m3,单罐容积小于100m3时选用卧式贮罐比较经济。
圆筒形贮罐按安装方式可分为卧式和立式两种。
在一般中、小型液化石油气站内大多选用卧式圆筒形贮罐,,只有某些特殊情况下(站内地方受限制等)才选用立式。
本次设计对液化石油气卧式储罐进行设计计算。
主要内容包括储罐工艺参数计算、储罐的结构设计、储罐的强度计算、应力校核、绘制设备总图以及针对一些安全问题提出对策措施。
各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。
目录1 概述....................................................................1.1 设计任务及原始参数....................................................1.2 液化石油气的性质......................................................2 工艺参数计算............................................................2.1 设计压力的确定........................................................2.2 设计温度的确定........................................................2.3 设计存储量的确定......................................................3 储罐的结构设计..........................................................3.1 筒体的材料选择及结构设计..............................................3.2 封头的材料选择及结构设计..............................................3.3 法兰和接管的结构及材料选择............................................3.4 人孔的结构设计........................................................3.5 支座的材料选择及结构设计..............................................3.6 安全装置的设计........................................................3.6.1 安全阀的选用........................................................3.6.2 液位计的选用........................................................3.6.3 压力表的选用........................................................3.7 焊接接头设计..........................................................4 储罐的补强设计..........................................................5 储罐的强度计算及应力校核................................................5.1 储罐的强度计算........................................................5.1.1 圆筒轴向应力........................................................5.1.2 圆筒切向剪应力......................................................5.1.3 封头切向剪应力......................................................5.1.4 圆筒周向应力........................................................5.2 储罐的应力校核........................................................5.2.1 圆筒及封头的应力校核................................................5.2.1 支座的应力校核......................................................6 安全管理................................................................7 设计总结................................................................ 参考文献..................................................................1 概述1.1 设计任务及原始参数本次设计要求根据给定的资料和数据,设计一个液化石油气储配站使用的液化石油气卧式储罐。
200立方米液化石油气卧式储罐计算
![200立方米液化石油气卧式储罐计算](https://img.taocdn.com/s3/m/8e6f127e7fd5360cba1adbdb.png)
b4
圆筒中心至基础表面距离 H v 腹板与筋板(小端)组合截面积 Asa
鞍座底板与基础间的静摩擦 0.4 系数 f 鞍座底板对基础垫板的动摩 擦系数
腹板与筋板(小端)组合截面抗弯截 3.91152e+06 面系数 Z r 筒体轴线两侧螺栓间距 l 承受倾覆力矩螺栓个数 n 承受剪应力螺栓个数 n 2660 2 2
[ ]
xxxxxxxxxxxx GB 150.3-2011 椭圆封头简图
(或由用户输入)
MPa MPa MPa
T 0.90 s = 292.50 T = pT .(KDi 0.5 eh ) = 207.94 2 eh . T T 合格 厚度及重量计算
2 1 Di 2 K = = 1.0000 6 2 h i Kpc Di h = 2[ ]t 0.5 p = 19.51 c
3
xxxxxxxxxxxx NB/T 47042-2014 简 图 MPa MPa ℃ MPa
pc
pT
设计温度 T
t t 封头材料设计温度下许用应力 h
圆筒材料设计温度下许用应力 圆筒材料常温屈服点
h
圆筒内直径 圆筒平均半径 圆筒名义厚度
Di Ra
4000 2012 24 21.7 24 21.7
hn 封头有效厚度 he
封头名义厚度
kg/m3 两封头切线间距离 kg/m 圆筒长度 Lc 封头曲面深度 壳体材料密度 s kg
L
16580 16500
hi
1000 7850
m3
sa
rn re
200 120 14 13.7 250 2274 109180
40(M3)液化石油气储罐设计
![40(M3)液化石油气储罐设计](https://img.taocdn.com/s3/m/68791668ddccda38376baf67.png)
课程设计任务书1.课程设计要求:1)使用国家最新压力容器标准、规范进行设计,掌握典型过程设备设计的全过程。
2)广泛查阅综合分析文献资料的能力,进行设计方法和方案的可行性研究和论证。
3)设计计算尽量采用电算,要求设计思路清晰,计算数据准确、可靠,且正确掌握计算机操作和专业软件的使用。
4)工程图纸要求尽量采用手工绘图。
5)课程设计全部工作由学生本人独立完成。
6)按照标准格式编写说明书并装订成册。
2.原始数据:设计条件表序号项目数值单位备注1 名称液化石油气储罐2 用途储存3 最高工作压力 1.92 MPa 由介质温度确定4 工作温度-20~48 ℃5 公称容积(V g)20 M36 工作压力波动情况可不考虑7 装量系数(φV) 0.98 工作介质液化石油气(易燃)9 使用地点太原市,室外10 安装与地基要求储罐底壁坡度0.01~0.0211 其它要求管口表接管代号公称尺寸连接尺寸标准密封面形式用途或名称A 32 HG20592-1997 RF 液位计接口B 80 HG20592-1997 RF 液相进口管C 80 HG20592-1997 RF 液相出口管D 80 HG20592-1997 RF 安全阀接口E 80 HG20592-1997 RF 排污管F 80 HG20592-1997 RF 放气管G 20 HG20592-1997 RF 温度计接口H 20 HG20592-1997 RF 压力表接口I 500 HG/T21514-2005 / 人孔3.课程设计主要内容:1)1)设备工艺设计2)设备结构设计3)设备强度计算4)技术条件编制5)绘制设备总装配图6)编制设计说明书4.学生应交出的设计文件(论文):1)设计说明书一份;2)总装配图一张 (A1图纸一张);5.主要参考文献:[1] 国家质量技术监督局,GB150-1998《钢制压力容器》,中国标准出版社,1998[2] 国家质量技术监督局,《压力容器安全技术监察规程》,中国劳动社会保障出版社,1999[3] 全国化工设备设计技术中心站,《化工设备图样技术要求》,2000,11[4] 郑津洋、董其伍、桑芝富,《过程设备设计》,化学工业出版社,2001[5] 黄振仁、魏新利,《过程装备成套技术设计指南》,化学工业出版社,2002[6] 国家医药管理局上海医药设计院,《化工工艺设计手册》,化学工业出版社,1996[7] 闫康平,陈匡民,《过程装备腐蚀与防护》[M]第二版,北京:化学工业出版社[8] HG2059~20635-97.钢制法兰、垫片、紧固件[S].前言液化石油气贮罐是盛装液化石油气的常用设备, 由于该气体具有易燃易爆的特点, 因此在设计这种贮罐时, 要注意与一般气体贮罐的不同点, 尤其是安全与防火, 还要注意在制造、安装等方面的特点。
50m3液化石油气储罐计算书
![50m3液化石油气储罐计算书](https://img.taocdn.com/s3/m/1479a03931126edb6f1a1079.png)
第2章 储罐的设计校核储罐是属于压力容器的一种,对于压力容器的设计与制造有着严格的标准,目前通用的压力容器的设计与制造的标准为GB150-2011,GB150-2011也是本次储罐设计的主要参考标准。
2.1 设计储罐的结构形式与尺寸按GB150-2011的要求,根据给定条件和任务书设计储罐的结构形式与尺寸。
2.1.1 储罐的筒体及封头的选材及结构根据储罐内所贮存的介质及标准进行选材。
筒体结构设计为圆筒形。
因为作为容器主体的圆柱形筒体,制造容易,安装内件方便,而且承压能力较好,这类容器应用最广。
封头有多种形式,半球形封头就单位容积的表面积来说为最小,需要的厚度是同样直径圆筒的二分之一,从受力来看,球形封头是最理想的结构形式,但缺点是深度大,直径小时,整体冲压困难,大直径采用分瓣冲压其拼焊工作量也较大。
椭圆形封头的应力情况不如半球形封头均匀,但对于标准椭圆形封头与厚度相等的筒体连接时,可以达到与筒体等强度。
它吸取了蝶形封头深度浅的优点,用冲压法易于成形,制造比球形封头容易,所以选择椭圆形封头,结构由半个椭球面和一圆柱直边段组成。
2.1.2 设计计算2.1.2.1 筒体壁厚计算根据选用的材料的许用应力及标准中的公式确定筒体壁厚。
例如:圆筒的计算压力为2.16 Mpa,容器筒体的纵向焊接接头和封头的拼接接头都采用双面焊或相当于双面焊的全焊透的焊接接头,取焊接接头系数为1.00,全部无损探伤。
取许用应力为163 Mpa 。
壁厚:[]1.0206.121163230006.122D =-⨯⨯⨯=-=cti c p p φσδ㎜ (2.1)钢板厚度负偏差0.8C 1=,查材料腐蚀手册得50℃下液氨对钢板的腐蚀速率小于0.05㎜/年,所以双面腐蚀取腐蚀裕量2C 2=㎜。
所以设计厚度为:81.2212=++=C C d δδ㎜圆整后取名义厚度24㎜。
2.1.2.2封头壁厚计算标准椭圆形封头长短轴之比为2封头计算公式 :[]ctic p p 5.02D -=φσδ (2.2)可见封头厚度近似等于筒体厚度,则取同样厚度。
300立方米液化石油气储罐设计
![300立方米液化石油气储罐设计](https://img.taocdn.com/s3/m/5498fa7caf1ffc4ffe47acbd.png)
.《化工容器设计》课程设计说明书300m3液化石油气储罐设计专业:过程装备与控制工程班级:过控一班学号:姓名:目录1 设计参数的选择 (1)1.1 设计的题目 (1)1.2 原始数据 (1)1.3 储存量 (1)1.4 设计压力 (2)1.5 设计温度 (2)2 容器的结构设计 (3)2.1 筒体的内径和长度的确定 (3)2.2 筒体和封头的厚度设计计算 (3)2.3 人孔设计 (4)2.4 其他零部件的设计 (4)2.4.1 液位计的设计 (4)2.4.2 管口设计 (5)2.5 鞍座选型和结构设计 (8)2.5.1 质量确定 (8)2.5.2 鞍座的安装位置 (9)3 开孔补强设计 (10)3.1 补强设计方法判别 (10)3.2 补强圈计算 (10)3.2.1 圆筒开孔所需补强面积 (10)3.2.2 壳体有效厚度减去计算厚度之外的多余面积 (10)3.2.3 接管有效厚度减去计算厚度之外的多余面积 (11)3.2.4 焊缝金属面积 (11)3.2.5 另加补强面积 (11)4 强度计算 (12)4.1 液压试验 (12)4.2 圆筒轴向弯矩 (12)4.2.1 载荷分布 (12)4.2.2 筒体弯矩 (13)4.3 圆筒轴向应力计算并校核 (14)4.3.1 筒体应力 (14)4.3.2 筒体轴向应力校核 (14)4.4 切向剪应力的计算并校核 (15)4.4.1 圆筒切向剪应力的计算 (15)4.4.2 圆筒被封头加强时,最大剪应力 (15)4.4.3 切向剪应力的校核 (15)4.5 圆筒周向应力的计算并校核 (16)4.5.1 在横截面的最低点处 (16)4.5.2 周向应力校核 (16)5 防护及使用管理 (17)5.1 防腐 (17)5.2 防静电 (17)5.3 热处理要求 (17)5.4 焊接 (17)5.5 使用及管理 (17)1 设计参数的选择1.1 设计的题目300m3液化石油气储罐设计1.2 原始数据表1.1 设计条件序号项目数值单位备注1 名称液化石油气储罐2 用途液化石油气储存3 最高工作压力 1.62 MPa 由介质温度决定4 工作温度-20~48 ℃5 公称容积300 m36 工作压力波情况可不考虑7 装量系数0.98 工作介质液化石油气9 材料16MnR10 焊接要求双面焊,局部无损探伤11 设计寿命20年12 腐蚀速率0.1mm/a13 其他要求1.3 储存量盛装液化气体的压力容器设计存储量:W=ΦVρt式中,装载系数Φ=0.9压力容器设计V=300m³设计温度下的饱和液体密度ρt=500㎏/m³则:存储量W=135.00t1.4 设计压力设计压力取饱和蒸气压,p=1.8MPa 1.5 设计温度工作温度为-20℃~48℃,则取设计温度取50℃2 容器的结构设计2.1 筒体的内径和长度的确定由设计任务书可知:V=300m 3L/Di=8 取 L=8Di 则有: m Di DiDi LD V 332230048484i ==⨯==πππm D 63.384300i 3=⨯=π取内径为3630mm ,由于筒体的内径较大,所以采用钢板卷制,公称直内径DN3700mm.选用标准椭圆形封头表2.1 EHA 椭圆形封头内表面积及容积公称直径(mm ) 总深度H/mm 内表面积A/m 2 容积V/m 3 370096515.30477.0605则筒体长度:mm Di V L 266014370014.3100605.721030042V 2992=⨯⨯⨯-⨯=-=π封头总 圆整:L =26700mm 则实际体积:33922057.301100605.72426700370014.324m mm V LDi V =⨯⨯+⨯⨯=+=封头实际π则体积相对误差为:%5%352.0%100300300057.301%100<=⨯-=⨯-VV V 实际符合设计要求。
15立方米液化石油气储罐设计
![15立方米液化石油气储罐设计](https://img.taocdn.com/s3/m/13401534e87101f69e31953c.png)
中北大学课程设计说明书学院:机械工程与自动化学院专业:过程装备与控制工程题目:(15)M3液化石油气储罐设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交地毕业设计(论文),是我个人在指导教师地指导下进行地研究工作及取得地成果.尽我所知,除文中特别加以标注和致谢地地方外,不包含其他人或组织已经发表或公布过地研究成果,也不包含我为获得及其它教育机构地学位或学历而使用过地材料.对本研究提供过帮助和做出过贡献地个人或集体,均已在文中作了明确地说明并表示了谢意.作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)地规定,即:按照学校要求提交毕业设计(论文)地印刷本和电子版本;学校有权保存毕业设计(论文)地印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目地前提下,学校可以公布论文地部分或全部内容.作者签名:日期:学位论文原创性声明本人郑重声明:所呈交地论文是本人在导师地指导下独立进行研究所取得地研究成果.除了文中特别加以标注引用地内容外,本论文不包含任何其他个人或集体已经发表或撰写地成果作品.对本文地研究做出重要贡献地个人和集体,均已在文中以明确方式标明.本人完全意识到本声明地法律后果由本人承担.作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文地规定,同意学校保留并向国家有关部门或机构送交论文地复印件和电子版,允许论文被查阅和借阅.本人授权大学可以将本学位论文地全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文.涉密论文按学校规定处理.作者签名:日期:年月日导师签名:日期:年月日中北大学课程设计任务书2012/2013 学年第二学期学院:机械工程与自动化学院专业:过程装备与控制工程学生姓名:学号: 1002034231课程设计题目:(15)M3液化石油气储罐设计起迄日期: 06 月 08 日~06月 22日课程设计地点:校内下达任务书日期: 2013年06月08日课程设计任务书课程设计任务书课程设计任务书第一章储罐设计介绍及介质特性1、液化石油气储罐介绍液化石油气储罐是盛放液化石油气地常用设备,常用储罐一般有两种形式:球形储罐和圆筒形储罐.球形贮罐和圆筒形贮罐相比: 前者具有投资少, 金属耗量少, 占地面积少等优点, 但加工制造及安装复杂, 焊接工作量大, 故安装费用较高.一般贮存总量大于500m 3或单罐容积大于200m 3时选用球形贮罐比较经济。
液化烃储罐设计压力标准
![液化烃储罐设计压力标准](https://img.taocdn.com/s3/m/15311567e3bd960590c69ec3d5bbfd0a7856d576.png)
液化烃储罐设计压力标准1. 引言1.1 背景介绍液化烃储罐是石油化工行业中常见的重要设备,用于储存液化烃产品如液化石油气、液化天然气等。
随着石油化工行业的发展和液化烃产品的需求增长,液化烃储罐的设计和安全问题备受关注。
设计压力标准作为液化烃储罐设计中的重要参数,直接影响着储罐的安全性和运行效率。
在液化烃储罐设计中,设计压力标准是指在一定的工作条件下,储罐能承受的最大压力值。
设计压力标准的合理选择不仅可以确保储罐结构的稳定性和安全性,还可以提高设备的利用率和延长使用寿命。
制定合理的设计压力标准对于液化烃储罐的设计和运行至关重要。
本文将对液化烃储罐设计压力标准的制定依据、计算方法、常见设计压力标准的比较、影响因素以及优化方向进行探讨,旨在为研究人员和工程师提供更深入的理解和指导。
通过对设计压力标准的综合分析和研究,可以进一步提高液化烃储罐的设计水平和安全性,为石油化工行业的发展做出贡献。
1.2 研究意义研究液化烃储罐设计压力标准的意义在于确保储罐结构的安全性和可靠性,保障液化烃的储存和运输过程中的安全。
液化烃是一种易燃易爆的化学品,一旦储罐设计不合理或压力标准设置不当,就会引发严重的安全事故,危害人员生命财产安全。
研究设计压力标准的意义在于规范化液化烃储罐设计过程,确保其符合安全性要求。
通过研究不同设计压力标准的比较和优化,可以提高储罐设计的效率和经济性,为相关行业提供更好的技术支持。
研究液化烃储罐设计压力标准的意义在于促进工程安全、提高效率,推动液化烃行业的可持续发展。
1.3 研究方法研究方法是液化烃储罐设计压力标准制定过程中的关键环节,它直接影响到储罐的安全性和可靠性。
研究人员需要收集和整理液化烃储罐设计压力标准的相关资料,包括国内外相关文献、标准和规范等。
通过对液化烃储罐设计压力标准的制定依据进行分析,确定合理的设计参数和假设条件。
然后,利用压力容器设计软件或计算工具,进行设计压力标准的计算和校核。
液化石油气储罐设计说明书
![液化石油气储罐设计说明书](https://img.taocdn.com/s3/m/1ebb77200066f5335a812177.png)
液化石油气储罐设计说明书目录一.设计条件及任务1.1设计条件1.2设计任务二.设计计算2.1设计温度及压力2.2筒体设计及封头选择2.3筒体和封头的厚度2.4校核计算2.5开孔及补强三.材料选择3.1压力容器主体材料3.2压力容器零部件材料四.结构设计4.1筒体和封头设计4.2支座设计4.3法兰设计4.4液面计设计4.5人孔结构设计4.6焊接接头设计及焊条选择五.水压及气密性试验六.结束语七.参考资料一.设计条件及任务1.1设计条件储罐经常置于室外,罐内液氨的温度和压力直接受到大气温度的影响,在夏季储罐经常受太阳暴晒,随着气温的变化,储罐的操作压力也不断变化。
但大多数地区夏季最高气温也达不到50℃,因此储罐的操作温度为常温,设计温度为50℃。
1.2设计任务学习械设计的一般方法,独立完成简单化工设备储罐的设计任务,达到对复杂的化工设备施工图的识图能力的要求以及具有使用CAD绘制工程设计图的能力。
二.设计计算2.1设计温度及压力2.1.1设计温度储罐的工作压力压力随外界环境的变化而变化,大多数地区夏季最高气温也达不到50℃,因此储罐的操作温度为常温,设计温度取50℃。
2.1.2设计压力常温储存液化石油气压力容器的工作压力按照不低于50℃时液化石油气主要组分丙烯的饱和蒸汽压确定,50℃时丙烯的饱和蒸汽压为1.999(绝压).故Pw=1.899(表压),安全阀开启压力Pz=(1.05—1.1)Pw,Pz=2.0889MPa,取设计压力P≥Pz,取P=2.1MPa。
(忽略液体静压力则计算压力Pc=P=2.1MPa)2.2筒体设计及封头选择① V=30m ³,由4π=V ×2Di ×L ’(折算长度L ’=3Di)得,Di=2335㎜,取DN=2300㎜.。
② DN=2300时,查表得标准椭圆形封头V1=1.7588m ³,由V=4π×2Di ×L(L 为筒体环焊缝之间距离)得L=6380 ㎜③ 由筒体实际体积V ’=4π× 2D × L 得V ’=30.0249m ³,又V ’=4π2D × L ’得L ’=7227㎜.。
液化石油气储罐定期检验
![液化石油气储罐定期检验](https://img.taocdn.com/s3/m/47a658669b89680203d825c5.png)
10 液化石油气储罐定期检验技术要求1.钢板应符合GB713—2014《承压设备用钢板》标准,制造前应逐张进行超声检测,符合NB/T47013.3-2015超声检测的Ⅱ级为合格。
所用锻件应符合NB/T47008-2010规定的Ⅲ级要求,管子应符合GB /T8163-2008标准。
2.设备所有焊接接头采用全焊透结构,容器焊后应进行整体消除应力热处理,热处理后严禁施焊。
3.设备制造完毕,以0.5MPa的压缩空气检测补强圈的焊接接头质量,合格后以2.66MPa的压力进行水压试验,最后以2.13MPa的压力对容器进行气密性试验。
4.试验合格后,表面除锈,外表面涂红丹、银粉各两遍,罐体水平中心线四周涂一条宽度不小于150mm的红色带,壳体中心线(此红色带不涂)喷印中心标志,标志的左侧喷印“严禁烟火”,右侧喷印“禁止施焊”字样字高不小于200mm。
5.本容器安装时应候斜0.003坡度,使排渣口处于最低位置,本容器首次充装(包括检修后)应充氮气置换装置,严禁直接充装。
6.管口方位按本图,所有未注明接管伸出长度为150mm,束节伸出长度为60mm。
液面计上要标有最高液位警戒线。
7.本设备管口法兰须与管路连接的应配套法兰。
8.安全阀型号:A42Y一25C,DN100。
并应在安全阀排出口装设导管,将排放介质引至安全地点,并进行妥善处理,不得直接排入大气。
9.设计使用年限(预期):10年。
(指在正常平稳操作及正常维护下根据介质对容器不大于腐蚀余量的均匀腐蚀情况下的年限)10.异种钢焊接接头应表面进行100%磁粉检测,按NB/147013.4-2015标准MT-Ⅰ级合格。
11.吊耳与吊耳、吊耳与壳体连接的所有焊缝应进行外观检查,不得存在裂纹与未熔合缺陷,且须按JNB/T47013.4—2015进行MT检测Ⅰ级合格。
吊耳仅作吊空罐用。
假定前述50m3液化石油气储罐与2014年1月制造完成并投入使用,拟定于2017年1月进行首次定期检验,经过查阅出厂资料和使用运行记录发现有如下情况:1.设计、制造资料齐全,有监督检验证书,使用登记证齐全,没有2014~2016年的年度检验报告。