哈工大信与系统实验电气学院
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一常用连续时间信号的实现
1 实验目的
( 1) 了解连续时间信号的特点;
( 2) 掌握连续时间信号表示的方法;
(3)熟悉MATLAB基本绘图命令的应用。
2 实验原理
( 1) 信号的定义:信号是带有信息的随时间变化的物理量或物理现象。
( 2) 信号的描述:时域法和频域法。
(3) 信号的分类:信号的分类方法很多,可以从不同角度对信号进行分类。在信号与系统分
析中,根据信号与自变量的特性,信号可分为确定信号与随机信号,周期信号与非周期信号,连续时间信号与离散时间信号,能量信号与功率信号,时限与频限信号,物理可实现信号。
3涉及的MATLAB函数
(1) 正弦信号;
( 2) 指数信号;
( 3) 单位冲激信号;
( 4) 单位阶跃信号;
( 5) 抽样信号。
4实验内容与方法参考给出的程序并观察产生的信号,并通过改变相关参数(例如频率,周期,幅值,相位,显示时间段等) ,进一步熟悉这些工程实际与理论研究中常用信号的特征。
5实验要求
(1)在MATLAB中输入程序,验证实验结果,并将实验结果存入指定存储区。
( 2) 要求通过对验证性实验的练习,自行编制完整的程序,实现以下几种信号的模拟,并得出实验结果。
(1)f(t) (t),取t 0〜10 (2)f(t) t (t),取t 0〜10
(3)f(t) 5e t 5e2t,取t 0〜10 (4) f(t) cos100t cos2000t,取t= 0〜0.2
(5) f (t) 4e 0.5t cos t,取t=0〜10 (3)在实验报告中写出完整的自编程序,并给出实验结果。
6实验结果
(1) f (t) (t),取t 0〜10t=-1:0.01:10;
程序和输出如下y=heaviside(t);
plot(t,y);
axis([-1,10,-0.1,1.2])
(3) f (t) 5e t 5e2t,取t 0〜10
程序和输出如下
A=5;a=-1;b=-2;
t=0:0.001:10;
ft=A*exp(a*t)-A*exp(b*t);
plot(t,ft)
⑷ f(t) coslOOt cos2000t,取t=0〜0.2
程序和输出如下
A=100;B=2000;
t=0:0.001:0.2;
ft=cos(A*t)+cos(B*t);
plot(t,ft)
实验二常用LTI 系统的频域分析
1. 实验目的
(1)掌握连续时间信号傅里叶变换和傅里叶反变换的实现方法以及傅里叶变换的特性实现方
法;
( 2) 了解傅立叶变换的特点及其应用;
(3)掌握MATLAB相关函数的调用格式及作用;
( 4) 掌握傅里叶变化的数值计算方法以及绘制信号频谱图的方法;
(5)能够应用MATLAB对系统进行频域分析。
2. 实验原理
( 1) 傅里叶级数的三角函数形式
( 2) 傅立叶级数的指数形式
( 3) 非周期信号的傅里叶变换
3.涉及的MATLAB函数
( 1) fourier 函数;( 2) ifourier 函数;
(3) quad8 函数;(4) quad1 函数;
( 5) freds 函数;
4.实验内容与方法
周期信号的傅里叶级数MATLAB实现;
利用MATLAB画出下图所示的周期三角波信号的频谱。
5.实验要求
(1)在MATLAB中输入程序,验证实验结果,并将实验结果存入指定存储区。
(2)在实验报告中写出完整的自编程序,并给出实验结果。
6.实验结果
实验程序如下
%三角波脉冲信号的傅里叶级数实现
N=10;
n1=-N:-1;c1=-4*j*sin(n 1*pi/ 2)/pi A2./n1.A2; c0=0;
n2=1:N;c2=-4*j*sin(n2*pi/ 2)/pi A2./n242;
cn=[c1 c0 c2];n=-N:N;
subplot 211;stem(n,abs(cn));ylabel('Cn 的幅度'); subplot 212;stem(n,angle(cn));ylabel('Cn 的相位');
xlabel('\omega/\omega_0')
输出频谱如下
实验三连续LTI 系统的复频域分析
1. 实验目的
(1)掌握连续时间信号拉普拉斯变换和拉普拉斯反变换的实现方法以及拉普拉斯变换的特性
实现方法;
(2)了解拉普拉斯变换的特点及其应用;
(3)掌握MATLAB相关函数的调用格式及作用;
(4)能够应用MATLAB对系统进行复频域分析。
2. 实验原理
( 1)拉普拉斯变换
( 2)拉普拉斯的收敛域
( 3)拉普拉斯反变换计算方法 (4)微分方程的拉普拉斯变换解法
( 5)系统函数H( s)
3.涉及的MATLAB函数
( 1) residue 函数
( 2) laplace 函数
( 3) i laplace 函数
( 4) ezplot 函数
( 5) roots 函数
4.实验内容与方法
已知连续时间信号 f (t) sin(t) (t ) ,求出该信号的拉普拉斯变换,并用MATLAB 绘制拉普拉斯变换的曲面图。
5.实验要求
(1)在MATLAB中输入程序,验证实验结果,并将实验结果存入指定存储区。
(2)在实验报告中写出完整的自编程序,并给出实验结果。
6. 实验结果程序如下
%绘制单边正弦信号拉普拉斯变换曲面图程序
clf;
a=-0.5:0.08:0.5; b=-1.99:0.08:1.99;
[a,b]=meshgrid(a,b); d=ones(size(a)); c=a+i*b;
c=c.*c;
c=c+d;
c=1./c;
c=abs(c); mesh(a,b,c); surf(a,b,c);
axis([-0.5,0.5,-2,2,0,15]);
title(' 单边正弦信号拉普拉斯变换曲面图'); colormap(hsv);
输出结果如下