离散数学命题逻辑习题答案

合集下载

离散数学课后习题答案 (邱学绍)

离散数学课后习题答案 (邱学绍)

第一章 命题逻辑习题1.11.解 ⑴不是陈述句,所以不是命题。

⑵x 取值不确定,所以不是命题。

⑶问句,不是陈述句,所以不是命题。

⑷惊叹句,不是陈述句,所以不是命题。

⑸是命题,真值由具体情况确定。

⑹是命题,真值由具体情况确定。

⑺是真命题。

⑻是悖论,所以不是命题。

⑼是假命题。

2.解 ⑴是复合命题。

设p :他们明天去百货公司;q :他们后天去百货公司。

命题符号化为q p ∨。

⑵是疑问句,所以不是命题。

⑶是悖论,所以不是命题。

⑷是原子命题。

⑸是复合命题。

设p :王海在学习;q :李春在学习。

命题符号化为p ∧q 。

⑹是复合命题。

设p :你努力学习;q :你一定能取得优异成绩。

p →q 。

⑺不是命题。

⑻不是命题⑼。

是复合命题。

设p :王海是女孩子。

命题符号化为:⌝p 。

3.解 ⑴如果李春迟到了,那么他错过考试。

⑵要么李春迟到了,要么李春错过了考试,要么李春通过了考试。

⑶李春错过考试当且仅当他迟到了。

⑷如果李春迟到了并且错过了考试,那么他没有通过考试。

4.解 ⑴⌝p →(q ∨r )。

⑵p →q 。

⑶q →p 。

⑷q → p 。

习题1.21.解 ⑴是1层公式。

⑵不是公式。

⑶一层: p ∨q ,⌝p二层:⌝p ↔q所以,)()(q p q p ↔⌝→∨是3层公式。

⑷不是公式。

⑸(p →q )∧⌝(⌝q ↔( q →⌝r ))是5层公式,这是因为 一层:p →q ,⌝q ,⌝r 二层:q →⌝r 三层:⌝q ↔( q →⌝r ) 四层:⌝(⌝q ↔( q →⌝r ))2.解 ⑴A =(p ∨q )∧q 是2层公式。

真值表如表2-1所示:表2-1⑵p q p q A →→∧=)(是3层公式。

真值表如表2-2所示:表2-2⑶)()(q p r q p A ∨→∧∧=是3层公式。

真值表如表2-3所示:表2-3⑷)()()(r q r p q p A ∨∧∨⌝∧∨=是4层公式。

真值表如表2-4所示:3.解 ⑴p q p A ∨⌝∧⌝=)(真值表如表2-5所示:表2-5所以其成真赋值为:00,10,11;其成假赋值为01。

离散数学第3版习题答案

离散数学第3版习题答案

离散数学第3版习题答案离散数学是一门重要的数学学科,它研究的是离散对象和离散结构的数学理论。

离散数学的应用广泛,涉及到计算机科学、信息技术、通信工程等领域。

在学习离散数学的过程中,习题是不可或缺的一部分,通过解答习题可以加深对知识的理解和掌握。

本文将为大家提供《离散数学第3版》习题的答案,希望能对学习者有所帮助。

第一章:命题逻辑1.1 习题答案:1. (a) 真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(b) 命题“p ∧ q”的真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(c) 命题“p ∨ q”的真值表如下:p | q | p ∨ qT | T | TT | F | TF | T | TF | F | F(d) 命题“p → q”的真值表如下:p | q | p → qT | T | TT | F | FF | T | TF | F | T1.2 习题答案:1. (a) 命题“¬(p ∧ q)”等价于“¬p ∨ ¬q”。

(b) 命题“¬(p ∨ q)”等价于“¬p ∧ ¬q”。

(c) 命题“¬(p → q)”等价于“p ∧ ¬q”。

(d) 命题“¬(p ↔ q)”等价于“(p ∧ ¬q) ∨ (¬p ∧ q)”。

1.3 习题答案:1. (a) 命题“p → q”的否定是“p ∧ ¬q”。

(b) 命题“p ∧ q”的否定是“¬p ∨ ¬q”。

(c) 命题“p ↔ q”的否定是“(p ∧ ¬q) ∨ (¬p ∧ q)”。

(d) 命题“p ∨ q”的否定是“¬p ∧ ¬q”。

1.4 习题答案:1. (a) 命题“p → q”与命题“¬p ∨ q”等价。

离散数学课后答案详细

离散数学课后答案详细

第一章命题逻辑基本概念课后练习题答案4.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.5.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;6.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.7.因为p与q不能同时为真.13.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

离散数学之命题逻辑考试参考答案2

离散数学之命题逻辑考试参考答案2

离散数学之命题逻辑考试1、分析下列语句那些是命题,哪些不是命题。

(每小题1分,正确 “T ”错误写 “F ”,共10分) (1)、北京是中国首都。

(2)、大连是多么美丽啊! (3)、素数只有有限个。

(4)、请勿吸烟! (5)、6+8≥14。

(6)、明天有离散数学课吗? (7)、不存在最大素数。

(8)、9<+Y X 。

(9)、所有素数都是奇数。

(10)实践出真理。

2、设P 表示命题“我学习努力”。

Q 表示命题“我考试通过”。

R 表示命题“我很快乐”。

(每小题2分,共6分) 试用符号表示下列命题:1) 我考试没通过,但我很快乐。

2) 如果我努力学习,那么我考试通过。

3) 如果我学习努力并且考试通过,那么我很快乐。

3、将下列命题符号化:(每小题2分,共14分)1) 我美丽而又快乐。

2) 如果我快乐,那么天就下雨。

3) 电灯不亮,当且仅当灯泡或开关发生故障。

4) 仅当你去,我将留下。

5) 如果老张和老李都不去,他就去。

6) 你不能既吃饭又看电视。

7) 张刚总是在图书馆看书,除非图书馆不开门或张刚生病。

4、给出下列公式的真值表 (每小题5分,共10分)⑴ )(R Q P ∨→⑵ )(Q P ∨⌝⇄)(Q P ⌝∧⌝5、证明下列等价式。

(每小题3分,共12分) 1) P Q P Q P ⇔⌝∧∨∧)()( 2) P Q Q P P ⌝→⌝⇔→→)(3) C B A C B A →⌝∧⇔∨→)()(4) C A D B C D B C B A →→∧⇔∨→∧→∧))(())(())((6、求下列命题公式的主析取范式和主合取范式。

(每小题10分,共20分) 1) )()(Q R Q P →∧→ 2) R Q P →∨⌝)(7、对于下列一组前提,请给出它们的有效结论并证明。

(每小题4分,共8分)a) 如果我努力学习,那么我能通过考试,但我没有通过考试。

b) 统计表有错误,其原因有两个:一个原因是数据有错误;另一个原因是计算有错误。

离散数学习题解答-第2章命题逻辑

离散数学习题解答-第2章命题逻辑

(2) 有 4 个不同的命题变元,使公式的真值为 0 的赋值有 p 0, q 0, r 1, w 0 ;
p 0, q 1, r 0, w 1 ; p 0, q 1, r 1, w 0 ; p 1, q 1, r 0, w 1 ;
3
p 1, q 1, r 1, w 1 ; 使 公 式 的 真 值 为 1 有 赋 值 有 p 0 , q 0 ,r 0 ,w ; 0 p 0, q 0, r 0, w 1 ; p 0, q 0, r 1, w 1 ; p 0, q 1, r 0, w 0 ; p 0, q 1, r 1, w 1 ; p 1, q 0, r 0, w 0 ; p 1, q 0, r 0, w 1 ; p 1, q 0, r 1, w 0 ; p 1, q 0, r 1, w 1 ; p 1, q 1, r 0, w 0 ; p 1, q 1, r 1, w 0 ;
((p q) s) (r t )
3. 列出下列各公式的所有赋值, 并指出哪些赋值使公式的真值为 1, 哪些赋值使公式的真值 为 0。 (1) ( p q) r r (2) (w q) ( p r ) w (3) (( p q) ( p q)) p (4) ((u q) (t r )) (r u) (5) (m q) ((q r ) s) (6) (m q) (t r ) q 解 : (1) 有 3 个 不 同 的 命 题 变 元 , 使 公 式 的 真 值 为 0 的 赋 值 有 p 0, q 0, r 0 ;
p 0, q 0, r 1 ; p 0, q 1, r 0 ; p 0, q 1, r 1 ; p 1, q 0, r 1 ; p 1, q 1, r 0 ; p 1, q 1, r 1 . 使公式的真值为 1 有赋值有 p 1, q 0, r 0 .

离散数学-第二章命题逻辑等值演算习题及答案

离散数学-第二章命题逻辑等值演算习题及答案

第二章作业 评分要求:1. 每小题6分: 结果正确1分; 方法格式正确3分; 计算过程2分. 合计48分2. 给出每小题得分(注意: 写出扣分理由)3. 总得分在采分点1处正确设置.一. 证明下面等值式(真值表法, 解逻辑方程法, 等值演算法, 三种方法每种方法至少使用一次):说明证1. p ⇔(p ∧q)∨(p ∧¬q)解逻辑方程法设 p ↔((p ∧q)∨(p ∧¬q)) =0, 分两种情况讨论:⎩⎨⎧=⌝∧∨∧=0)()(1)1(q p q p p 或者 ⎩⎨⎧=⌝∧∨∧=1)()(0)2(q p q p p (1)(2)两种情况均无解, 从而, p ↔(p ∧q)∨(p ∧¬q)无成假赋值, 为永真式.等值演算法(p ∧q)∨(p ∧¬q)⇔ p ∧(q ∨¬q)∧对∨的分配率⇔ p ∧1 排中律⇔ p 同一律真值表法用真值表法和解逻辑方程法证明相当于证明为永真式1. (¬p→q)→(¬q∨p)解(¬p→q)→(¬q∨p)⇔(p∨q)→(¬q∨p)蕴含等值式⇔(¬p∧¬q)∨(¬q∨p)蕴含等值式, 德摩根律⇔(¬p∧¬q)∨¬q ∨p结合律⇔p∨¬q吸收律, 交换律⇔M1因此, 该式的主析取范式为m0∨m2∨m32. (¬p→q)∧(q∧r)解逻辑方程法设(¬p→q)∧(q∧r) =1, 则¬p→q=1且q∧r=1,解得q=1, r=1, p=0 或者q=1, r=1, p=1, 从而所求主析取范式为m3∨m7, 主合取范式为M0∧M1∧M2∧M4∧M5∧M6等值演算法(¬p→q)∧(q∧r)⇔ (p∨q)∧(q∧r) 蕴含等值式⇔ (p∧q∧r)∨(q∧r) ∧对∨分配律, 幂等律⇔ (p∧q∧r) ∨ (p∧q∧r)∨(⌝p∧q∧r) 同一律, 矛盾律, ∧对∨分配律⇔m7∨ m3主合取范式为M0∧M1∧M2∧M4∧M5∧M63. (p↔q)→r解逻辑方程法设(p↔q)→r =0, 解得p=q=1, r=0 或者p=q=0, r=0, 从而所求主合取范式为M0∧M6, 主析取范式为m1∨m2∨m3∨m4∨m5∨m7等值演算法(p↔q)→r⇔ ((p→q)∧(q→p))→r 等价等值式⇔⌝((p→q)∧(q→p))∨r 蕴含等值式⇔ (p∧⌝q)∨(q∧⌝p)∨r 德摩根律, 蕴含等值式的否定(参见PPT)⇔ (p∨q∨r)∧(⌝q∨⌝p∨r) ∨对∧分配律, 矛盾律, 同一律⇔M0∧ M6主析取范式为m1∨m2∨m3∨m4∨m5∨m74. (p→q)∧(q→r)解等值演算法(p→q)∧(q→r)⇔ (⌝p∨q)∧(⌝q∨r) 蕴含等值式⇔ (⌝p∧⌝q)∨(⌝p∧r)∨(q∧r) ∧对∨分配律, 矛盾律, 同一律⇔ (⌝p∧⌝q∧r)∨(⌝p∧⌝q∧⌝r) ∨ (⌝p∧q∧r)∨(⌝p∧⌝q∧r) ∨ (p∧q∧r)∨(⌝p∧q∧r)⇔m1∨ m0∨ m3∨ m7主合取范式为M2∧ M4∧ M5∧ M6.解逻辑方程法设(p → q) ∧ (q → r) = 1, 则p → q =1 且q → r =1.前者解得: p=0, q=0; 或者p=0, q=1; 或者p=1, q=1.后者解得: q=0, r=0; 或者q=0, r=1; 或者q=1, r=1.综上可得成真赋值为000, 001, 011, 111, 从而主析取范式为m0∨ m1∨ m3∨ m7, 主合取范式为M2∧ M4∧ M5∧ M6.真值表法公式(p → q) ∧ (q从而主析取范式为m0∨ m1∨ m3∨ m7, 主合取范式为M2∧ M4∧ M5∧ M6.。

《离散数学》题库及答案

《离散数学》题库及答案

《离散数学》题库及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?()(1)Q=>Q→P(2)Q=>P→Q(3)P=>P→Q(4)P(PQ)=>P答:(1),(4)2、下列公式中哪些是永真式?()(1)(┐PQ)→(Q→R)(2)P→(Q→Q)(3)(PQ)→P(4)P→(PQ)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式()(1)P=>PQ(2)PQ=>P(3)PQ=>PQ(4)P(P→Q)=>Q(5)(P→Q)=>P(6)P(PQ)=>P答:(2),(3),(4),(5),(6)4、公式某((A(某)B(y,某))zC(y,z))D(某)中,自由变元是(变元是()。

答:某,y,某,z5、判断下列语句是不是命题。

若是,给出命题的真值。

((1)北京是中华人民共和国的首都。

(2)陕西师大是一座工厂。

),约束)(3)你喜欢唱歌吗?(4)若7+8>18,则三角形有4条边。

(5)前进!(6)给我一杯水吧!答:(1)是,T(2)是,F(3)不是(4)是,T(5)不是(6)不是6、命题“存在一些人是大学生”的否定是(),而命题“所有的人都是要死的”的否定是()。

答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为()。

(1)只有在生病时,我才不去学校(2)若我生病,则我不去学校(3)当且仅当我生病时,我才不去学校(4)若我不生病,则我一定去学校答:(1)QP(2)PQ(3)PQ(4)PQ8、设个体域为整数集,则下列公式的意义是()。

(1)某y(某+y=0)(2)y某(某+y=0)答:(1)对任一整数某存在整数y满足某+y=0(2)存在整数y对任一整数某满足某+y=09、设全体域D是正整数集合,确定下列命题的真值:(1)某y(某y=y)()(2)某y(某+y=y)()(3)某y(某+y=某)()(4)某y(y=2某)()答:(1)F(2)F(3)F(4)T10、设谓词P(某):某是奇数,Q(某):某是偶数,谓词公式某(P(某)Q(某))在哪个个体域中为真()2(1)自然数(2)实数(3)复数(4)(1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。

应用离散数学命题逻辑逻辑门电路题库试卷习题及答案

应用离散数学命题逻辑逻辑门电路题库试卷习题及答案

§1.6 逻辑门电路习题1.61.用非门、与门和或门构造产生下列输出的电路。

(1)y x +(2)x y x )(+ (3)z y x xyz +(4)))((z y z x ++解: (1)(2)x(3)(4)xyx +xy x )(+zy x xyz +))((z y z x ++2.试设计一个电路来实现五个人的少数服从多数的表决系统。

解:设A、B、C、D、E分别表示五个人表决,S表示表决结果,根据少数服从多数的原则,共有如下几种情况S=1.A B C D E S0 0 1 1 1 10 1 0 1 1 10 1 1 0 1 10 1 1 1 0 11 0 0 1 1 11 0 1 0 1 11 0 1 1 0 11 1 0 0 1 11 1 0 1 0 11 1 1 0 0 10 1 1 1 1 11 0 1 1 1 11 1 0 1 1 11 1 1 0 1 11 1 1 1 0 11 1 1 1 1 1得S=(⌝A∧⌝B∧C∧D∧E)∨(⌝A∧B∧⌝C∧D∧E)∨(⌝A∧B∧C∧⌝D∧E)∨(⌝A ∧B∧C∧D∧⌝E)∨(A∧⌝B∧⌝C∧D∧E)∨(A∧⌝B∧C∧⌝D∧E)∨(A∧⌝B∧C∧D ∧⌝E)∨∨(A∧B∧⌝C∧⌝D∧E)∨(A∧B∧⌝C∧D∧⌝E)∨(A∧B∧C∧⌝D∧⌝E)∨(⌝A∧B∧C∧D∧E)∨(A∧⌝B∧C∧D∧E)∨(A∧B∧⌝C∧D∧E)∨(A∧B∧C∧⌝D ∧E)∨(A∧B∧C∧D∧⌝E)∨(A∧B∧C∧D∧E)=(A∧B∧(C∨D∨E))∨(((⌝A∧B)∨(A∧⌝B))∧(E∧((⌝C∧D)∨(C∧⌝D)))∨(((⌝A∧B)∨(A∧⌝B))∧(C∧D))=(A∧B∧(C∨D∨E))∨(((⌝A∧B)∨(A ∧⌝B))∧((E∧((⌝C∧D)∨(C∧⌝D))∨(C∧D))=(A∧B∧(C∨D∨E))∨((⌝A ∨⌝B)∧(A∨B)∧(C∨D)∧(C∨E)∧(D∨E))据此得到组合逻辑电路图如下:3.试设计一个由四个开关控制的电灯混合控制器,使得当电灯在打开时,按动任意一个开关都可关闭它,在电灯关闭时,按动任意一个开关都可打开它。

离散数学第1-2章参考答案-命题逻辑谓词逻辑

离散数学第1-2章参考答案-命题逻辑谓词逻辑

Page 49 第17题解:(1)令①P:李明学习努力;②Q:李明成绩好;③R:李明不热衷于玩扑克;(2)已知条件符号化,即①P→Q:如果李明学习努力,那么他成绩好;②R→P:如果李明不热衷于玩扑克,那么他就努力学习;(3)所求结论符号化,即①¬Q→¬R:李明成绩不好,所以李明热衷于玩扑克;(4)证明:原命题符号化为P→Q,R→P ¬Q→¬R;①P→Q P规则;②R→P P规则;③R→Q T规则①②;④Q∨¬R T规则③;⑤¬Q→¬R T规则④;(5)得证。

Page 50 第32题(2)解: P∨(¬P→(Q∨(¬Q→R)));⇔ P∨(P∨(Q∨(Q∨R)));⇔P∨Q∨R;①主合取范式为:P∨Q∨R;因为 P∨Q∨R ⇔∏M0 ⇔∑m1,2,3,4,5,6,7;②主析取范式为:∨(¬P∧¬Q∧R)∨(¬P∧Q∧¬R)∨(¬P∧Q∧R)∨(P∧¬Q∧¬R)∨(P∧¬Q∧R)∨(P∧Q∧¬R)∨(P∧Q∧R);Page 50 第32题(4)解: (P∧¬Q∧R)∨(¬P∧Q∧¬S);⇔ ((P∧¬Q∧R)∧(S∨¬S))∨((¬P∧Q∧¬S)∧(R∨¬R));⇔(P∧¬Q∧R∧S)∨(P∧¬Q∧R∧¬S)∨(¬P∧Q∧R∧¬S)∨(¬P∧Q∧¬R∧¬S);①主析取范式为:(¬P∧Q∧¬R∧¬S)∨(¬P∧Q∧R∧¬S)∨(P∧¬Q∧R∧¬S)∨(P∧¬Q∧R∧S) ⇔∑m4,6,10,11⇔∏M0,1,2,3,5,7,8,9,12,13,14,15;②主合取范式为:(¬P∨¬Q∨¬R∨¬S)∧(¬P∨¬Q∨¬R∨S)∧(¬P∨¬Q∨R∨¬S) ∧(¬P∨¬Q∨R∨S)∧(¬P∨Q∨¬R∨S)∧(¬P∨Q∨R∨S)∧(P∨¬Q∨¬R∨¬S) ∧(P∨¬Q∨¬R∨S)∧(P∨Q∨¬R∨¬S)∧(P∨Q∨¬R∨S)∧(P∨Q∨R∨¬S)∧(P∨Q∨R∨S);Page 50 第32题(6)解: (P→Q)→(P∨R);⇔¬(¬P∨Q)∨(P∨R);⇔(P∧¬Q)∨(P∨R);⇔(P∨R)∧(P∨¬Q∨R);⇔ ((P∨R)∨(¬Q∧Q))∧(P∨¬Q∨R);⇔(P∨¬Q∨R)∧(P∨Q∨R)∧(P∨¬Q∨R);⇔(P∨¬Q∨R)∧(P∨Q∨R);①主合取范式为:(P∨¬Q∨R)∧(P∨Q∨R);⇔∏M0,2;⇔∑m1,3,4,5,6,7;①主合取范式为:(¬P∨¬Q∨R)∧(¬P∨Q∨R)∧(P∨¬Q∨¬R)∧(P∨¬Q∨R)∧(P∨Q∨¬R)∧(P∨Q∨R);Page 51 第37题(2)解: P→Q P→(P∧Q)①P P规则(附加前提);②P→Q P规则;③Q T规则①,②,I;④P∧Q T规则①,③,I;⑤P→(P∧Q) CP规则;Page 51 第37题(4)解: (P∨Q)→R ⇒ (P∧Q)→R①P∧Q P规则(附加前提);②P T规则①,I;③P∨Q T规则②,I;④(P∨Q)→R P规则;⑤R T规则③,④,I;⑥(P∧Q)→R CP规则;Page 51 第38题(3)解:﹁(P→Q)→﹁(R∨S),((Q→P)∨﹁R),R ⇒ P↔Q①﹁(P↔Q) P规则(假设前提);②﹁((P→Q)∧(Q→P)) T规则①,I;③R P规则;④((Q→P)∨﹁R) P规则;⑤R→(Q→P) T规则④,I;⑥(Q→P) T规则③⑤,I;⑦R∨S T规则③,I;⑧﹁(P→Q)→﹁(R∨S) P规则;⑨(R∨S)→(P→Q) T规则⑧,I;⑩(P→Q) T规则⑦⑨,I;⑪(P→Q)∧(Q→P) T规则⑥⑩,I;⑫得证间接证明法②⑪;Page 51 第39题(1)解:(1)符号化已知命题①P:明天是晴天;②Q:明天下雨;③R:我去看电影;④S:我不看书;条件符号化:P∨Q,P→R,R→S;结论符号化:①﹁S→Q(2)证明:P∨Q,P→R,R→S ⇒﹁S→Q①P→R P规则;②R→S P规则;③P→S T规则①②;④﹁S→﹁P T规则③,I;⑤P∨Q P规则;⑥﹁P→Q T规则⑤,I;⑦﹁S→Q T规则④⑥,I;Page 51 第39题(2)解:(1)符号化已知命题①P:明天不下雨;②Q:能够买到车票;③R:我去参观计算机展览会;条件符号化:P∧Q→R;结论符号化:①﹁R→﹁P(2)证明:P∨Q,P→R,R→S ⇒﹁S→Q①P∧Q→R P规则;②﹁R P规则(附加前提);③﹁(P∧Q) T规则①②;④﹁P∨﹁Q T规则③,I;⑤也就是说或者明天下雨或者买不到票,所以原命题说不能参加计算机展览的原因只是明天下雨是不完全的,故原命题无效。

离散数学命题逻辑习题答案

离散数学命题逻辑习题答案

二年级叙事作文:枪战达人_350字
我们想去后院走走,没想到刚出门就看到后院玩的那些人,他们问我和朋友:“你们和我们玩会儿呗?”我思考了一会,回答:“行啊!走。


到达了后院,他站在大石头边宣布:“规则:四人一队,一人两把武器,开始玩吧!”刚开始,我被投票选为队长,随后我下令:“前进,进入掩体,让对方不能发现我们!”因为和我们的掩体最近的只有一棵树,所以我又命令一个人:“在右边观察‘战场’上的一举一动!”
战场上,激战已经非常激烈,可我们一动不动,没有参与。

直到共五队只剩三队时,我大喊:“冲啊!”把其他两个队一举歼灭了。

枪战结束了,我们欢呼:“终于胜利了!”第二名在一边唠叨:“你们不是也损失了两个。

”第三名嘀咕:“你们肯定了。


就这样,枪战在我们的欢声笑语中结束了。

离散数学练习题及答案6

离散数学练习题及答案6

离散数学练习题及答案6离散数学是一门研究离散结构及其运算规律的数学学科,它在计算机科学、信息科学、电子工程等领域有着广泛的应用。

在学习离散数学的过程中,练习题是不可或缺的一部分。

通过解答练习题,我们可以巩固所学的知识,提高问题解决能力。

本文将为大家提供一些离散数学练习题及其答案,希望对大家的学习有所帮助。

1. 集合与命题逻辑(1) 设集合A={1,2,3,4,5},集合B={3,4,5,6,7},求A与B的交集、并集和差集。

答案:A与B的交集为{3,4,5},并集为{1,2,3,4,5,6,7},A与B的差集为{1,2}。

(2) 已知命题p:"我喜欢数学",命题q:"我喜欢编程",求命题“我既不喜欢数学也不喜欢编程”的否定。

答案:命题“我既不喜欢数学也不喜欢编程”的否定为“我喜欢数学或者喜欢编程”。

2. 关系与函数(1) 设A={1,2,3,4},B={a,b,c,d},关系R={(1,a),(2,b),(3,c),(4,d)},判断关系R是否为A到B的函数。

答案:关系R是A到B的函数,因为每个元素在关系R中只有一个对应的值。

(2) 设函数f(x)=2x+1,求f(3)的值。

答案:将x=3代入函数f(x)=2x+1,得到f(3)=2*3+1=7。

3. 图论(1) 给定一个无向图G,顶点集合V={A,B,C,D,E},边集合E={(A,B),(A,C),(B,D),(C,D),(D,E)},求图G的邻接矩阵。

答案:邻接矩阵为:A B C D EA 0 1 1 0 0B 1 0 0 1 0C 1 0 0 1 0D 0 1 1 0 1E 0 0 0 1 0(2) 给定一个有向图G,顶点集合V={A,B,C,D,E},边集合E={(A,B),(A,C),(B,D),(C,D),(D,E)},求图G的出度和入度。

答案:图G的出度为:A的出度为2,B的出度为1,C的出度为1,D的出度为2,E的出度为0;图G的入度为:A的入度为0,B的入度为1,C的入度为1,D的入度为2,E的入度为1。

离散数学第1-2章参考答案-命题逻辑谓词逻辑

离散数学第1-2章参考答案-命题逻辑谓词逻辑

Page 49 第17题解:〔1〕令①P:李明学习努力;②Q:李明成绩好;③R:李明不热衷于玩扑克;〔2〕条件符号化,即①P→Q:假如李明学习努力,那么他成绩好;②R→P:假如李明不热衷于玩扑克,那么他就努力学习;〔3〕所求结论符号化,即①¬Q→¬R:李明成绩不好,所以李明热衷于玩扑克;〔4〕证明:原命题符号化为P→Q,R→P ¬Q→¬R;①P→Q P规那么;②R→P P规那么;③R→Q T规那么①②;④Q∨¬R T规那么③;⑤¬Q→¬R T规那么④;〔5〕得证。

Page 50 第32题〔2〕解: P∨(¬P→(Q∨(¬Q→R)));⇔ P∨(P∨(Q∨(Q∨R)));⇔P∨Q∨R;①主合取范式为:P∨Q∨R;因为 P∨Q∨R ⇔∏M0 ⇔∑m1,2,3,4,5,6,7;②主析取范式为:∨(¬P∧¬Q∧R)∨(¬P∧Q∧¬R)∨(¬P∧Q∧R)∨(P∧¬Q∧¬R)∨(P∧¬Q∧R)∨(P∧Q∧¬R)∨(P∧Q∧R);Page 50 第32题〔4〕解: (P∧¬Q∧R)∨(¬P∧Q∧¬S);⇔ ((P∧¬Q∧R)∧(S∨¬S))∨((¬P∧Q∧¬S)∧(R∨¬R));⇔(P∧¬Q∧R∧S)∨(P∧¬Q∧R∧¬S)∨(¬P∧Q∧R∧¬S)∨(¬P∧Q∧¬R∧¬S);①主析取范式为:(¬P∧Q∧¬R∧¬S)∨(¬P∧Q∧R∧¬S)∨(P∧¬Q∧R∧¬S)∨(P∧¬Q∧R∧S) ⇔∑m4,6,10,11⇔∏M0,1,2,3,5,7,8,9,12,13,14,15;②主合取范式为:(¬P∨¬Q∨¬R∨¬S)∧(¬P∨¬Q∨¬R∨S)∧(¬P∨¬Q∨R∨¬S) ∧(¬P∨¬Q∨R∨S)∧(¬P∨Q∨¬R∨S)∧(¬P∨Q∨R∨S)∧(P∨¬Q∨¬R∨¬S) ∧(P∨¬Q∨¬R∨S)∧(P∨Q∨¬R∨¬S)∧(P∨Q∨¬R∨S)∧(P∨Q∨R∨¬S)∧(P∨Q∨R∨S);Page 50 第32题〔6〕解: (P→Q)→(P∨R);⇔¬(¬P∨Q)∨(P∨R);⇔(P∧¬Q)∨(P∨R);⇔(P∨R)∧(P∨¬Q∨R);⇔ ((P∨R)∨(¬Q∧Q))∧(P∨¬Q∨R);⇔(P∨¬Q∨R)∧(P∨Q∨R)∧(P∨¬Q∨R);⇔(P∨¬Q∨R)∧(P∨Q∨R);①主合取范式为:(P∨¬Q∨R)∧(P∨Q∨R);⇔∏M0,2;⇔∑m1,3,4,5,6,7;①主合取范式为:(¬P∨¬Q∨R)∧(¬P∨Q∨R)∧(P∨¬Q∨¬R)∧(P∨¬Q∨R)∧(P∨Q∨¬R)∧(P∨Q∨R);Page 51 第37题〔2〕解: P→Q P→(P∧Q)①P P规那么〔附加前提〕;②P→Q P规那么;③Q T规那么①,②,I;④P∧Q T规那么①,③,I;⑤P→(P∧Q) CP规那么;Page 51 第37题〔4〕解: (P∨Q)→R ⇒ (P∧Q)→R①P∧Q P规那么〔附加前提〕;②P T规那么①,I;③P∨Q T规那么②,I;④(P∨Q)→R P规那么;⑤R T规那么③,④,I;⑥(P∧Q)→R CP规那么;Page 51 第38题〔3〕解:﹁(P→Q)→﹁(R∨S),((Q→P)∨﹁R),R ⇒ P↔Q①﹁(P↔Q) P规那么〔假设前提〕;②﹁((P→Q)∧(Q→P)) T规那么①,I;③R P规那么;④((Q→P)∨﹁R) P规那么;⑤R→(Q→P) T规那么④,I;⑥(Q→P) T规那么③⑤,I;⑦R∨S T规那么③,I;⑧﹁(P→Q)→﹁(R∨S) P规那么;⑨(R∨S)→(P→Q) T规那么⑧,I;⑩(P→Q) T规那么⑦⑨,I;⑪(P→Q)∧(Q→P) T规那么⑥⑩,I;⑫得证间接证明法②⑪;Page 51 第39题〔1〕解:〔1〕符号化命题①P:明天是晴天;②Q:明天下雨;③R:我去看电影;④S:我不看书;条件符号化:P∨Q,P→R,R→S;结论符号化:①﹁S→Q〔2〕证明:P∨Q,P→R,R→S ⇒﹁S→Q①P→R P规那么;②R→S P规那么;③P→S T规那么①②;④﹁S→﹁P T规那么③,I;⑤P∨Q P规那么;⑥﹁P→Q T规那么⑤,I;⑦﹁S→Q T规那么④⑥,I;Page 51 第39题〔2〕解:〔1〕符号化命题①P:明天不下雨;②Q:可以买到车票;③R:我去参观计算机展览会;条件符号化:P∧Q→R;结论符号化:①﹁R→﹁P〔2〕证明:P∨Q,P→R,R→S ⇒﹁S→Q①P∧Q→R P规那么;②﹁R P规那么〔附加前提〕;③﹁(P∧Q) T规那么①②;④﹁P∨﹁Q T规那么③,I;⑤也就是说或者明天下雨或者买不到票,所以原命题说不能参加计算机展览的原因只是明天下雨是不完全的,故原命题无效。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

离散数学命题逻辑练习题及答案

离散数学命题逻辑练习题及答案

离散数学命题逻辑练习题及答案本文档包含了一些离散数学中的命题逻辑练习题及其详细答案。

在离散数学中,命题逻辑是一种符号逻辑系统,它研究命题的形式和逻辑推理的规则。

这些练习题旨在帮助读者巩固对命题逻辑基本概念的理解,并锻炼逻辑推理能力。

练习题1.写出下列命题的否定形式:a)如果今天下雨,我就不出门。

b)数学和计算机科学是紧密相关的学科。

c)所有猫都有尾巴。

d)如果一个数是偶数,它肯定可以被2整除。

2.判断以下陈述是否为命题,并给出理由:a)蓝色是我最喜欢的颜色。

b)2加2等于4。

c)这是一个错误的陈述。

d)如果明天下雨,我就会带伞。

3.使用真值表判断以下复合命题的真值:a)P ∧ (¬Q ∨ R)b)(P ∧ Q) ∨ (¬R ∧ S)c)(P → Q) ∧ (R → S)d)(P ∨ Q) ∧ (¬P ∨ Q)4.使用推理规则化简以下逻辑表达式:a)~((P ∧ Q) ∨ R)b)~(P ∨ (Q ∧ R))c)(~P ∧ Q) ∨ ((~P ∨ Q) ∧ R)d)(P → Q) ∨ (¬Q → ¬P)答案a)今天下雨而且我不出门。

b)数学和计算机科学不是紧密相关的学科。

c)存在不具备尾巴的猫。

d)存在一个偶数,它不能被2整除。

a)不是命题。

因为它表达了个人偏好,无法判断真假。

b)是命题。

因为它可以明确地判断为真。

c)不是命题。

因为它没有明确的真值。

d)是命题。

因为它可以根据明天的天气情况来判断真假。

P Q R¬Q ∨ R P ∧ (¬Q ∨ R)T T T T TT T F F FT F T T TT F F T TF T T T FF T F T FF F T T FF F F T FP Q R P ∧ Q¬R ∧ S(P ∧ Q) ∨ (¬R ∧ S) T T T T F TT T F T F TT F T F T TT F F F T TF T T F F FF T F F F FF F T F F FF F F F F FP Q R P → Q R → S(P → Q) ∧ (R → S) T T T T T TT T F T F FT F T F T FT F F F T FF T T T T TF T F T F TF F T T T TF F F T T TP Q(P ∨ Q)¬P ∨ Q(P ∨ Q) ∧ (¬P ∨ Q) T T T T TT F T F FF T T T TF F F F F~((P ∧ Q) ∨ R)= ~(P ∧ Q) ∧ ~R~(P ∨ (Q ∧ R))= ~P ∧ ~(Q ∧ R)= ~P ∧ (~Q ∨ ~R)(~P ∧ Q) ∨ ((~P ∨ Q) ∧ R)= (~P ∨ ~P) ∧ (Q ∨ Q) ∧ (Q ∨ R) ∧ (~P ∨ R) = ~P ∧ Q ∨ R(P → Q) ∨ (¬Q → ¬P)= (~P ∨ Q) ∨ (Q ∨ ¬P)= (~P ∨ Q) ∨ (¬P ∨ Q)= T以上是一些离散数学命题逻辑的练习题及答案。

离散数学习题课带答案

离散数学习题课带答案

三.重言蕴涵式的证明方法
方法1.列真值表。(即列永真式的真值表) (略) 方法2.假设前件为真,推出后件也为真。 方法3.假设后件为假,推出前件也为假。 证明 (A(B∨C) )∧(D∨E)∧((D∨E)A) B∨C 方法2 证明:
设前件(A(B∨C) )∧(D∨E)∧((D∨E)A) 为真,则 A(B∨C) , D∨E, (D∨E)A 均为真。 由D∨E, (D∨E)A 均为真,得 A为真, 又由A(B∨C)为真,得 B∨C为真。所以 (A(B∨C) )∧(D∨E)∧((D∨E)A) B∨C
方法3 (P→Q)→(P→(P∧Q)) (P∨Q)∨(P∨(P∧Q)) (P∧Q)∨P∨(P∧Q) (P∧Q)∨(P∧(Q∨Q))∨(P∧Q) (P∧Q)∨(P∧Q)∨(P∧Q)∨(P∧Q) (P∧Q)∨(P∧Q)∨(P∧Q)∨(P∧Q) 可见,该公式的主析取范式含有全部(四个) 小项,这表明(P→Q)→(P→(P∧Q))是永真式
六. 逻辑推理 熟练掌握三种推理方法。 (1) (A∨B)(C∧D), (D∨E)P AP 1.直接推理 ⑴ (A∨B)(C∧D) P ⑵ (A∨B)∨(C∧D) T ⑴ E ⑶ (A∧B) ∨(C∧D) T ⑵ E ⑷ (A∨C)∧(B∨C)∧(A∨D)∧(B∨D) T ⑶ E ⑸ A∨D T ⑷ I ⑹ AD T⑸ E ⑺ (D∨E)P P ⑻ (D∨E)∨P T ⑺ E ⑼ (D∧E)∨P T ⑻ E ⑽ (D ∨P) ∧(E∨P) T ⑼ E ⑾ D∨P T ⑽ I ⑿ DP T ⑾ E ⒀AP T ⑹⑿ I
(4)某些汽车比所有的火车都慢,但至少有一列火车比每辆 汽车快 C(x):x是汽车;H(x):x是火车;S(x,y): x比y慢 x(C(x)∧y(H(y)→S(x,y)))∧z(H(z)∧y(C(y) →S(y,z)))

离散数学参考答案

离散数学参考答案

1.(单选题)A.明年“五一”是晴天。

B.这朵花多好看呀!。

C.这个男孩真勇敢啊! D.明天下午有会吗?答题: A. B. C. D. (已提交)参考答案:A问题解析:2.(单选题) 在上面句子中,是命题的是( )A.1+101=110 B.中国人民是伟大的。

C.这朵花多好看呀! D.计算机机房有空位吗?答题: A. B. C. D. (已提交)参考答案:B问题解析:3.(单选题) 在上面句子中,是命题的是( )A.如果天气好,那么我去散步。

B.天气多好呀!C.x=3。

D.明天下午有会吗?答题: A. B. C. D. (已提交)参考答案:A问题解析:4.(单选题) 在上面句子中( )是命题下面的命题不是简单命题的是( )A.3 是素数或4 是素数B.2018 年元旦下大雪C.刘宏与魏新是同学 D.圆的面积等于半径的平方与π之积答题: A. B. C. D. (已提交)参考答案:A问题解析:5.(单选题) 下面的表述与众不一致的一个是( )A.P :广州是一个大城市 B.ØP :广州是一个不大的城市C.ØP :广州是一个很不小的城市 D.ØP :广州不是一个大城市答题: A. B. C. D. (已提交)参考答案:C问题解析:6.(单选题) 设,P:他聪明;Q:他用功。

在命题逻辑中,命题:“他既聪明又用功。

”可符号化为:()A.PÙQ B.P®QC.PÚØQ D.PÙØQ答题: A. B. C. D. (已提交)参考答案:A问题解析:7.(单选题) 设:P :刘平聪明。

Q:刘平用功。

在命题逻辑中,命题:“刘平不但聪明,而且用功”可符号化为:()A.PÙQ B.ØPÚQC.PÚØQ D.PÙØQ答题: A. B. C. D. (已提交)参考答案:A问题解析:8.(单选题)设:P:他聪明;Q:他用功。

《离散数学》同步练习参考答案

《离散数学》同步练习参考答案

华南理工大学网络教育学院《离散数学》练习题参考答案第一章命题逻辑一填空题(1)设:p:派小王去开会。

q:派小李去开会。

则命题:“派小王或小李中的一人去开会”可符号化为:(p∨⌝q) ∧ (⌝p∨q) 。

(2)设A,B都是命题公式,A⇒B,则A→B的真值是T。

(3)设:p:刘平聪明。

q:刘平用功。

在命题逻辑中,命题:“刘平不但不聪明,而且不用功”可符号化为:p∧q。

(4)设A , B 代表任意的命题公式,则蕴涵等值式为A → B⇔⌝A∨B。

(5)设,p:径一事;q:长一智。

在命题逻辑中,命题:“不径一事,不长一智。

”可符号化为:⌝ p→⌝q 。

(6)设A , B 代表任意的命题公式,则德∙摩根律为⌝(A ∧ B)⇔⌝A ∨⌝B)。

(7)设,p:选小王当班长;q:选小李当班长。

则命题:“选小王或小李中的一人当班长。

”可符号化为:(p∨⌝q) ∧ (⌝p∨q) 。

(8)设,P:他聪明;Q:他用功。

在命题逻辑中,命题:“他既聪明又用功。

”可符号化为:P∧Q 。

(9)对于命题公式A,B,当且仅当 A → B 是重言式时,称“A蕴含B”,并记为A⇒B。

(10)设:P:我们划船。

Q:我们跑步。

在命题逻辑中,命题:“我们不能既划船又跑步。

”可符号化为:⌝ (P∧Q) 。

(11)设P , Q是命题公式,德·摩根律为:⌝(P∨Q)⇔⌝P∧⌝Q)。

(12)设P:你努力。

Q:你失败。

在命题逻辑中,命题:“除非你努力,否则你将失败。

”可符号化为:⌝P→Q。

(13)设p:小王是100米赛跑冠军。

q:小王是400米赛跑冠军。

在命题逻辑中,命题:“小王是100米或400米赛跑冠军。

”可符号化为:p∨q。

(14)设A,C为两个命题公式,当且仅当A→C为一重言式时,称C可由A逻辑地推出。

二.判断题1.设A,B是命题公式,则蕴涵等值式为A→B⇔⌝A∧B。

(⨯)2.命题公式⌝p∧q∧⌝r是析取范式。

(√)3.陈述句“x + y > 5”是命题。

离散数学命题逻辑练习题及答案

离散数学命题逻辑练习题及答案

离散数学命题逻辑练习题及答案1. 命题逻辑基础1.1 命题逻辑概念1.什么是命题?答案:命题是可以判断真假的陈述句。

2.命题的两个基本操作是什么?答案:命题的两个基本操作是合取和析取。

1.2 命题逻辑表达式3.将以下中缀表达式转换为后缀表达式:((P ∧ Q) → (R ∨ S)) ∨ T答案:后缀表达式为P Q ∧ R S ∨ → T ∨4.使用真值表验证以下命题逻辑公式是否为重言式(永远为真):(P ∨ Q) ∧ (¬P ∨ Q) ⟺ Q答案:P Q(P ∨ Q) ∧ (¬P ∨ Q)QT T T TT F T FF T T TF F F F结论:命题逻辑公式(P ∨ Q) ∧ (¬P ∨ Q)是重言式。

1.3 命题逻辑推理5.使用命题逻辑进行推理,判断以下论断是否成立(推理过程可用真值表验证):P → Q, Q → R ∈ L, ∴ P → R答案:P Q R P → Q Q → R P → R T T T T T TT T F T F FT F T F T TT F F F T FF T T T T TF T F T F TF F T T T TF F F T T T结论:论断P → R成立。

2. 命题逻辑的应用2.1 命题逻辑在计算机科学中的应用6.命题逻辑在计算机科学中有哪些应用?答案:命题逻辑在计算机科学中的应用包括逻辑电路设计、计算机程序的正确性验证、控制流分析等。

7.请简要说明命题逻辑在逻辑电路设计中的应用。

答案:命题逻辑在逻辑电路设计中用于描述逻辑电路的功能和工作原理。

通过使用命题逻辑符号和逻辑运算,可以建立逻辑电路的逻辑模型,进而进行电路的设计、优化和验证。

2.2 命题逻辑推理的应用8.请举一个命题逻辑推理在实际生活中的应用例子。

答案:命题逻辑推理在实际生活中的一个应用例子是法庭判案。

法庭根据掌握的事实和证据,通过进行命题逻辑推理来确定被告是否犯罪或无罪,从而作出最终的判决。

离散数学之命题逻辑考试答案

离散数学之命题逻辑考试答案

离散数学之命题逻辑考试1、分析下列语句那些是命题,哪些不是命题。

(每小题1分,正确 “T ”错误写 “F ”,共10分) (1)、北京是中国首都。

(2)、大连是多么美丽啊! (3)、素数只有有限个。

(4)、请勿吸烟! (5)、6+8≥14。

(6)、明天有离散数学课吗? (7)、不存在最大素数。

(8)、9<+Y X 。

(9)、所有素数都是奇数。

(10)实践出真理。

2、设P 表示命题“我学习努力”。

Q 表示命题“我考试通过”。

R 表示命题“我很快乐”。

(每小题2分,共6分) 试用符号表示下列命题:1) 我考试没通过,但我很快乐。

2) 如果我努力学习,那么我考试通过。

3) 如果我学习努力并且考试通过,那么我很快乐。

3、将下列命题符号化:(每小题2分,共14分)1) 我美丽而又快乐。

2) 如果我快乐,那么天就下雨。

3) 电灯不亮,当且仅当灯泡或开关发生故障。

4) 仅当你去,我将留下。

5) 如果老张和老李都不去,他就去。

6) 你不能既吃饭又看电视。

7) 张刚总是在图书馆看书,除非图书馆不开门或张刚生病。

4、给出下列公式的真值表 (每小题5分,共10分)⑴ )(R Q P ∨→⑵ )(Q P ∨⌝⇄)(Q P ⌝∧⌝5、证明下列等价式。

(每小题3分,共12分) 1) P Q P Q P ⇔⌝∧∨∧)()( 2) P Q Q P P ⌝→⌝⇔→→)(3) C B A C B A →⌝∧⇔∨→)()(4) C A D B C D B C B A →→∧⇔∨→∧→∧))(())(())((6、求下列命题公式的主析取范式和主合取范式。

(每小题10分,共20分) 1) )()(Q R Q P →∧→ 2) R Q P →∨⌝)(7、对于下列一组前提,请给出它们的有效结论并证明。

(每小题4分,共8分)a) 如果我努力学习,那么我能通过考试,但我没有通过考试。

b) 统计表有错误,其原因有两个:一个原因是数据有错误;另一个原因是计算有错误。

离散数学--数理逻辑测验答案

离散数学--数理逻辑测验答案

数理逻辑测验一、 符号化下列命题1. 如果张三和李四都不去,他就去。

(命题符号)解: 设P :张三去;Q :李四去;R :他去。

R Q P →⌝∧⌝)(。

2. 我将去上街,仅当我有时间。

(命题符号)解:设P :我将去上街;Q :我有时间。

)Q P (→。

3. 有些人喜欢所有的花。

(谓词符号)解:设P(x):x 是人; Q(y):y 是花; R(x ,y):x 喜欢y 。

))),()()(()()((y x R y Q y x P x →∀∧∃。

4. 所有运动员都敬佩某些教练。

(谓词符号)解:设P(x):x 是运动员;Q(y):y 是教练;R(x ,y):x 敬佩y 。

))),()()(()()((y x R y Q y x P x ∧∃→∀。

5. 每个人或者喜欢乘汽车,或者喜欢骑自行车。

(谓词符号)解:设P(x):x 是人;Q(x):x 喜欢乘汽车;R(x):x 喜欢骑自行车;)))()(()()((x R x Q x P x ∨→∀;二、简答题1、写出R Q P →→)(的析取范式,合取范式。

合取范式))析取范式--(()()()(R Q R P R Q P RQ P RQ P ∨⌝∧∨=--∨⌝∧=∨∨⌝⌝=→→2、设P :今天下雨。

Q :我去上街。

R :我有空。

用自然语言写出以下命题:)(P R Q ⌝∧↔,)(Q R ∨⌝。

解:)(P R Q ⌝∧↔:我去上街当且仅当我有空并且今天不下雨; )(Q R ∨⌝:我没空,并且我不去上街。

3、设Q P ,的真值为0,S R ,的真值为1,求以下命题的真值: )()(S R Q P ∨⌝∧↔,)()))(((S R P R Q P ⌝∨→⌝∧→∨⌝。

解:)()(S R Q P ∨⌝∧↔的真值:1))()((.1)(,1)(,1)(,1)(.0,0,1,1,1,1,0,0=∨⌝∧↔∴=⌝∨=⌝∧=∨⌝=↔∴=⌝=⌝=⌝=⌝∴====S R Q P S R P R S R Q P S R Q P S R Q P)()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值:.1))()))((((1))()((.1))()))((((;0))))((((,1))((真值为;真值为即:S R P R Q P S R Q P S R P R Q P P R Q P P R Q ⌝∨→⌝∧→∨⌝∨⌝∧↔=⌝∨→⌝∧→∨⌝∴=⌝∧→∨⌝=⌝∧→∴4、写出谓词公式)),()()()(()),()()((z y Q z y P y y x Q x P x ∃∧∃→→∀的前束范式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(~P Q R) (~P ~ Q R) (主合)
由 ~ P R (~ P (Q ~ Q) (R ~ R)) ((P ~ P) (Q ~ Q) R)
(~P ~ Q ~ R) (~P ~ Q R) (~P Q ~ R) (~P Q R) (P ~ Q R) (P Q R) (主析)
习题一 12(4) 分别用真值表法和等价变换法求公式
(P (Q R)) (~P (~Q ~R))的主合取范式和主析取范式 真值表法略. (P (Q R)) (~P (~Q ~R)) (~P (Q R)) ( P (~Q ~R)) (~P Q) (~P R ) (P ~Q) (P ~R ) (~P Q (R ~R)) (~P (Q ~Q) R ) (P ~Q (R ~R) ) (P (Q ~Q) ~R ) (~P Q R) (~P Q ~R) (~P ~Q R) (P ~Q R) (P ~Q ~R) (P Q ~R) (主合)
胜利。N (6)客观规律是不依人们意志为转移的。Y(1) (7)到2020年,中国的国民生产总值将赶上和超过美国。
Y(待定) (8)凡事都有例外。悖论
习题一 3.
构造下列公式的真值表,判断哪些是永真式、矛盾 式或可满足式:
解:构造真值表略. (1)可满足式 (2)可满足式 (3)永真式, 可满足式 (4)矛盾式
(~P ~Q ~R) (P Q R) (主析)
习题一 14.
• 从A、B、C、D4人中派2人出差,要求满足下述条件:如 果A去,则必须在C或D中选一人同去;B和C不能同时去; C和D不能同去。用构造范式的方法决定出选派方案。
若X表示“X去出差”, 可得公式 (A (C D)) ~(B C) ~(C D) (~A (C ~D) (~C D) ) (~B ~C ) (~C ~D ) …… (~A ~B ~C ~D) (~A ~B ~C D) (~A ~B C ~D) (~A B ~C ~D) (A ~B ~C D) (A ~B C ~D) (~A B ~C D) (A B ~C D) 可得派法: {B, D} {A, C} {A, D}
收律、交换律)
习题一 6.
如果P Q R Q,能否断定P R? 如果P Q R Q,能否断定P R? 如果~ P ~ R ,能否断定P R? 解: 1) P Q R Q时,不能断定P R. 因为当Q
T时, P和R可以取不同的值. 2) P Q R Q时,不能断定P R. (由Q F推) 3) ~ P ~ R时, 两端同时取“非”, 即P R.
(~P Q R) (~P ~ Q R)
由对应于公式取值为1的全部解释得主析取范式:
(~P ~ Q ~ R) (~P ~ Q R) (~P Q ~ R) (~P Q R) (P ~ Q R) (P Q R)
习题一 12(3)
解法二 (等价变换法) P (R (Q P)) ~ P (R (~ Q P)) ~ P R ~ P R (Q ~ Q )
习题一 5.证明下列各等价式
(3) P (Q R) (P Q) (P R) 证明 : P (Q R) ~ P Q R
(~ P Q) (~ P R) (P Q) (P R)
习题一 5.证明下列各等价式
(4)(P Q) (Q R) (R P)
(P Q) (Q R) (R P) 证明 : (P Q) (Q R) (R P) (Q (P R) ) (R P) (分配律) (Q (R P) ) (P R (R P) ) (Q R) (P Q) (R P) (分配律、吸
利用逻辑联结词把下列命题翻译成符号逻辑形式: (4)占据空间的、有质量而且不断变化的对象称为物质。 令P:占据空间; Q:有质量; R:变化; S:物质;
译为(P Q R) S (5)他今天不是乘火车去了北京,就是随旅游团去了九寨
沟。 令P:去北京; Q:去九寨沟;译为P Q (6)小张身体单薄,但是极少生病,并且头脑好使。 令P:身体单薄; Q:少生病; R:头脑好使; 译为PQ R
Hale Waihona Puke 习题一 1.利用逻辑联结词把下列命题翻译成符号逻辑形式:
(7)不识庐山真面目,只缘生在此山中。 令P:身在此山中; Q:识庐山真面目;译为P ~ Q (8)两个三角形相似当且仅当它们对应角相等或者对应边
成比例。
令P:两个三角形相似; Q:对应角相等; R:对应边成比例;译为 P (Q R)
(9)如果一个整数能被6整除,那么它就能被2和3整除。 如果一个整数能被3整除,那么它的各位数字之和也能 被3整除。
令P:被6整除; Q:被2整除; R:被3整除; S:各位数字之和被3整 除。译为(P (Q R)) (R S)
习题一 2.
判别下面各语句是否是命题,如果是命题,说出其真值。 (1)BASIC语言是最完美的程序设计语言。Y(0) (2)这件事大概是小王干的。Y(待定) (3)x2=64. N (4)可导的一元实函数都是连续函数。Y(1) (5)我们要发扬连续作战的作风,再接再厉,争取更大的
习题一 13 (3)分别用真值表法 和等价变换法求公式
P (R (Q P)) 的主合取范式和主析取 范式
P Q R R (Q P) P (R (Q P))
000
0
1
001
1
1
010
0
1
011
0
1
100
0
0
101
1
1
110
0
0
解法一 (真值表法)
111
1
1
由对应于公式取值为0的全部解释得主合取范式:
习题一 1.
利用逻辑联结词把下列命题翻译成符号逻辑形式: (1)他既是本片的编剧,又是导演。 令P:编剧; Q:导演; 译为PQ (2)银行利率一降低,股价随之上扬。 令P:利率降低; Q:股价上扬; 译为P Q (3)尽管银行利率降低,股价却没有上扬。 译为P ~ Q 或 ~(P Q)
习题一 1.
相关文档
最新文档