主变压器差动保护动作的原因及处理精选文档

合集下载

变压器差动保护跳闸的分析与处理

变压器差动保护跳闸的分析与处理

变压器差动保护跳闸的分析与处理本文主要是论述变压器由于差动保护接线错误和综保装置参数的设置的不恰当引起误动作原因分析和处理。

1、故障现象我厂银山前区35kV变电站共有2台容量为31.5MVA主变压器,担负着该区域三个厂矿的电力供应,整个系统于2005年6月10号建成投运。

2005年9月13号下午4点27分,35kV变电站主控制室突然发出声光报警显示2#主变因比例差动保护动作跳闸(差流动作电流:1.3 A),当时所带负荷为3000KW。

检修人员立即赶到现场,首先对2#主变本体及其附属设备进行检查发现:油枕油位正常,无渗油迹象;变压器油温油色及外观正常;高低压侧绕组绝缘电阻合格;变压器高低压侧绕组做直流电阻测试数据合格;变压器高低压侧避雷装置耐压试验合格;变压器的瓦斯保护既无报警也未伴随差动保护同时动作,根据以上情况初步判断变压器本体并没有任何问题,而是一次保护的误动作。

2、原因分析及处理既然初步确定变压器本体没有异常,那么造成变压器差动保护的动作原因是什么呢?我们在对外供用户进行检查的时候发现:我们的外供10kV用户在启动大功率电动机的时间与2#主变跳闸的时间一致,而且综合保护装置显示流经差动继电器的电流(以下简称差流)瞬间的突然升高,根据这一现象我们对变压器当时的数据进行认真地分析:根据变压器差动保护的基本原理,按环流法接线构成的差动保护,如果电流互感器具有理想的特性的话,则在正常和外部故障时,差动继电器中是没有电流的。

考虑电流互感器励磁特性不完全相同实际情况,差流也应该很小并接近零,并且是一个基本稳定的不随负荷的改变而改变的数值。

但是从综合自动化装置所采集到的数值看却是:在变压器跳闸以前变压有功负荷为3000kw,10kV侧互感器二次电流为0.38A.。

差流为1.15A并且随着负荷的增大而增大,在外部启动功率约400kW的电动机时差流数值超过了1.3A (设计院给定定值:比例差动门槛值:1.3A),从而引发了2#主变因比例差动保护动作跳闸造成事故。

主变压器差动保护动作的原因及处理

主变压器差动保护动作的原因及处理

主变压器差动保护动作的原因及处理(最新版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的安全管理制度,如通用安全、交通运输、矿山安全、石油化工、建筑安全、机械安全、电力安全、其他安全等等制度,想了解不同制度格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of safety management systems, such as general safety, transportation, mine safety, petrochemical, construction safety, machinery safety, electrical safety, other safety, etc. systems, I want to know the format and writing of different systems ,stay tuned!主变压器差动保护动作的原因及处理主变压器差动保护动作跳闸的原因是:(1)主变压器及其套管引出线发生短路故障。

浅议主变差动保护误动的成因及解决办法

浅议主变差动保护误动的成因及解决办法

浅议主变差动保护误动的成因及解决办法摘要:介绍了主变差动保护原理,从新建变电站、运行中变电站、改造变电站三个方面进行说明分析了主变差动保护误动的成因,并提出了相应的解决办法。

关键词:差动保护主变压器成因对策由于各种类型的差动继电器结构简单、动作可靠,所以广泛地应用在变压器差动保护上,但由于某些原因将会导致差动保护在外部故障时误动,在内部故障时拒动或灵敏度降低,给电力系统安全运行造成威胁。

分析主变差动保护误动成因,探讨解决措施,是保障电力系统安全运行的有力措施。

1.主变差动保护原理简介主变差动保护一般包括:差动速断保护、比率差动保护、二次谐波制动的比率差动保护,不管哪种保护功能的差动保护,其差动电流都是通过主变各侧电流的矢量和得到。

1.1比率差动的原理及动作特性(见图1)。

比率差动动作特性方程:式中:Iqd为差动电流起动定值;Id为差动电流动作值,I1、I2的矢量和;Izd为制动电流、K为比率制动系数;Ie为变压器的额定电流。

即:当IzdIe时,比率差动有较大的制动作用。

1.2差动速断的作用差动速断是在较严重的区内故障情况下,快速跳开变压器各侧断路器,切除故障点。

2.主变差动保护误动作原因分析下面按新建变电站、运行中变电站、改造变电站三个方面进行说明,这种分类方法并不是绝对相互区别,只是为了便于同行在分析问题时优先考虑现实问题。

2.1新建变电站主变差动误动作原因分析新建变电站的主变差动保护误动在主变差动保护误动中占了较大的比例,但这种情况的误动作绝大多数在主变投运带负荷试运行的72小时就会被发现。

根据现场经验大概可以总结为以下几个方面。

2.1.1定值的不合理造成主变差动保护误动作,具体包括以下几个方面。

(1)定值选择不正确造成误动作差动速断是取变压器的励磁涌流和最大运行方式下穿越性故障引起的不平衡电流两者中的较大者。

定值计算部门往往根据运行经验将差动速断定值取为5~6Ie。

这样,就会造成主变在空载合闸时出现误跳闸。

主变压器差动保护动作的原因及处理

主变压器差动保护动作的原因及处理

主变压器差动保护动作的原因及处理一、变压器差动保护范围:变压器差动保护的保护范围,是变压器各侧的电流互感器之间的一次连接部分,主要反应以下故障:1、变压器引出线及内部绕组线圈的相间短路。

2、变压器绕组严重的匝间短路故障。

3、大电流接地系统中,线圈及引出线的接地故障。

4、变压器CT故障。

二、差动保护动作跳闸原因:1、主变压器及其套管引出线发生短路故障。

2、保护二次线发生故障。

3、电流互感器短路或开路。

4、主变压器内部故障。

5、保护装置误动三、主变压器差动保护动作跳闸处理的原则有以下几点:1、检查主变压器外部套管及引线有无故障痕迹和异常现象。

2、如经过第1项检查,未发现异常,但曾有直流不稳定接地隐患或带直流接地运行,则考虑是否有直流两点接地故障。

如果有,则应及时消除短路点,然后对变压器重新送电。

差动保护和瓦斯保护共同组成变压器的主保护。

差动保护作为变压器内部以及套管引出线相间短路的保护以及中性点直接接地系统侧的单相接地短路保护,同时对变压器内部绕组的匝间短路也能反应。

瓦斯保护能反应变压器内部的绕组相间短路、中性点直接地系统侧的单相接地短路、绕组匝间短路、铁芯或其它部件过热或漏油等各种故障。

?差动保护对变压器内部铁芯过热或因绕组接触不良造成的过热无法反应,且当绕组匝间短路时短路匝数很少时,也可能反应不出。

而瓦斯保护虽然能反应变压器油箱内部的各种故障,但对于套管引出线的故障无法反应,因此,通过瓦斯保护与差动保护共同组成变压器的主保护。

四、变压器差动保护动作检查项目:1、记录保护动作情况、打印故障录波报告。

2、检查变压器套管有无损伤、有无闪络放电痕迹变压器本体有无因内部故障引起的其它异常现象。

3、差动保护范围内所有一次设备瓷质部分是否完好,有无闪络放电痕迹变压器及各侧刀闸、避雷器、瓷瓶有无接地短路现象,有无异物落在设备上。

4、差动电流互感器本身有无异常,瓷质部分是否完整,有无闪络放电痕迹,回路有无断线接地。

浅析某变压器差动保护动作原因及对策

浅析某变压器差动保护动作原因及对策

浅析某变压器差动保护动作原因及对策发布时间:2021-01-28T11:47:55.453Z 来源:《中国电业》2020年28期作者:陈桂香[导读] 某电站110KV送出线路因雷击引起#1主变比率差动保护动作跳闸,陈桂香资兴市浙江水电站湖南省 423400概述:某电站110KV送出线路因雷击引起#1主变比率差动保护动作跳闸,导致运行中#1、2、3机组甩满负荷紧急停机。

差动保护是在变压器内部发生故障时,才动作跳闸切断变压器两端电源,从而达到保护变压器的目的,而变压器外部故障是不应该动作的。

且此时110kv 线路主后备保护均没有动作。

因此,这次因雷击引起变压器比率差动保护动作明显是误动。

应分析查找原因,避免类似事件再次发生。

关键词:电站变压器比率差动保护误动原因对策一、事件原因调查1、动作时间调查电站一次主接线图如图1所示。

事件发生前,电站#1、2、3机组和#1、2主变运行。

图1:电站主接线图经查,21:43:57:815ms时刻,110kv系统侧线路雷击故障,#2主变高压侧过流I段动作;21:44:05:504ms时刻,#1主变比例制动差动保护差流越限告警;21:44:12:204ms时刻,#1主变差动保护动作。

2、保护装置整定参数配合关系的调查a、主变零序保护与线路零序电流保护配合调查上表列出了#1、2主变零序电流保护与线路零序电流保护动作延时,可见#1、2主变零序电流保护动作延时偏长。

c、主变过流保护与线路TV断线开放过流保护配合调查#2主变过流I段二次值(A)上表列出了#1、2主变过流保护与线路TV断线开放过流保护动作延时,可见#1、2主变过流I段动作延时需要抬高一个台阶,取得与线路过流I段保护配合。

3、保护装置调查a、 110kV线路保护相间、接地距离保护I、II、III段在正向故障下正确动作,在反向故障下不动作;检查中发现零序过流保护漏投第IV段保护软压板,投入后,零序过电流I、II、III、IV段保护(带方向)在正向故障下正确动作,在反向故障下不动作;方向过流I、II、III段保护在正向故障下正确动作,在反向故障下不动作。

主变差动保护动作的原因及对策分析

主变差动保护动作的原因及对策分析

主变差动保护动作的原因及对策分析黄胜【摘要】本文分析了主变压器差动保护动作跳闸的原因,针对变压器差动保护在设计、安装、整定过程中可能出现的各种问题,结合变压器差动保护原理,提出了带负荷测试的内容及分析、判断方法。

【关键词】带负荷测试;测试内容;测试数据分析0.引言差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,一直用于变压器做主保护,其运行情况直接关系到变压器的安危。

下面就针对这些问题做些讨论。

1.变压器差动保护的简要原理差动保护是利用基尔霍夫电流定理工作的,当变压器正常工作或区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动继电器不动作。

当变压器内部故障时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的正比于故障点电流,差动继电器动作。

2.变压器差动保护带负荷测试的重要性变压器差动保护原理简单,但实现方式复杂,加上各种差动保护在实现方式细节上的各不相同,更增加了其在具体使用中的复杂性,使人为出错机率增大,正确动作率降低。

比如许继公司的微机变压器差动保护计算Y-△接线变压器Y型侧额定二次电流时不乘以,而南瑞公司的保护要乘以。

这些细小的差别,设计、安装、整定人员很容易疏忽、混淆,从而造成保护误动、拒动。

为了防范于未然,就必需在变压器差动保护投运时进行带负荷测试。

3.变压器差动保护带负荷测试内容要排除设计、安装、整定过程中的疏漏(如线接错、极性弄反、平衡系数算错等等),就要收集充足、完备的测试数据。

3.1差流(或差压)变压器差动保护是靠各侧CT二次电流和——差流——工作的,所以,差流(或差压)是差动保护带负荷测试的重要内容。

电流平衡补偿的差动继电器(如LCD-4、LFP-972、CST-31A型差动继电器),用钳形相位表或通过微机保护液晶显示屏依次测出A相、B相、C相差流,并记录;磁平衡补偿的差动继电器(如BCH-1、BCH-2、DCD-5型差动继电器),用0.5级交流电压表依次测出A相、B相、C相差压,并记录。

变压器差动保护动作原因分析及预防措施

变压器差动保护动作原因分析及预防措施

变压器差动保护动作原因分析及预防措施摘要:现阶段,我国对变压器的应用越来越广泛,变压器的差动保护工作也越来越受到重视。

变压器差动保护作为变压器内部故障的主保护之一,其保护范围包括变压器本身、电流互感器与变压器的引出线等,变压器保护误动作跳闸会严重影响供电可靠性,造成停电面积增大。

本文首先分析了变压器纵差动保护的原理,其次探讨了变压器差动保护动作原因,最后就变压器差动保护预防措施进行研究,以供参考。

关键词:差动保护;接线错误;保护配置引言电力网中联结组别为YNyn0d11的变压器分相电流纵差动数字式继电保护,考虑到变压器各侧电压等级、励磁涌流、电流互感器变比等影响因素,各继电保护装置生产厂家采取了不同的电流相位补偿方式和比率制动方法,正确地检验变压器电流纵差动保护装置成为工程实践中的难题。

1变压器纵差动保护的原理变压器电流纵差动保护作为电气量主保护被广泛地应用于电力网中,不需要与电力系统中其他元件的继电保护相配合,能正确地判别保护范围内故障和保护范围外故障,可以无延时地作用于断路器跳闸来切除保护范围内各种类型的故障。

2变压器差动保护动作原因分析44低压侧发生短路事故,短路点未在主变差动保护范围。

通过分析,现场测验检查,是由于16LH互感器接线极性接反,造成短路电流方向相反,流向主变低压侧,引起差动保护动作。

44B事故电流5.376A,由于16LH接线极性相反,相当于2倍电流(10.752A)流人差动保护回路,远超过差动保护动作电流1.301A,造成差动保护快速动作,跳开2201DL、11DL,同时发出机组跳闸信号,切除故障。

后对电流互感器接线调整,电流互感器极性正确,经发电机对高圧回路进行递升加压,电流互感器电流指示一切正常。

3变压器差动保护预防措施3.1 5G通道数据安全为了保证5G通道的数据安全,提出了数据安全处理策略。

1)数据订阅机制。

仅当接收数据的IP地址、Appid、SVID、ConfRev版本号、ASDU数目、通道数、接收端口号信息与订阅一致时,才认为是有效数据。

主变差动保护动作处理步骤

主变差动保护动作处理步骤

主变差动保护动作处理步骤一、引言主变差动保护是电力系统中重要的保护之一,能够对电力系统中的故障进行快速定位和处理,保证电力系统的稳定运行。

在主变差动保护动作处理过程中,需要遵循一定的步骤和流程,以确保处理结果准确可靠。

本文将详细介绍主变差动保护动作处理步骤。

二、主变差动保护概述主变差动保护是指通过对主变压器两侧电流和电压进行比较,检测电力系统中发生故障时产生的不平衡信号,并对故障进行快速定位和处理。

主变差动保护通常由微机型数字式继电器实现,具有高精度、高可靠性等优点。

三、主变差动保护动作原因分析当电力系统中发生故障时,主变差动保护会产生相应的不平衡信号,并通过检测这些信号来判断故障类型和位置。

常见的导致主变差动保护动作的原因包括:1. 主变压器内部故障:例如短路、接地等;2. 主变压器两侧线路故障:例如短路、接地等;3. 主变压器两侧线路负载不平衡;4. 主变差动保护本身故障。

四、主变差动保护动作处理步骤当主变差动保护发生动作时,需要进行相应的处理步骤,以确保电力系统的稳定运行。

主要的处理步骤包括:1. 确认主变差动保护是否存在故障:首先需要确认主变差动保护是否存在故障,例如继电器本身损坏等情况。

可以通过检查继电器状态和参数设置等方式来判断。

2. 确认故障类型和位置:根据主变差动保护发出的报警信号,可以初步判断故障类型和位置。

例如,如果是主变压器内部故障,则可能是短路或接地等;如果是线路故障,则可能是短路或接地等。

3. 验证故障信息:在确定了故障类型和位置后,需要进一步验证故障信息。

可以通过现场检查、测试仪器等方式来确认。

4. 切除故障部分:根据验证结果,需要对发生故障的部分进行切除。

例如,在发生线路短路时,需要切除故障部分,以避免对电力系统造成更大的影响。

5. 恢复电力系统:在切除故障部分后,需要恢复电力系统的正常运行。

例如,可以通过切换备用线路、更换设备等方式来实现。

五、主变差动保护动作处理注意事项在进行主变差动保护动作处理时,需要注意以下几点:1. 确认故障类型和位置:在进行处理前,一定要准确确认故障类型和位置。

主变压器差动保护动作原因及处理

主变压器差动保护动作原因及处理

主变压器差动保护动作原因及处理1. 引言主变压器作为电力系统中的重要设备之一,承担着电流转换和电压变换的任务。

在主变压器的运行过程中,差动保护系统起着至关重要的作用。

差动保护是保护主变压器的一种常用方法。

然而,由于各种原因,差动保护系统有时会出现误动作的情况。

本文将分析主变压器差动保护系统误动作的原因,并提出相应的解决方案。

2. 主变压器差动保护动作原因主变压器差动保护动作的原因可以分为外部原因和内部原因两类。

2.1 外部原因外部原因是指与主变压器相邻的其他设备或系统产生的故障或异常情况,导致差动保护系统误动作。

2.1.1 相邻设备故障相邻电缆、开关设备等的故障可能导致主变压器差动保护系统误动作。

例如,一条相邻电缆的短路故障可能会引起差动保护系统误判为主变压器故障,从而导致误动作。

2.1.2 瞬时电压扰动电力系统中存在着各种电压扰动,如雷击、电弧接触等,这些瞬时电压扰动也可能引起差动保护系统的误动作。

2.2 内部原因内部原因是指主变压器本身存在的故障或异常情况,导致差动保护系统误动作。

2.2.1 主变压器绝缘损坏主变压器绝缘损坏是导致主变压器差动保护系统误动作的常见原因之一。

当主变压器的绝缘损坏后,会导致差动保护系统误判为主变压器内部发生故障,从而触发保护动作。

2.2.2 主变压器接线错误主变压器接线错误也是导致主变压器差动保护系统误动作的原因之一。

接线错误可能会导致差动保护系统无法正确判断主变压器的状态,从而误判为发生故障。

3. 主变压器差动保护动作处理方法针对主变压器差动保护系统误动作的问题,可以采取以下方法进行处理。

3.1 外部原因处理方法对于由于相邻设备故障引起的差动保护系统误动作,应及时排除相邻设备的故障,修复或更换故障设备。

此外,可以采用隔离装置或过电压保护装置等手段,在主变压器与相邻设备之间设置屏蔽,以避免相邻设备的故障干扰差动保护系统。

3.2 内部原因处理方法对于主变压器绝缘损坏引起的差动保护系统误动作,可以通过定期进行绝缘电阻测试和局部放电检测来监测绝缘状态。

主变压器差动保护动作后的正确处理

主变压器差动保护动作后的正确处理

保护装置误动的 护
可 能性较大
定值整定不当或变电站值班员技能培


检查站 用变是 否切换 正常
设备运行方式 调整
调整或 转移主 变负荷
调整主 变中性 点运行 方式
变电站值班员技能培 训







1、经检查,如是变压器本体或套管故障,可将变压器申
请转检修,经检修试验合格后方可投入运行。 2、未发现明显异常现象,但同时有瓦斯保护动作,即使







1、如差动保护动作后,一、二次设备无异常,其它保护
无掉牌,若二次回路上有人工作,应立刻令其停止工作,拉开
主变各2侧、刀若闸二,次测无试人主工变作绝,缘则正应常检后查试二送次一回次路,有如无跳断闸线则或说短明路、 是接人地为、误开动路,,应在及检时查查变明压原器因无恢异复常供后电可。根据调度命令退出差动
次设备瓷质部分是否完
好,有无闪络放电痕迹
3
变压器及各侧刀闸、避 雷器、瓷瓶有无接地短
路现象,有无异物落在
设备上
差动保护范围外有无短路故障 (其它设备有无保护动作)
5
4
差动电流互感器本身有无异常, 瓷质部分是否完整,有无闪络放
电痕迹,回路有无断线接地
变电站值班员技能培 训
差动保护动作跳闸的同时, 如果同时有瓦斯保护动作, 即使只报轻瓦斯信号,变压 差器动内保部护故动障作的跳可闸能前性如极变大压 器套管、引线、CT有异常声 响及其它故障现象,则说明 一差次动故保障护可动能作性跳极闸大的同时, 如果主变后备保护也启动, 则说明差动保护范围内一次 设备故障的可能性极大
只是报出轻瓦斯信号,属于变压器内部故障的可能性极大,应

1号主变压器差动保护动作

1号主变压器差动保护动作

事故预想记录预想时间2015.3.20 班组一值预想人姬敬南预想题目1号主变压器差动保护动作事故预想现象后台报1号主变压器差动保护动作,2201开关跳闸,301开关跳闸,故障录波器启动预想处理过程:一、1号主变差动保护动作可能产生的原因:1、变压器内部有故障。

2、主变两侧差动CT间的设备故障。

3、二次回路故障,差动保护误动。

4、穿越性故障引起差动保护误动。

二、处理过程:1、查看后台报警信息及故障滤波器波形,记录继电保护动作情况。

2、报告风场值长、场长。

3、值长安排人员查看备用变是否正确投入,站用电是否正常,就地检查1号主变高压侧2201、低压侧301开关确在分位,同时拉开隔离开关22011、22016,合上接地刀闸220117、220167。

巡视其他设备运行情况,值长将初步情况汇报调度及公司相关领导。

4、值长根据实际运行情况向调度申请转移负荷至2号变,严密监视负荷及2号主变运行参数,不发生过负荷现象。

5、对变压器本体进行检查,如油温、油色、防爆玻璃、瓷套管等检查瓦斯保护是否同时动作,瓦斯继电器是否有气体,如有气体,可判断为变压器内部故障,6、将1号主变退出运行,进行检修处理,必要时可联系变压器厂家进行吊芯检查。

如果差动保护及重瓦斯保护同时动作时,不经内部检查和试验,不得将变压器投入运行。

7、若不是变压器内部故障,应对变压器差动保护区范围的所有一次设备进行检查,即变压器高压侧及低压侧断路器之间的所有设备、引线等,以便发现在差动保护区内有无异常。

8、若故障点在高压侧,则在故障处理完毕,检查变压器无异常,测量绝缘合格后,经调度同意可将主变重新投入运行。

9、若故障点在中低压侧,则应进行绕组变形测试、测直流电阻、绝缘电阻等,确认变压器正常,且故障处理完毕后,还必须经过总工程师同意才能将变压器重新投入运行。

10、经以上检查未发现问题,可能是二次回路故障或穿越性故障引起差动保护误动。

应检查继电保护及二次回路是否有故障,直流回路是否有两点接地流互感器二次回路是否开路。

35kV某变电站主变差动保护误动原因分析与处理措施

35kV某变电站主变差动保护误动原因分析与处理措施

35kV某变电站主变差动保护误动原因分析与处理措施摘要:随着继电保护技术的飞速发展,传统电磁式保护已基本退出了历史舞台,但还有部分35kV变电站未进行综自改造,仍使用电磁式保护。

在历年运行中该类型差动保护多次出现误动情况,降低了变电站供电可靠性,影响了区域用户的连续供电,对企业安全生产造成了一定的影响。

关键词:35kV变电站、差动保护、差动继电器、误动一、概述35kV某变电站于1998年12月建成投运,单台主变运行,容量为5000kVA,35kV采用单母接线,单电源进线;10kV采用单母线分段,出线共8条,主供负荷为煤矿用电。

主变高压侧为DW17-35型多油断路器,保护TA型号为LRD-35,变比为150/5,低压侧采用ZN28A-10 型真空断路器,保护TA型号为LZZJ9-10Q,变比600/5。

35kV主变差动保护采用DCD-2G型差动继电器,高压侧过流保护采用DL-31型电流继电器;10kV线路保护采用珠海万利达公司生产的LPR-30C集成式保护装置,由于该变电站处于煤矿采空区,已出现明显地质沉降,电网规划将进行负荷转移后退出运行。

二、差动保护动作原因分析及处理措施(一)第一阶段差动保护误动原因分析及处理情况变电站投运初期,35kV1号主变在高峰负荷时差动保护动作,通过对35kV1号主变进行外观检查、高压试验,高压试验合格,主变无异常情况。

经现场分析,由于采用电磁式保护,未配置故障录波装置,无保护动作记录相关信息,通过高压试验结果,判断为主变差动保护误动作。

运行不久,35kV1号主变差动保护再次动作,同时伴随有10kV线路故障,对35kV1号主变进行外观检查、高压试验,高压试验合格,主变无异常情况。

经现场对二次回路进行检查,发现35kV侧TA极性接反,当变压器正常运行时,流入差动回路的电流变成和电流,即I=I1+I2,在该情况下,差动继电器的动作电流为12A,流入差动回路的电流达到动作值,在变压器达到额定容量时,差动回路电流计算如下:;;该值小于差动继电器的动作电流,在有线路发生故障时,差动回路的电流达到动作值,从而造成35kV1号主变差动保护误动作。

一起主变差动保护误动原因分析及防范措施

一起主变差动保护误动原因分析及防范措施

一起主变差动保护误动原因分析及防范措施摘要:本文结合一起主变压器差动保护误动的现象及现场检查情况,分析了保护误动作的原因及后续需要注意的事项和需采取的防范措施,可为其它电厂安全措施的实施处理提供借鉴与参考。

关键词:主变压器;差动保护;安全措施1.事故前情况某水电站共5台机组,事故前2、5号机并网运行,3、4号机停机备用,1号机检修,全厂有功394.9MW,全厂无功22.7Mvar,其中2号机组带负荷197MW;500kV第三串、第四串合环运行,500kV 5713、5721断路器运行,5711、5712、5722、5723停运;500kV #1母线、#2母线运行,500kV甲线检修、乙线运行;220kV母线运行,220kV双回线运行。

2.事件经过2016年1月7日09:30,维护人员按要求开展5722断路器间隔内CT:7LH、8LH、9LH的特性试验。

其中有一项实验措施为在5722断路器现地控制柜内将CT回路端子三相短接(靠保护装置侧)并划开,在完成7LH、8LH相关试验后,10:27维护人员执行9LH(对应接入5721短引线保护Ⅰ及2号主变压器保护A柜)特性试验措施。

实验开展过程中报“2号主变保护A套总告警”,运行人员会同维护人员现地检查发现主变保护A柜“主变高压侧CT断线”指示灯告警,在向值班负责人汇报告警现象后,10:39按下2号主变保护A柜复归按钮,复归“主变高压侧CT断线”告警信号。

2号主变保护A柜A相、B相、C相差动保护动作,2号主变保护B柜无动作信息、2号发电机保护A柜、B柜出口断路器失灵跳闸指示灯亮。

事故发生后于15:13将500kV 2号主变5721断路器由热备用转为冷备用,退出500kV 2号主变5721断路器失灵保护,16:10退出500kV 2号主变保护、2号发电机保护。

3.现场检查情况事故发生后,立即停止了相关工作,维护人员现场检查了2号主变压器、2号发电机未发现异常,随后对2号主变三相取油样进行色谱分析,试验报告数据合格,与最近一次试验数据对比无明显异常。

主变压器差动保护动作的原因及处理

主变压器差动保护动作的原因及处理

主变压器差动保护动作的原因及处理Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly.简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。

文档可直接下载或修改,使用时请详细阅读内容。

主变压器差动保护动作跳闸的原因是:(1)主变压器及其套管引出线发生短路故障。

(2)保护二次线发生故障。

(3)电流互感器短路或开路。

(4)主变压器内部故障。

处理的原则是:(1)检查主变压器外部套管及引线有无故障痕迹和异常现象。

(2)如经过第(1)项检查,未发现异常,但本站(所)曾有直流不稳定接地隐患或曾带直流接地运行,则考虑是否有直流两点接地故障。

如果有,则应及时消除短路点,然后对变压器重新送电。

(3)如果进行第(2)项检查,未发现直流接地故障,但出口中间继电器线圈两端有电压,同时差动继电器接点均已返回,则可能是差动跳闸回路和保护二次线短路所致,应及时消除短路点,然后试送电。

(4)检查高低压电流互感器有无开路或接触不良现象,发现问题及时处理,然后向变压器恢复送电。

(5)如果上述检查未发现故障或异常,则可初步判断为变压器内部故障,应停止运行,等待试验;如果是引出线故障,则应及时更换引出线。

(6)如果差动保护和瓦斯保护同时动作跳闸,应首先判断为变压器内部故障,按重瓦斯保护动作处理。

这里填写您的企业名字Name of an enterprise。

35kV主变压器投运差动保护动作原因

35kV主变压器投运差动保护动作原因

35kV主变压器投运差动保护动作原因摘要:在电路系统当中,电气设备具有流入节点的电流总和为零这一特点,而由于电气设备作为系统中的重要节点,能够实现流入节点和流出节点的电流为等值,因此可以通过设置整定值的方式进行故障时的断路跳开预设,使电气设备得到安全保护。

这种保护措施被称为差动保护。

但是在实际的应用过程中,由于电气设备所处的电路环境不同,受到环境变化影响,同样会出现差动保护动作。

因此为了规避风险,需要对其原因进行判断。

关键词:主变压器;差动保护;保护动作;验收管理一、主变压器差动保护原理1.1差动保护现象电力企业拥有两台35kV主变压器,主体器材由新疆特变生产,差动保护设施由阿哈尔滨自动化公司生产。

开关柜与变压器连接过程中采取空投试验,并未发生异常现象,当整体安装结束之后,维护人员开展投运试验活动,期间反复出现差动保护现象,且检查并未发现其他异常。

复位电力系统故障报警器,反复投运,仍出现差动保护现象。

1.2差动保护动作原理本文研究一种接线方式,具体如图1所示。

A、B、C为变压器高压侧电流,a、b、c为低压侧电流。

当设备在正常运转状态下,高压侧IA值与IA与IB之间的差值相同,IC值与IC和IA之间的差值相同。

主变压器连接组别为Ydll,低压侧电流相位超前30°,回流平衡性会受到影响。

消除不平衡电流需要对整个线路进行补偿,改变接线值,确保回流的流入电流与流出电流值相同,向量之和为0,在设备正常运转期间,不会出现差动保护现象。

二、主变压器差动保护动作原因2.1不平衡电流影响投运35kV主变压器,理想变压器设备运行期间流入电流与流出电流之间处于平衡状态。

但主变压器经常会出现不平衡电流,造成变压器电流不平衡因素比较多,其中包括传变误差、励磁电流涌动、档位变动等。

档位变化引起的电流不平衡现象是指有计划对变压器进行有载调压,按照分接头位置变化调整接入电流,变压器CT始终稳定,变比发生改变,流入电流与流出电流之间出现差额,继而造成电流之间的不平衡。

引起变压器差动保护动作的原因及解决方法

引起变压器差动保护动作的原因及解决方法

引起变压器差动保护动作的原因及解决方法变压器差动保护是按照循环电流的原理构成的,双绕组变压器的两侧装设了电流互感器。

正常情况下或外部故障时,两侧的电流互感器</a>产生的二次电流流入差继电器的电流大小相等,方向相反,在继电器中电流等于零,因此差动继电器不动作。

当变压器内部或保护区域内的供电线路发生故障时,流入差动继电器的电流就会产生变化,当电流值达到设定值时,继电器就会动作。

一般来说,在电力变压器中有电流流过时,通过变压器两侧的电流不会正好相等,这是和变压器和电流互感器的变比和接线组别有关的。

变压器在投入时,会产生高于额定电流6~8倍的励磁涌流,同时产生大量的高次谐波,其中以二此谐波为主。

由于励磁涌流只流过变压器的某一侧,因此通过电流互感器反应到差动回路中将形成不平衡电流,引起差动保护动作。

一、电流互感器的极性、相序与连接变压器差动保护按照有关规定在保护投运前要严格检查电流互感器的极性、相序和连接,确保变压器差动保护的正确性。

由于各种原因,现场确有电流互感器三相电路的错误接线,导致相序和极性的错误,造成变压器差动保护动作。

1、差动保护接线示意图2、电流互感器的极性:变压器差动继电器动作的条件就是一次电流与变压器二次电流之差,电流互感器的极性决定瞬时电流的方向,因此对电流互感器的极性应引起重视,只有保证了电流互感器的极性正确,才能保证继电器的正确动作。

在工程中电流互感器的极性应按减极性原则进行。

既在一、二次绕组中,同时由同极性端子同入电流时,他们在铁芯中所产生磁通方向应相同。

在实际工作中一般利用楞次定律进行判别(既直流判断法)。

3、电流互感器接线:变压器差动继电器的CT回路接线,首先必须通过对CT接线形式的选择进行外部的“相位补偿”,消除变压器接线组别不同造成的高、低压侧电流相位差和差动保护回路不平衡电流。

例如对于Y/d11接线的变压器,由于三角形侧电流的相位比星形侧同一相电流超前30°,必须将变压器星形侧的CT二次侧接成三角形,而三角形侧的CT接成星形,从而将流入差动继电器的CT二次电流相位校正过来。

变压器差动保护不正确动作原因分析

变压器差动保护不正确动作原因分析

变压器差动保护不正确动作原因分析差动保护是变压器的主保护,差动保护的正确动作与否,直接危及到变压器和电网的安全。

因而,分析差动保护可能出现的不正确动作的原因,在实际施工、安装中加以防范,就能很好地避免差动保护不正确动作的情况发生。

1差动保护的接线以Y/△11组变压器为例,其接线如图1所示。

图1变压器差动保护CT接线2差动保护不正确动作原因分析为简明起见,以Y/△-11组变压器差动保护为例,在分析过程中无特殊说明的均以正常运行和外部故障时为条件。

2.1CT极性接反当任何一侧(或两侧)的一相、二相或三相的CT极性颠倒接反,这种接线错误的本质是使其中一侧(或二侧)的电流相量反相,在正常运行条件下,即形成所谓“和接线”(即两侧电流不是相差180°,而两侧对应的电流同相位),导致在执行元件上产生很大的差压,从而在正常运行及外部穿越性故障时无论单侧电源或两侧电源,差动保护均引起误动(动作安匝≥60AW)。

而内部故障时,差动保护可能拒动,仅在单侧电源且内部故障时,差动保护才能正确动作。

纠正这种接线错误,应根据六角图来判断CT极性错误所在。

其具体判断方法如下:(1)在Y侧CT“△”接线内某一相极性反接,如A相CT极性反接时:=-(′yb+′ya)=′ya e j240°ya=′yb-′yc=′ya e j90°yb=′yc+′ya=′ya e j300°yc即:|yb|=|ya|=|yc|∠(ya、yb)=∠(yb、yc)=150°其向量图如图2所示。

图2A相CT极性反接时的三相电流矢量同理,当B相CT极性反接时:|yc|=3e="3">|yb|=|ya|∠(ya、yc)=∠(yb、yc)=150°当C相CT极性反接时:|ya|=|yb|=|yc|∠(ya、yb)=∠(ya、yc)=150°从以上分析可以看出,在Y侧CT“△”接线内某一相CT极性反接时,ya、、yc三相为反相序,且极性反接相的滞后相的电流比其它两相相电流大3倍。

主变压器差动保护动作原因分析及解决

主变压器差动保护动作原因分析及解决

主变压器差动保护动作原因分析及解决摘要:由于主变压器差动保护误动作导致主变压器故障跳闸,原因是主变压器保护装置生产厂家未考虑中性点经小电阻接地情况,没有及时修改PST-1202A装置差动保护内部定值,从而导致保护装置误动作。

采用更改差动保护内部定值实现四侧差动通道任意屏蔽的方法消除了故障。

针对故障情况,提出了保护装置生产厂家对装置软件版本进行全面升级、风电场在春检预试中重新对保护装置定值进行校验以及加强对运行人员的技能培训等改进建议。

关键词:风电场;主变压器;中性点;小电阻接地;差动保护;零序电流;保护定值1风电场概况及运行情况1.1风电场概况某风电场规划容量250MW,一期工程安装1台50MVA两卷主变压器(带平衡线圈),二期工程安装2台100MVA主变压器。

1号主变压器35kV侧为经小电阻接地方式,单母线接线形式,Ⅰ段与Ⅱ段母线、Ⅱ段与Ⅲ段母线之间装设母线分段断路器,线路共计15回,通过220kV单母线送至某电网。

风电场电气接线图见图1所示。

1.2故障前系统运行方式1号主变压器高压侧201断路器合位,低压侧301断路器合位,35kVⅠ段母线连接的1号SVC391断路器分位,319TV小车式开关在工作位置。

35kVⅠ段母线所连接集电线路的351、352、353断路器均在合位,站用变压器由35kV300断路器接带。

风电场实时风速10.3m/s,1号主变压器实时负荷15.2MW。

352集电线路连接19台风电机组,全部运行正常。

352线路实时负荷6.6MW,实时电流11A。

2故障发生及处理过程2013-01-23T15:56:16,当值值班员发现352、201、301断路器变位,现场检查发现352断路器保护装置零序Ⅰ段保护动作,动作电流6.81A,时间0s,352断路器跳闸。

1号主变压器保护A柜(PST-1202A)比率差动保护动作,动作差流1.845A,随即1号主变压器高压侧201断路器、低压侧301断路器跳闸。

变压器差动保护误动原因分析及改进措施

变压器差动保护误动原因分析及改进措施

变压器差动保护误动原因分析及改进措施如果变压器发生故障,就会严重影响到电力系统的安全运行。

所以在实际中,为确保变压器能够安全穩定的运行,会采取多种保护措施,而差动保护就是其中为了常见的保护措施之一。

但是,在电力系统运行中,一旦出现励磁涌流或不平衡电流时,都会发生差动保护误动,影响电力系统的正常运行受。

基于此,本文分析了变压器差动保护误动的解决措施。

标签:变压器;差动保护;误动原因;改进措施1变压器差动保护的概述变压器差动保护具有较多种类,但是不管哪种差动保护,其差动电流都是通过变压器各侧电流的向量和得到的,变压器运行正常或保护区外发生故障时,差动电流就会接近为零,但是保护区一旦发生故障,就会增加差动电流。

比率差动保护的动作特性:对于变压器轻微故障的发生,变压器差动保护会具有较好的灵活度,而在保护区外较为严重的故障发生时,会在较大的制动量下有效的砍价压器差动保护可靠性的提高。

差动速断保护的作用:当变压器区内产生严重的故障时,差动保护就会做出迅速反应,将变压器各侧断路器断开,快速地切除故障点。

但是当互感器饱和或者是在对故障变压器进行合闸时,都会使谐波分量增加,从而导致差动保护出现动作延时,使差动速断增加。

按照避开变压器的励磁涌动和最大运行方式下穿越性故障引起的不平衡电流间的较大值,来确定差动速断定值。

2变压器差动保护误动作的原因分析2.1不合理参数设置微机保护无论是方便性不是灵活性都好于传统的常规继电保护,其通过软件来完成高、低压侧电流相角的转移,而且在高压侧无论是采取哪种接线方式,都能得到正确的差动电流。

但是也正是由于微机保护具有较好的灵活性和方便性,导致差动保护误动作很容易就发生了,尤其是不能正确选择二次电流互感器接线方式整定值时,就无法实现高压侧相角转移,使高压、低压测电流失去平衡,从而发生差动保护误动作。

2.2接线错误利用微机保护时,利用软件来对差动电流进行计算,而且不管采用哪种计算方法都能得到差动电流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主变压器差动保护动作的原因及处理精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-
主变压器差动保护动作的原因及处理
一、变压器差动保护范围:
变压器差动保护的保护范围,是变压器各侧的电流互感器之间的一次连接部分,主要反应以下故障:
1、变压器引出线及内部绕组线圈的相间短路。

2、变压器绕组严重的匝间短路故障。

3、大电流接地系统中,线圈及引出线的接地故障。

4、变压器CT故障。

二、差动保护动作跳闸原因:
1、主变压器及其套管引出线发生短路故障。

2、保护二次线发生故障。

3、电流互感器短路或开路。

4、主变压器内部故障。

5、保护装置误动
三、主变压器差动保护动作跳闸处理的原则有以下几点:
1、检查主变压器外部套管及引线有无故障痕迹和异常现象。

2、如经过第1项检查,未发现异常,但曾有直流不稳定接地隐患或带直流接地运行,则考虑是否有直流两点接地故障。

如果有,则应及时消除短路点,然后对变压器重新送电。

差动保护和瓦斯保护共同组成变压器的主保护。

差动保护作为变压器内部以及套管引出线相间短路的保护以及中性点直接接地系统侧的单相接地短路保护,同时对变压器内部绕组的匝间短路也能反应。

瓦斯保
护能反应变压器内部的绕组相间短路、中性点直接地系统侧的单相接地短路、绕组匝间短路、铁芯或其它部件过热或漏油等各种故障。

差动保护对变压器内部铁芯过热或因绕组接触不良造成的过热无法反应,且当绕组匝间短路时短路匝数很少时,也可能反应不出。

而瓦斯保护虽然能反应变压器油箱内部的各种故障,但对于套管引出线的故障无法反应,因此,通过瓦斯保护与差动保护共同组成变压器的主保护。

四、变压器差动保护动作检查项目:
1、记录保护动作情况、打印故障录波报告。

2、检查变压器套管有无损伤、有无闪络放电痕迹变压器本体有无因内部故障引起的其它异常现象。

3、差动保护范围内所有一次设备瓷质部分是否完好,有无闪络放电痕迹变压器及各侧刀闸、避雷器、瓷瓶有无接地短路现象,有无异物落在设备上。

4、差动电流互感器本身有无异常,瓷质部分是否完整,有无闪络放电痕迹,回路有无断线接地。

5、差动保护范围外有无短路故障(其它设备有无保护动作)差动保护二次回路有无接地、短路等现象,跳闸时是否有人在差动二次回路上工作。

五、动作现象及原因分析:
1、差动保护动作跳闸的同时,如果同时有瓦斯保护动作,即使只报轻瓦斯信号,变压器内部故障的可能性极大。

2、差动保护动作跳闸前如变压器套管、引线、CT有异常声响及其它故障现象,则说明一次故障可能性极大。

3、差动保护动作跳闸的同时,如果主变后备保护也启动,则说明差动保护范围内一次设备故障的可能性极大。

4、差动保护动作后,如其它保护未启动,而当时差动保护回路及二次回路上有人工作,则可能属于人为因素误动。

5、先发生直流一点接地后,如差动保护再动作而其它保护未启动,则说明直流两点接地短接了差动继电器接点跳闸的可能性较大。

6、如差动保护动作前巡视CT时有异常声响或差动二次回路上有打火现象则说明差动CT二次开路的可能性较大。

7 、如差动保护动作后,经一、二次检查无异常,也无工作人员工作,则保护装置误动的可能性较大。

8、如差动保护动作后,如有线路保护动作掉牌,经差动回路一、二次检查无异常则保护定值整定不当或二次接线错误的可能性较大(一般出现这种情况的可能性较小)。

五、变压器差动保护误动原因分析:
1、励磁涌流引起变压器差动保护误动。

2、CT二次回路断线引起变压器差动保护误动
3、区外故障引起的差动保护误动
、变压器正常运行时各侧的额定电流不一致。

、当变压器一侧带有分节头调节时,电压发生变化产生不平衡电流。

、电流互感器(TA)本身存在误差。

、电流互感器(TA)不同型号引起的误差。

、谐波和非周期分量对不同型号电流互感器(TA)的影响。

、不同类型的负载致使各侧电流相位发生偏差。

六、结束语
潜江压气站110KV变电站微机保护所报的差动保护动作复归的告警信号属于变压器正常运行时各侧的额定电流不一致情况。

本站产生这类情况可能分为两种,第一种是由于变频器在正常启动和停运以及故障跳车是会产生较大的冲击电流导致瞬间电流不平衡,所以会发出报警信号,但是由于这是正常的电流冲击,在差流允许的范围内,所以不会动作,而是马上复归。

第二种是由于线路电压波动产生电流不平衡,此时如果是瞬间现象则类似于第一种情况,在差流允许的范围不动作,超出范围则会动作。

相关文档
最新文档