4 电晕放电和极性效应

合集下载

(完整word版)高电压技术考试重点名词解释及简答

(完整word版)高电压技术考试重点名词解释及简答

1绝缘强度:电解质保证绝缘性能所能蒙受的最高电场强度。

2自由行程:电子发生相邻两次碰撞经过的行程。

3汤逊电子崩理论:特别是电子在电场力作用下产生碰撞电离,使电荷快速增添的现象。

4自持放电:去掉外界电离要素,仅有电场自己即可保持的放电现象。

5非自持放电:去掉外界电离要素放电立刻停止的放电现象。

6 汤逊第一电离系数:一个电子逆着电场方向前进1cm 均匀发生的电离次数。

7汤逊第三电离系数:一个正离子碰撞阴极表面产生的有效电子数。

8电晕放电:不均匀电场中曲率大的电极四周发生的一种局部放电现象。

9伏秒特征:作用在气隙上的击穿电压最大值与击穿时间的关系。

10U%50击穿电压:冲击电压作用下负气隙击穿的概率为50%的击穿电压。

11爬电比距:电气设施外绝缘的爬电距离与最高工作线电压有效值之比。

12检查性试验:检查绝缘介质某一方面特征,据此间接判隔离缘情况。

13耐压试验:模拟电气设施在运转中收到的各样电压,以此判断耐压能力。

14汲取比:加压后 60s 与 15s 丈量的电阻之比。

15容升效应(电容效应)回路为容性,电容电压在变压器漏抗上的压降使电容电压高于电源电压的现象。

16耦合系数:互波阻与正波阻之比。

17地面落雷密度 ; 每一雷暴日每平方公里地面上受雷击的次数。

18落雷次数:每一百公里线路每年落雷次数。

19工频续流:过电压消逝后,工作电压作用下避雷器空隙持续流过的工频电流。

20残压:雷电流过阀片电阻时在其上产生的最大压降。

21灭弧电压:灭弧前提下润徐加在避雷器上的最高工频电压。

22保护比:残压与灭弧电压之比。

23耐雷水平:雷击线路,绝缘不发生闪络的最大雷电流幅值。

24雷击跳闸率:每一百公里线路每年由雷击惹起的跳闸次数。

25击杆率:雷击杆塔的次数与雷击线路总次数的比。

(山区大)26绕击率:雷绕击导线的次数与雷击导线总次数的比。

27保护角:避雷线与边相导线的夹角。

28工频过电压:系统运转方式因为操作或故障发生改变时,产生的频次为工频的过电压。

第一篇自测题q

第一篇自测题q

高电压技术自测题第一篇 电介质的电气强度一、选择题1) 流注理论未考虑 的现象。

A .碰撞游离B .表面游离C .光游离D .电荷畸变电场 2) 先导通道的形成是以 的出现为特征。

A .碰撞游离B .表面游离C .热游离D .光游离 3) 电晕放电是一种 。

A .自持放电B .非自持放电C .电弧放电D .均匀场中放电4) 气体内的各种粒子因高温而动能增加,发生相互碰撞而产生游离的形式称为 。

A.碰撞游离 B.光游离 C.热游离 D.表面游离 5) ______型绝缘子具有损坏后“自爆”的特性。

A.电工陶瓷 B.钢化玻璃 C.硅橡胶 D.乙丙橡胶 6) 以下哪个不是发生污闪最危险的气象条件? A.大雾 B.毛毛雨 C.凝露 D.大雨 7) 以下哪种材料具有憎水性?______A . 硅橡胶 石蜡 石英 B.电瓷 C. 玻璃 D 金属 8) SF 6气体具有较高绝缘强度的主要原因之一是______。

A .无色无味性B .不燃性C .无腐蚀性D .电负性 9) 冲击系数是______放电电压与静态放电电压之比。

A .25% B .50% C .75% D .100%10) 在高气压下,气隙的击穿电压和电极表面______有很大关系 A .粗糙度 B .面积 C .电场分布 D .形状 11)雷电流具有冲击波形的特点:______。

A .缓慢上升,平缓下降B .缓慢上升,快速下降C .迅速上升,平缓下降D .迅速上升,快速下降12) 在极不均匀电场中,正极性击穿电压比负极性击穿电压______。

A..小 B .大 C .相等 D .不确定 13)极化时间最短的是( )。

A.电子式极化B.离子式极化C.偶极子极化D.空间电荷极化 伴随有能量损失的极化形式是( )。

A)电子式极化 B)离子式极化 C)偶极子极化 14)下列因素中,不会影响液体电介质击穿电压的是( )A.电压的频率B.温度C.电场的均匀程度D. 杂质15)以下四种气体间隙的距离均为10cm ,在直流电压作用下,击穿电压最低的是( )。

高电压技术复习

高电压技术复习

高电压技术复习《高电压技术》复习一.气体的绝缘强度了解气体放电的一般现象和概念;理解持续电压作用下均匀电场气体放电理论、不均匀电场中的气体放电特性;理解冲击电压下的气体放电特性;了解大气条件对气隙击穿电压的影响,掌握提高气隙击穿电压的具体措施。

1.基本概念自持放电:不需其它任何外加电离因素而仅由电场的作用就能维持的放电称为自持放电。

非自持放电:必须借助外加电离因素才能维持的放电则称之为非自持放电。

电晕放电:当所加电压达到某一临界值时,在靠近两个球极的表面出现蓝紫色的晕头,并发出“咝咝”的响声,这种局部放电现象称为电晕放电。

极性效应:在极不均匀电场中,高场强电极的不同,空间电荷的极性也不同,对放电发展的影响也不同,这就造成了不同极性的高场强电极的电晕起始电压的不同,以及间隙击穿电压的不同,称为极性效应。

50%冲击击穿电压(U50%):用间隙击穿概率为50%的电压值来反映间隙的耐受冲击电压的特性。

汤逊放电理论和流柱理论的异同以及各自的适用范围:汤逊放电理论:当外施电压足够高时,一个电子从阴极出发向阳极运动,由于碰撞游离形成电子崩,则到达阳极并进入阳极的电子数为ea个(α为一个电子在电场作用下移动单位行程所发生的碰撞游离数;为间隙距离)。

因碰撞游离而产生的新的电子数或正离子数为(ea-1)个。

这些正离子在电场作用下向阴极运动,并撞击阴极.若1个正离子撞击阴极能从阴极表面释放r个(r为正离子的表面游离系数)有效电子,则(ea-1)个正离子撞击阴极表面时,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极的电子,则放电达到自持放电。

即汤逊理论的自持放电条件可表达为r(ea-1)=1。

它的适用范围:汤逊理论是在低气压、Pd较小的条件下在放电实验的基础上建立的。

Pd过小或过大,放电机理将出现变化,汤逊理论就不再适用了。

通常认为,Pd>200cm·mmHg时,击穿过程将发生变化,汤逊理论的计算结果不再适用,但其碰撞电离的基本原理仍是普遍有效的。

4电晕放电和极性效应

4电晕放电和极性效应
1.电晕放电现象 在极不均匀电场中,最大场强与平均场强相差很大,以至 当外加电压及其平均场强还较低的时候,电极曲率半径较小 处附近的局部场强已很大。 在这局部强场区中,产生强烈的游离,但由于离电极稍远 处场强已大为减小,所以,此游离区不可能扩展到很大,只 能局限在此电极附近的强场范围内。 伴随着游离而存在的复合和反激励,发出大量的光辐射, 使在黑暗中可以看到在该电极附近空间发出蓝色的晕光,这 就是电晕。 电晕放电是极不均匀电场所特有的一种自持放电形式。
流注根部温 度升高 热电离过 程 先导 通道
电导增大 轴向场强更低 发展速度更快
电离加强,更为明亮
长空气间隙的平均击穿场强远低于短间隙
§5 不均匀电场中气体击穿的发展过程
一.稍不均匀电场和极不均匀电场特征 1、球间隙放电
HV
D
d
放电现象
①d<d0,电场比较均匀,击穿之前看不到放电迹象,类似于 均匀电场; ②d>d0, 电压逐步升高,先出现电晕放电,然后刷状放电, 最后间隙完全击穿; 总结电晕放电电压和击穿电压的关系: ①d<d0,两电压相等; ②d>d0',击穿电压 >电晕起始电压; ③d0<d<d0', 过渡区,放电电压很不稳定,击穿电压分散性 很大。 从上述试验可知:放电过程与电场均匀性有着密切联系.
2)变象管
放电现象1经物镜2投射到半透明的光电阴极3,根据投射来的光辐射, 光电阴极发射出电子。发射出的电子由电极4聚焦成象并得到加速。聚焦 后的电子束经光阑5、闭锁电极6、垂直偏转电极7、水平偏转电极8及补 偿电极9而到达荧光屏10,又重现为发光图象。利用偏转电极可将放电现 象随时间展开。在闭锁电极上施加间断的释放脉冲电压还可在荧光屏上 得到分幅的图象。荧光屏上的图象可用普通照相机摄制下来。变象管扫 描速度高,分辨率好,控制灵活,灵敏度高(能增强发光微弱现象的亮度) ,因此获得越来越广泛的应用。

高电压技术,第一章第6节不均匀电场的放电过程

高电压技术,第一章第6节不均匀电场的放电过程
—空气相对密度;
r— 导线半径(cm)
在雨、雪、雾天气时,导线表面会出现许 多水滴,它们在强电场和重力的作用下,将克 服本身的表面张力而被拉成锥形,从而使导线 表面的电场发生变化,结果在较低的电压和电 场强度下就会出现电晕放电。
1.5.1 电晕放电
2、电晕放电的物理过程和效应 效应: 1)、声、光、热 吱吱的响声 蓝紫色的晕光 周围气体温度升高
曲尖晕极特式率端光有。不发半状的均生 放径自匀的 电小持场。蓝的放的紫电电一极色形种
1.5.1 电晕放电
电晕放电的起始电压一般用经验公式来推算,流 传最广的是皮克公式,电晕起始场强近似为:
Ec3m 0(10r.3 )k( V/cm )
m—导线表面粗糙系数 ,光滑导线 m1 ,
绞线的 m0.8~0.9
什么样的电场是不均匀电场?
均匀电场:削弱了边缘效应的平行板电极。 稍不均匀电场:球隙、同轴圆筒状电极。 极不均匀电场:棒-板电极,棒-棒电极
=1
电场不均匀系数f
f = E max
<2
E av
>4
二、电晕放电
由于电场强度沿气隙的分布极不均匀,因而当 所加电压达到某一临界值时,曲率半径较小的电极 附近空间的电场强度首先达到了起始场强E0,因而 在这个局部区域出现碰撞电离和电子崩,甚至出现 流注,这种仅仅发生在强场区(小曲率半径电极附 近空间)的局部放电称为电晕放电。
混合质通道
➢在进行外绝缘的冲击电压实验时,也往往施加正 极性冲击电压,因为此时电气强度较低。
➢输电线路和电气设备外绝缘的空气间隙大都属于 极不均匀电场的情况,所以在工频高电压的作用下, 击穿发生在外加电压为正极性的那半周内。
小结
➢用不均匀系数来描述电场的不均匀程度; ➢电晕放电是发生在小曲率半径电极附近的 放电; ➢电场极不均匀的“棒-板”气隙,负极性击 穿电压高于正极性击穿电压。

高电压技术总结

高电压技术总结

高电压技术总结各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢是XX最新发布的《高电压技术总结》的详细范文参考文章,觉得应该跟大家分享,重新编辑了一下发到XX。

篇一:高电压技术总结第一章1.极化:电介质在电场作用下,其束缚电荷相应于电场方向产生弹性位移现象和偶极子的取向现象。

类型:电子式极化、离子式极化、偶极子极化、夹层极化。

2.吸收现象:原因分界面上积聚起一批多余的空间电荷,这就是夹层极化引起的吸收电荷。

电荷积聚过程所形成的电流称为吸收电流。

3.介质损耗:定义:在电场作用下电介质中总有一定的能量损耗,包括由电导引起的损耗和某些有损极化(例如偶极子、夹层极化)引起的损耗。

组成:电导、有、无损极化。

影响因素:漏电、电压频率、温度、材料。

第二章1.气隙中带电质点的产生的方式:①气体分子本身发生游离②处于气体中的金属阴极表面发生游离。

消失方式:①与两电极的电量中和②扩散③复合2.击穿理论:①汤逊理论(电子的碰撞游离和正离子撞击阴极表面造成的表面游离所引起。

适用范围:低气压、短气隙。

)②流注理论[适用范围:高气压、短气隙。

流注通道:正负离子(浓度相等)、良导体、弱电场]。

3.电场:均匀、不均匀。

4.极性效应:对于电极形状不对称的不均匀电场气隙,极性不同时,间隙的气晕电压和击穿电压各不同。

极性效应是不对称的不均匀电场所具有的特性之一。

5.冲击电压标准波形击穿电压:指间隙上出现的最高电压。

放电时间的组成为:tb=t1+ts+tf。

6.提高气体间隙击穿场强的方法:①改善电场分布,使其尽可能均匀②改变气体的状态和种类。

7.沿面放电:定义:在大气中用绝缘子支撑或悬挂带电体,当绝缘子两级电压超过一定值时,绝缘子与空气交界面出现放电现象。

形式:干、湿、污闪。

污闪:沿着污染表面发展的闪络。

XX污闪过程:污闪层受潮→电导增大→泄漏电流增大→发热→形成干区→干区电阻大分压高场强高→放电形成→干区扩大→击穿。

污闪事故的对策:①调整爬距②定期或不定期的清扫③涂料④半导体釉绝缘子⑤新型合成绝缘子。

高电压技术

高电压技术

1、电子崩:外界电离因素在阴极附近产生了一个初始电子,如果空间电场强度足够大,该电子在向阳极运动时就会引起碰撞电离,产生一个新的电子,初始电子和新电子继续向阳极运动,又会引起新的碰撞电离,产生更多电子。

依此,电子将按照几何级数不断增多,类似雪崩似地发展,这种急剧增大的空间电子流被称为电子崩2、自持放电: 当外加电压逐渐升高后,气体中的放电过程发生转变,此时若去掉外界激励因素,放电仍继续发展,成为自持放电3、非自持放电:当外加电压较低时,只有由外界电离因素所造成的带电粒子在电场中运动而形成气体放 电电流,一旦外界电离作用停止,气体放电现象即随之中断,这种放电称为非自持放电。

4、流注:这些电离强度和发展速度远大于初始电子崩的新放电区(二次电子崩)以及他们不断汇入初崩通道的过程被称为流注。

5、极性效应:在电晕放电时,空间电荷对放电的影响已得到关注。

由于高场强电极极性的不同,空间电荷的极性也不同,对放电发展的影响也就不同,这就造成了不同极性的高场强电极的电晕起始电压的不同,以及间隙击穿电压的不同,称为极性效应。

6、50%冲击击穿电压:在工程实际中广泛采用击穿百分比为50%时的电压(U 50% )来表征气隙的冲击击穿特性。

实际中,施加10次电压中有4-6次击穿了,这一电压即可认为是50%冲击击穿电压。

7、伏-秒特性:同一波形,不同冲击电压峰值下,间隙上出现的最高电压和放电时间的关系曲线,称为伏-秒特性。

8、沿面放电:当固体和气体(或液体)介质构成并联放电路径时,放电总是沿着固体表面进行的,这种现象称为沿面放电。

9、闪络:当沿面放电发展到两极击穿时,称为闪络。

10、污闪:由于污秽导致产生的闪络11、极化:介质在电场的作用下,其束缚电荷相应于电场方向产生了弹性位移或偶极子转向,对外显示出极性。

12、累积效应:多次加电压时,局部损伤会逐步发展,这称为累积效应。

13、介质老化:绝缘在长期的运行过程中发生的一系列物理和化学的变化,致使其电气、机械和其他性能逐步劣化的现象。

长沙理工大学《高电压技术》问答题汇总

长沙理工大学《高电压技术》问答题汇总

1-1、试比较电介质中各种极化的性质和特点。

在外电场的作用下,介质原子中的电子运动轨道将相对于原子核发生弹性位移,此为电子式极化或电子位移极化。

离子式结构化合物,出现外电场后,正负离子将发生方向相反的偏移,使平均偶极距不再为零,此为离子位移极化。

极性化合物的每个极性分子都是一个偶极子,在电场作用下,原先排列杂乱的偶极子将沿电场方向转动,显示出极性,这称为偶极子极化。

在电场作用下,带电质点在电介质中移动时,可能被晶格缺陷捕获或在两层介质的界面上堆积,造成电荷在介质空间中新的分布,从而产生电矩,这就是空间电荷极化。

补充:1、说明巴申定律的实验曲线的物理意义是什么?答:巴申曲线如下图所示:其物理意义在于:在均匀的电场中,击穿电压b U 是气体的相对密度δ、极间距离S 乘积的函数,只要S ⋅δ的乘积不变,b U 也就不变。

其原因可解释如下:假设S 保持不变,当气体密度δ增大时,电子的平均自由行程缩短了,相邻两次碰撞之间,电子积聚到足够动能的几率减小了,故b U 必然增大。

反之当δ减小时,电子在碰撞前积聚到足够动能的几率虽然增大了,但气体很稀薄,电子在走完全程中与气体分子相撞的总次数却减到很小,欲使击穿b U 也须增大。

故在这两者之间,总有一个δ值对造成撞击游离最有利,此时b U 最小。

同样,可假设δ保持不变,S 值增大时欲得一定的场强,电压必须增大。

当S 值减到过小时,场强虽大增,但电于在走完全程中所遇到的撞击次数己减到很小,故要求外加电压增大,才能击穿。

这两者之间,也总有一个S 的值对造成撞击游离最有利,此时b U 最小。

第一章1-4、电解质电导与金属电导本质区别为何?答:金属导电的原因是自由电子移动;电介质通常不导电,是在特定情况下电离、化学分解或热离解出来的带电质点移动导致。

1-6、某些电容量较大的设备经直流高压试验后,其接地放电时间要求长达5--10min ,为什么?答:由于介质夹层极化,通常电气设备含多层介质,直流充电时由于空间电荷极化作用,电荷在介质夹层界面上堆积,初始状态时电容电荷与最终状态时不一致;接地放电时由于设备电容较大且设备的绝缘电阻也较大则放电时间常数较大(电容较大导致不同介质所带电荷量差别大,绝缘电阻大导致流过的电流小,界面上电荷的释放靠电流完成),放电速度较慢故放电时间要长达5~10min 。

气体的绝缘特性

气体的绝缘特性

(2). 利用空间电荷对电场的畸变作用
(3). 极不均匀电场中采用屏障
当屏障与棒极之间的距离约等于间隙的距离 的15%-----20%时,间隙的击穿电压提高得最多 ,可达到无屏障时的2---3倍
2. 削弱游离因素的措施
(1). 采用高气 压 气体压力提高后,气体的密度加大,减少了电 子的平均自由行程,从而削弱了碰撞游离的过程 。
f0=11g/m3
2. 相对密度的影响
相对密度
p
=0.289---T
当在0.95到1.05之间时,空气间隙的击穿电压U 与成正比 U= U0
3. 湿度的影响
(1). 均匀或稍不均匀电场
湿度的增加而略有增加,但程度极微,可以不校正
(2). 极不均匀电场
由于平均场强较低,湿度增加后,水分子易吸附电 子而形成质量较大的负离子,运动速度减慢,游离能 力大大降低,使击穿电压增大.因此需要校正.
4. 高度的影响
随着高度增加,空气逐渐稀薄,大气压力及空气 相对密度下降,间隙的击穿电压也随之下降.
U=ka U0
k
1 H 1.1 1000
六. 提高气体间隙绝缘强度的方法
有两个途径: 一个是改善电场分布,使之尽量均匀; 另一个是削弱气体间隙中的游离因素.
1. 改善电场分布的措施
(1). 改变电极形状
如高压空气断路器和高压标准电容器等
10kv高压标准介损器
(2). 采用高真空
气体间隙中压力很低时,电子的平均自由 行程已增大到极间空间很难产生碰撞游离的程 度。 如真空电容器、真空断路器等
真空断路器
真空电容器
(3). 采用高强度气体 SF6气体属强电负性气体,容易吸附电子 成为负离子,从而削弱了游离过程.提高压力 后可相当于一般液体或固体绝缘的绝缘强度. 它是一种无色、无味、无臭、无毒、不燃的 不活泼气体,化学性能非常稳定,无腐蚀作 用。它具有优良的灭弧性能,其灭弧能力是 空气的100倍,故极适用于高压断路器中。

电气设备结构复习题

电气设备结构复习题

复习题7一、名词解释:1.绝缘:绝缘是电气设备结构中的重要组成部分,其作用是把电位不等的导体分开,使其保持各自的电位,没有电气连接。

P3.2.碰撞游离:在电场的作用下,电子被加速获得动能,如果其动能大于气体质点的游离能,在和气体质点发生碰撞时,就可能使气体质点游离分裂成正离子和电子。

这种游离称为碰撞游离。

P5.3.非自持放电:需要依靠外界游离因素支持的放电成为非自持放电。

P9.4.自持放电:只依靠电场就能维持下去的放电称为自持放电。

P9.5.热游离:因气体分子热运动引起的游离称为热游离。

P6.6.表面游离:放在气体中的金属电极表面游离出自由电子的现象称为表面游离。

P6.7.强场发射:在阴极附近加上很强的外电场,其强度达106V/cm,将电子从阴极表面拉出来,称为冷发射或强场发射。

P6.8.光电效应:金属表面受到光的照射发生表面游离的现象。

P6.9.热电子发射:将金属电极加热到很高的温度,可使其中的电子获得巨大的能量,溢出金属的现象。

P7.10.汤逊理论:当外施电压足够高时,电子从阴极表面发出向阳极运动,由于碰撞游离形成电子崩,由碰撞游离产生的新的正离子在电场作用下向阴极运动,并撞击阴极,从而阴极表面释放出有效电子,以弥补电子崩进入阳极的电子,放电过程达到自持放电。

这种均匀电场气隙的放电理论称为汤逊理论。

P9.11.流柱:正负离子的混合通道称为流注。

P11.12.电晕放电:在大曲率电极附近很薄的一层空气中将具备放电条件,放电局限于在大曲率电极很小范围内,而整个间隙未击穿,这种放电称为电晕放电。

P1213.极性效应:在不均匀电场中,间隙上所加电压不足以导致击穿时,在大曲率电极附近,电场最强,就可能发生游离,形成电晕放电。

在起晕电极附近.聚集的空间电荷将对放电过程造成影响,称为极性效应。

P1414.先导:具有热游离过程,不断伸长的通道称为先导。

P1515.自持放电的主要因素:流注理论认为电子的碰撞和空间光游离是自持放电的主要因素。

高电压工程-第二章 气体放电的基本理论【】

高电压工程-第二章  气体放电的基本理论【】

第6节 沿面放电与污秽闪络
1)定义—当绝缘承受的电压超过一定值时,在固体介 质和空气交界面上出现的放电现象,叫沿面放电。
当沿面放电发展成为贯穿性的空气击穿时,叫沿面闪络。 沿面放电是气体放电,由于交界面上电压分布不均匀,
沿面闪络电压比气体单独存在时的击穿电压低 输电线路遭受雷击时绝缘子的闪络,处于大气脏污地区
的瓷瓶在雷雾天发生闪络,均属沿面放电。 为避免绝缘子发生不可恢复的击穿,在设计中让其击穿
电压高出闪络电压约50% 2)影响因素—绝缘表面状态、污秽程度、气候条件等
因素影响很大。
沿面闪络的几种形式
工频电压作用下
沿平板玻璃表面 滑闪放电照片
辽沈地区2001年2月22日遭遇最严重大面积停电事故,沈阳市区 停电面积超过70%。辽沈停电事故是从输电线路污闪开始的。 辽沈为重工业区,含盐的空气污染物附着在绝缘瓷瓶上,大雾 湿气使瓷瓶绝缘能力降低,电弧沿着瓷瓶表面爬升,出现闪烙
➢电晕造成的损耗可削弱输电线上的雷电冲击电压 波的幅值和陡度;
➢利用电晕制造除尘器、消毒柜和对废气、废水进 行处理及对水果、蔬菜进行保鲜等。
极不均匀电场中气隙放电的极性效应
对于“棒—板”间隙,将“棒”的极性定义为间隙的 极性
1)正极性--棒 起晕电压高 击穿电压低
2)负极性--棒 起晕电压低 击穿电压高
D54动车组山东出事撞死一人致车头裂开
2009年3月28日,青岛—北京南D54次动车 途经山东潍坊,列车撞上了一男性铁路工人 (当场死亡),导致车头部分裂开,留有暗 红色血迹。列车暂停约20分钟,最终晚点15 分到达北京。
当时D54路过潍坊站后,正处于加速阶段, 时速在200公里以上。
第三节 流注放电理论
沿面放电:气体介质与固体介质的交界面上沿着固体介质的表面 而发生在气体介质中的放电;当沿面放电发展到使整个极间发 生沿面击穿时称为沿面闪络。

高电压名词解释

高电压名词解释

1 热游离:由气体的热状态引起的游离过程。

2 巴申定律:当气体和电极材料一定时,气息的击穿电压是气体的相对密度和气隙D乘积的函数。

3自持放电:不需要外界游离因素,靠电场本身就能维持的放电。

4 非自持放电:靠外界因素才能维持的放电。

5 电晕放电:是极不均匀电场特有的一种自持放电形式.6 极性效应:对于电极形状不对称的不均匀电场气隙,如棒—板间隙,棒的极性不同时,间隙的起晕电压和击穿电压各不相同,这种现象叫做极性效应。

7 统计时延:从电压达到Uo的瞬时起到间隙中形成第一个有效电子为止的时间8放电时延:从第一个有效电子的瞬时起到间隙完全被击穿为止的时间。

9伏秒特性:对某一冲击电压波形,间隙的击穿电压和击穿时间的关系为伏秒特性。

10 50%冲击放电电压:指多次施加某一波形和峰值一定的冲击电压波形时,间隙被击穿的概率为50%。

11累计效应:极不均匀电场中,当作用在固体介质上的电压为幅值较低或作用时间较短的冲击电压时,会在固体介质中形成局部或不完全击穿,这些不完全击穿施加一次击穿电压就向前延伸一步随着加压次数增加介质的击穿电压也随之下降。

12耐压试验:是指在绝缘上施加规定比工作电压高得多的试验电压,直接检验绝缘的耐受情况。

破坏性试验:耐压试验因所加的电压较高,可能是绝缘受到损伤,绝缘存在严重缺陷时还可能使绝缘发生击穿这类试验成为破坏性实验。

13非破坏性试验:绝缘特性试验因所加的电压较低,不会对绝缘造成损伤,故称为非破坏性试验。

14吸收比:是指被试品加压60秒时的绝缘电阻R与加压15秒的绝缘电阻R之比。

15泄漏电流:被试品加较高直流电压时,其上所流过的电流。

16电容效应:因回路电流在漏抗上产生的电压降落后被试品上的电压方向相反,从而使被试品上的电压的大小高于电源电压的大小。

17地面落雷密度:指每个雷暴日每平方公里地面上的平均落雷次数。

18阀式避雷器的灭弧电压:指保证避雷器能够在工频续流第一次过零值时灭弧的条件下,允许加在避雷器上的最高工频电压。

不均匀电场的击穿和雷电冲击电压下的空气击穿

不均匀电场的击穿和雷电冲击电压下的空气击穿

三、伏秒特性
当击穿过程中加在间隙上的电 压随时间变化时,击穿电压指 间隙上的最高电压。
对持续电压来说,电压变化比 放电发展的速度慢得多,电压 达到静态击穿电压后,可认为 电压基本不变,所以击穿电压 就等于静态击穿电压。
对雷电冲击电压来说,电压变化速度极快,在电压达 到静态击穿电压后的放电时延内,电压变化较大,击 穿电压高于静态击穿电压;且击穿电压随时间而变。
2.5 雷电冲击电压下气体的击穿
一、冲击波形及特点
冲击波: ①雷电冲击 ②操作冲击
标准雷电波:
IEC和国标规定: T1=1.2μs±30% T2=50μs±20% 一般写为±1.20/50
特点:高幅值、高陡度、短时间
标准雷电冲击电压波
T1——视在波前时间 T2——视在半峰值时间
二、冲击放电特点
1、完成气隙击穿的三个必备条件:
2、放电时间的组成:
总放电时间 tb=t0+ts+tf
t1=ts+tf 称为放电时延
t0-气隙在持续电压下的击穿 电压为U0,为所加电压从0上 升到U0的时间;
ts-从电压达到U0瞬时起到气隙中出现第一个有效电子为
止的时间称为统计时延。
tf-出现有效电子后,引起碰撞游离,形成电子崩,发展到 流注和主放电,最后完成气隙击穿需要的时间,称为放电 形成时延。
2、分析: 下面以电场极不均匀的“棒-板”气隙为 例,从流注的概念出发,说明放电的发 展过程和极性效应。
(a) 正尖——负板
电子崩头部的电子到达棒极后即将 被中和,留在棒极附近的为正空间 电荷。这些正离子向阴极移动速度 很慢而暂留在棒极附近。它们削弱 了棒极附近的电场,棒极附近难以 形成流注,自持放电难以实现,故 起晕电压较高。而它们同时加强了 朝向极板的电场,促进放电向前发 展,故放电电压较低。

气体电介质的击穿特性

气体电介质的击穿特性

开始出现电晕时电极表面的场强
输电线路的电晕起始场强与导线半径及空气密度 有关,一般用经验公式来推算,应用最广的是皮克 公式:
Ec3m 0(10r.3 )k( V/cm )
m:导线表面粗糙系数与气象系数的乘 积; δ:空气相对密度; r: 导线半径(cm)
ቤተ መጻሕፍቲ ባይዱ
3、电晕放电的效应 (1)电晕电流具有高频脉冲性质,对无线电通讯产生干扰。 (2)电晕使空气发生化学反应,产生O3、NO、NO2。 (3)产生能量损耗。电晕损耗是超高压输电线路设计时必须考虑的因
降低电晕的方法: 从根本上设法限制和降低导线的表面电场强度。
在极不均匀电场中,放电一定从曲率半径较小的 那个电极表面开始,与该电极极性无关。
对于电极形状不对称的不均匀电场气隙,如棒— —板间隙,棒电极的极性不同时,间隙的起晕电 压和击穿电压的大小也不同。这种现象称为极性 效应。
原因:棒电极的极性不同时,间隙中的空间电荷 对外电场的畸变作用不同。
和主放电三个阶段。 c、长间隙放电时,炽热的导电通道是在放电发展的过程中
建立的,而不是在整个间隙被流注通道贯穿后建立的,先 导过程与主放电过程就发展得越充分,所以长间隙的平均 击穿场强远小于短间隙的平均击穿场强。
持续电压作用下空气的击穿电压
空气间隙的击穿场强主要取决于外加电压的 种类、电场的均匀程度及气体的状态。 电力工程中的空气间隙一般会受到三种电压的作 用:
正棒—负板间隙 当电子崩发展到棒极时,电子进入棒极中和。正离子留在棒 极附近以较慢速度向板极运动,正空间电荷使紧贴棒极附近的 电场减弱,不易形成流注,放电难以自持,故起晕电压高。而 正空间电荷加强了朝向板极的电场,有利于流注向板发展,故 击穿电压较低。
负棒—正板 阴极表面游离产生的电子通过强场区形成电子崩,电子向板极运动进入 弱场区后不再引起游离,并大多形成负离子。因其浓度小,对电场影响小。 正空间电荷加强了棒极附近的电场,易形成自持放电,故起晕电压低。朝 向板极方向的电场被减弱,流注不易发展,故击穿电压较高。

高电压技术

高电压技术

名词解释1、局部放电:在极不均匀电场中,在间隙击穿之前,只在局部场强很强的地方放电,但在整个间隙并未发生击穿,这种放电称为局部放电2、沿面放电:在气体介质和固体介质的交界面上沿着固体介质表面而发生在气体介质中的放电,称为沿面放电。

当沿面放电发展到使整个极间发生沿面击穿时称为沿面闪烁。

3、吸附效应:某些气体的中性分子或原子对电子具有较强的亲合力,当电子与其碰撞时,便吸附其上形成负离子,同时放出能量,这种现象称为吸附效应。

4、自持放电:不依靠外界电离因素,仅由电场作用维持放电的过程,这种过程称为自持放电。

5、极性效应:对于电极形状不对称的棒板间隙,击穿电压与棒的极性有很大的关系,即极性效应,极性效应是不对称的不均匀电场中的一个明显的特性。

6、电击穿:电击穿是指仅仅由于电场的作用而直接造成固体绝缘击穿的现象。

7、“小桥理论”:杂质、气泡在电场作用下,在电极之间形成小桥,击穿沿着小桥发生。

8、电子崩:是指电子在电场作用下从阴极奔向阳极的过程中与中性分碰撞发生电离,电离的结果产生出新的电子,新的电子又与初始电子仪器继续参与碰撞电离,使电离电子剧增犹于高山雪崩。

9、电晕放电:电晕放电是极不均匀电场中特有的一种自持放电形式10、吸收现象:直流电压U加在固体电介质时,通过介质中的电流将随时间而衰减最终达到某一稳态值,这种现象称为吸收现象。

11、临界波头时间:在气隙的50%操作冲击电压U50%与波前时间Tcr的关系曲线中,存在最不利的波前时间Tc,称为临界波前时间。

(此时击穿电压最小)12、绝缘老化:电介质在电场的长时间作用下,会逐渐发生某些物理化学变化,从而使物理、化学性能产生不可逆转的劣化,导致电介质的电气及机械强度下降,介质损耗及电导增大等,这一现象称为绝缘老化。

13、滑闪放电:当电压超过某一临界值后,放电的性质发生变化,个别火花细线则会突然迅速伸长,转变为分叉的树状明亮火花通道在不同的位置上交替出现,称为滑闪放电。

武大电气2019年高电压绝缘复习

武大电气2019年高电压绝缘复习

2019年高电压绝缘复习一.题型1填空(30空30分)2简答(7题70分)二.题库第二章:气体击穿理论分析和气体间隙绝缘1.气体放电的五种形式及其特点:辉光放电:电弧放电:火花放电:电晕放电:刷状放电:注意:电晕放电、刷状放电时气隙未击穿,而辉光放电、火花放电、电弧放电均指击穿后的放电现象,且随条件不同,这些放电现象可相互转换。

2.质点产生四种形式:(1)气体分子本身发生电离①光电离:光辐射引起的气体分子的电离过程。

外光源(紫外线照射)/激励态原子回到基态/正负离子的复合。

②碰撞电离:由于质点碰撞所引起的电离过程。

(主要是电子碰撞电离)。

是气体中产生带电粒子的最重要的方式。

分级电离时能量小于上式。

分析气体放电发展过程时,往往只考虑电子所引起的碰撞电离。

③热电离:因气体热状态引起的电离过程。

热电离实质上是热状态下碰撞电离和光电离的综合。

(2)气体中的固体或液体金属发生表面电离④表面电离:金属表面电离比气体空间电离更易发生。

阴极表面电离在气体放电过程中起着相当重要的作用。

电极表面电离按外加能量形式的不同,可分为四种形式:①正离子撞击阴极表面②光电子发射(光电效应)③热电子发射④强场发射(冷发射)3.质点消失三种形式:①电场作用定向移动消失于电极形成电流。

②扩散:在热运动的过程中,粒子从浓度较大的区域运动到浓度较小的区域,从而使每种粒子的浓度分布均匀化的物理过程。

特点:气压越低,温度越高,扩散进行的越快。

电子的热运动速度大、自由行程长度大,其扩散速度也要比离子快得多。

③带电粒子的复合,气体中带异号电荷的粒子相遇而发生电荷的传递与中和,还原为分子的过程。

带电粒子的复合过程中会发生光辐射,这种光辐射在一定条件下又成为导致电离的因素参与复合的粒子的相对速度越大,复合概率越小。

通常放电过程中离子间的复合更为重要带电粒子浓度越大,复合速度越大,强烈的电离区也是强烈的复合区。

4.汤逊放电:特点:电子的碰撞电离(α过程)和正离子(γ过程)撞击阴极造成的表面电离起主要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导线表面电晕
三.极不均匀电场中的电晕放电
1.电晕放电现象 1.电晕放电现象 在极不均匀电场中,最大场强与平均场强相差很大, 在极不均匀电场中,最大场强与平均场强相差很大,以至 当外加电压及其平均场强还较低的时候,电极曲率半径较小 当外加电压及其平均场强还较低的时候,电极曲率半径较小 处附近的局部场强已很大 局部场强已很大。 处附近的局部场强已很大。 在这局部强场区中 产生强烈的游离, 局部强场区中, 在这局部强场区中,产生强烈的游离,但由于离电极稍远 处场强已大为减小,所以,此游离区不可能扩展到很大, 处场强已大为减小,所以,此游离区不可能扩展到很大,只 能局限在此电极附近的强场范围内。 能局限在此电极附近的强场范围内。 伴随着游离而存在的复合和反激励 发出大量的光辐射 复合和反激励, 光辐射, 伴随着游离而存在的复合和反激励,发出大量的光辐射, 使在黑暗中可以看到在该电极附近空间发出蓝色的晕光 蓝色的晕光, 使在黑暗中可以看到在该电极附近空间发出蓝色的晕光,这 就是电晕。 就是电晕。 电晕放电是极不均匀电场所特有的一种自持放电形式。 电晕放电是极不均匀电场所特有的一种自持放电形式。 2.电晕起始电压Uc和起始场强Ec;
6.消除电晕措施
最根本的途径就是设法限制和降低导线(导体) 最根本的途径就是设法限制和降低导线(导体)的表面电 场强度。 场强度。 1. 采用分裂导线,使等值曲率半径增大。 采用分裂导线,使等值曲率半径增大。 2. 改进电极的形状,增大电极的曲率半径,使表面光滑。 改进电极的形状,增大电极的曲率半径,使表面光滑。
迎面流注对负先导的发展有很大影响。 迎面流注对负先导的发展有很大影响。棒为负极性时 间隙的击穿电压比正极性时要高, 间隙的击穿电压比正极性时要高,而负先导的发展速度 则比正先导的低一个数量级。 则比正先导的低一个数量级。
自持放电电压 也即击穿电压
如同轴圆柱体: 如同轴圆柱体:
E=
U R x ln r

R
r
α dx= ln
1
γ

R
r
R Bpx ln ( R/r ) 1 Bp Ap exp dx= ln dx=∫r Ap exp U0 γ E
三.极不均匀电场中的电晕放电
棒-板间隙电晕 板间隙电晕
不均匀系数: 不均匀系数:
Emax Emax f= = Eav U / d
{
稍不均匀电场 f<2 :稍不均匀电场 f>4 :极不均匀电场 极不均匀电场
二.稍不均匀电场和极不均匀电场特征
稍不均匀电场中击穿电压的计算
α = Ape− Bp/ E E =U / f ( x ) ⇒
d α dx =ln 1 ≈ 20 ∫0 γ
d U c =Ec r ln r
kV
d = 2h
③同轴圆柱: 同轴圆柱:
r R
0.305 E c =31.5δ 1 + kV/cm rδ
R U c =Ec r ln r
kV
④球-球间隙 球间隙
r
d
0.337 E c =27.7δ 1 + kV/cm rδ
3)电压的产生 )
2. 实验结果
( 2 )棒-板间隙 棒 板间隙
棒的极性不同时,放电也具有不同的特点。 棒的极性不同时,放电也具有不同的特点。 棒为正极性时,先导通道具有很多分枝,可接近板极。 ①棒为正极性时,先导通道具有很多分枝,可接近板极。 当棒为负极性时,随着先导向极板推进, ②当棒为负极性时,随着先导向极板推进,从极板上出现了 一系列相迎流注, 一系列相迎流注,后者是从极板表面由于粗糙不平而电场局 部集中的地方发展起来的。 部集中的地方发展起来的。当由负棒出发的先导和相迎流注 之一相遇时,立刻就转入主放电阶段 主放电阶段, 之一相遇时,立刻就转入主放电阶段,主放电过程由相遇处 迅速向两端发展。 两端发展 迅速向两端发展。
由此可见, 由此可见,电场的不均匀程度可以根据能否维持电 晕放电来划分。 晕放电来划分。 极不均匀电场:不均匀到可以维持电晕放电的程度; 极不均匀电场:不均匀到可以维持电晕放电的程度; 稍不均匀电场:虽然电场不均匀, 稍不均匀电场:虽然电场不均匀,但还不能维持稳定的 电晕放电,一旦放电达到自持, 电晕放电,一旦放电达到自持,必然会导致整个间隙立 即击穿。 即击穿。
2、同轴圆柱间隙放电 、
R=10cm

电场比较均匀: ① 电场比较均匀:放电达到自持 时,α在整个间隙中都已达到相 当数值。 当数值。初始电子崩经过整个问 隙后,形成阳极流注,击穿。 隙后,形成阳极流注,击穿。 ②电场不均匀程度增加但仍比较 均匀的情况下: 均匀的情况下: 当大曲率电极附近α达到足够 当大曲率电极附近 达到足够 数值时, 数值时,起始电子崩在间隙中强 电场区内发展起来, 电场区内发展起来,经过间隙中 相当一部分距离后,形成流注。 相当一部分距离后,形成流注。 流注一经产生, 流注一经产生,随即发展至贯通 整个间隙,导致间隙完全击穿。 整个间隙,导致间隙完全击穿。
Uc的计算:先计算不均匀系数f,计算平均电场 的计算:先计算不均匀系数 ,计算平均电场Eav, 的计算 , Uc=Eav*d
四.极不均匀电场中的击穿、极性效应 极不均匀电场中的击穿、 (一)长空气间中放电过程的实验研究 一 长空气间中放电过程的实验研究
1.试验设备 试验设备 1) 旋转照相机 2)像变换管 ) 3)光电倍增管 ) 4)光谱分析仪 ) 5)示波设备等 )
2、同轴圆柱间隙放电 、
电场极不均匀的情况下: ③ 电场极不均匀的情况下: 当大曲率电极附近很小范围内α已达相当数值时, 当大曲率电极附近很小范围内α已达相当数值时,间 隙中大部分区域α值都仍然很小。这时, 隙中大部分区域α值都仍然很小。这时,初始电子崩只能 在大曲率电极附近很小范围内发展, 在大曲率电极附近很小范围内发展,放电自持时形成 的流注也不能发展至贯通整个间隙。 的流注也不能发展至贯通整个间隙。只是在大曲率 电极附近出现薄薄的紫色晕光层,也就是电晕放电。 电极附近出现薄薄的紫色晕光层,也就是电晕放电。电压 必须继续增加到一定值后, 必须继续增加到一定值后,才会形成贯通两电极的放电通 导致击穿。 道,导致击穿。 电场越不均匀, 电场越不均匀,击穿电压和电晕起始电压间的差别也 越大。 越大。 结论:电场比较均匀:击穿电压 放电自持电压 结论:电场比较均匀:击穿电压=放电自持电压 电场极不均匀:电晕起始电压=放电自持电压 电场极不均匀:电晕起始电压 放电自持电压
3.外区中空间电荷的作用
结论: 结论: 外区中的离子和电晕电极同号; ①外区中的离子和电晕电极同号; 加强了外区中的电场,减少了电晕层中的场强。 ②加强了外区中的电场,减少了电晕层中的场强。
4.电晕放电有两种不同形式:电子崩形式和流注形式 5. 电晕放电危害 1. 伴随着游离、复合、激励、反激励等过程而有声、光、 伴随着游离、复合、激励、反激励等过程而有声、 热等效应,会有能量损耗 能量损耗。 热等效应,会有能量损耗。 2. 在尖端或电极的某些突出处,电子和离子在局部强场的 在尖端或电极的某些突出处, 驱动下高速运动,与气体分子交换动量,形成“电风” 驱动下高速运动,与气体分子交换动量,形成“电风”。 当电极固定得刚性不够时,气体对“电风” 当电极固定得刚性不够时,气体对“电风”的反作用力会 使电晕极振动或转动。 使电晕极振动或转动。 3. 电晕会产生高频脉冲电流,其中还包含着许多高次谐波 电晕会产生高频脉冲电流,其中还包含着许多高次谐波, 这会造成对无线电的干扰。 这会造成对无线电的干扰。 对无线电的干扰 4. 电晕产生的化学反映产物具有强烈的氧化和腐蚀作用, 电晕产生的化学反映产物具有强烈的氧化和腐蚀作用 具有强烈的氧化和腐蚀作用, 电晕是促使有机绝缘老化的重要因素。 电晕是促使有机绝缘老化的重要因素。 5. 电晕还可能产生超过环保标准的噪声,对人们会造成生 电晕还可能产生超过环保标准的噪声 产生超过环保标准的噪声, 心理的影响。 理、心理的影响。
导线尺寸,大气状态,大气湿度,电极材料,电源频率, 导线尺寸,大气状态,大气湿度,电极材料,电源频率,导线表面状态等 都有影响。 对Ec都有影响。 都有影响
d U c =Ec r ln r
kV
②地面上的单根导线: 地面上的单根导线:
0.298 E c =30.3mδ 1 + kV/cm rδ
2)变象管 变象管
放电现象1经物镜 投射到半透明的光电阴极 根据投射来的光辐射, 放电现象 经物镜2投射到半透明的光电阴极 根据投射来的光辐射, 经物镜 投射到半透明的光电阴极3,根据投射来的光辐射 光电阴极发射出电子。发射出的电子由电极4聚焦成象并得到加速 聚焦成象并得到加速。 光电阴极发射出电子。发射出的电子由电极 聚焦成象并得到加速。聚焦 后的电子束经光阑5、闭锁电极6、垂直偏转电极7、水平偏转电极8及补 后的电子束经光阑 、闭锁电极 、垂直偏转电极 、水平偏转电极 及补 偿电极9而到达荧光屏 而到达荧光屏10,又重现为发光图象。 偿电极 而到达荧光屏 ,又重现为发光图象。利用偏转电极可将放电现 象随时间展开。 象随时间展开。在闭锁电极上施加间断的释放脉冲电压还可在荧光屏上 得到分幅的图象。荧光屏上的图象可用普通照相机摄制下来。 得到分幅的图象。荧光屏上的图象可用普通照相机摄制下来。变象管扫 描速度高,分辨率好,控制灵活,灵敏度高(能增强发光微弱现象的亮度 能增强发光微弱现象的亮度) 描速度高,分辨率好,控制灵活,灵敏度高 能增强发光微弱现象的亮度 因此获得越来越广泛的应用。 ,因此获得越来越广泛的应用。
(三)电晕放电的起始场强和电压
1. 电晕放电起始电压 c根据 γ exp ∫0 α dx=1 理论求解 电晕放电起始电压U
d
2. 利用经验公式求解电晕起始电压(Peek公式) 利用经验公式求解电晕起始电压( 公式) 公式
①平行导线: 平行导线:
相关文档
最新文档