ANSYS齿轮接触分析案例精品
基于ANSYS_LS_DYNA的直齿锥齿轮动力学接触仿真分析
基于ANSYS/LS 2DY NA 的直齿锥齿轮动力学接触仿真分析高 翔,程建平(江苏大学汽车与交通工程学院,江苏镇江 212013)摘要:针对直齿锥齿轮疲劳破坏中出现儿率最高的齿面接触疲劳强度问题,在UG 中建立齿轮几何模型,利用ANSYS/LS 2DY NA 对齿轮进行动力学接触仿真分析,计算了齿轮副在啮合过程中齿面接触应力、应变的变化情况及两对轮齿同时接触过程中接触压力的分布情况。
关键词:直齿锥齿轮;AN S YS /LS 2D Y NA;动力学;接触仿真分析中图分类号:TH132.421 文献标识码:A 文章编号:1006-0006(2008)02-0050-02Dynam ic Contact Emulate Analysis of Bevel Gear with ANSYS/LS 2DY NAGAO X iang,CHEN G J ian 2ping(School of Aut omotive and Traffic Engineering,J iangsu University,Zhenjiang 212013,China )Ab s tra c t:Geometrical model of a bevel gear is established and bevel gear dyna m ic emulati on analysis is operatedwith ANSYS/LS 2DY NA s oft w are f or that the fatigue failure p r obability of bevel gear is the highest in t ooth surfaces contact fatigue resistance .The contact stress and def or mati on during the meshing p r ocess are calculated .And the distributi on of contact f orce is calculated when t w o pairs of teeth contact si m ultaneously .Key wo rd s:Bevel gear;ANSYS/LS 2DY NA;Dyna m ic;Contact si m ulati on analysis 由于车用齿轮的传动比和传递功率大,加工难度与成本都相当高,所以如何提高车用齿轮的传动性能与使用寿命,近年来一直深受社会各界的广泛关注。
ANSYS齿轮接触应力分析案例精品
Preprocessor>Modeling>Operate>Booleans>Glue>Lines。
选择”Copied”,如下图。镜像结果。
齿轮的接触分析实例
齿轮的接触分析实例
(23)把齿顶上的两条线粘起来。 a.从主菜单选择
Preprocessor>Modeling>Operate>Booleans>Glue>Lines。 b.选择齿顶上的两条线,点击【OK】。 (24)把齿顶上的两条线加起来,成为一条线。 a.从主菜单选择
齿轮的接触分析实例
b.从主菜单选择Preprocessor>Modeling>Copy>Lines。 c.点击【Pick All】。 d.在弹出的提示框中按下图输入,点击【OK】。(Fit view)
齿轮的接触分析实例
(26)把齿底上的所有线粘起来。 a.从主菜单选择
Preprocessor>Modeling>Operate>Booleans>Glue>Lines。 b.分别选择齿底上的两条线,点击【OK】。 (27)把齿顶上的两条线加起来,成为一条线。 a.从主菜单选择
齿轮的接触分析实例
(20)将工作平面旋转13°。 a.从实用菜单中选择WorkPlane>Offset WP by Increments。 b.在“XY,YZ,ZX Angles”文本框中输入13,0,0,点击【OK】。 (21)将激活的坐标系设置为工作平面坐标系:
ANSYS齿轮接触应力分析案例
ANSYS齿轮接触应力分析案例齿轮是机械传动系统中常用的零部件,用于传递动力和转速。
在齿轮的工作过程中,由于受力情况复杂,容易发生接触应力过大导致齿轮损坏的情况。
为了确保齿轮的工作性能和寿命,需要进行接触应力的分析和优化设计。
ANSYS作为常用的有限元分析软件,可以用于进行齿轮接触应力的模拟和分析。
本文将以一个齿轮接触应力分析案例为例,介绍如何使用ANSYS软件进行接触应力的分析。
本案例以一对齿轮为例,通过对齿轮的建模、加载和分析过程,展示如何通过ANSYS软件进行齿轮接触应力的分析。
1.齿轮建模首先,在ANSYS软件中建立齿轮的几何模型。
可以通过CAD软件绘制齿轮的几何形状,然后导入到ANSYS中进行网格划分。
在建模过程中,需要考虑齿轮的齿形、齿数、模数等参数,并根据实际情况设置合适的几何形状。
2.设置加载在建模完成后,需要设置加载条件。
在本案例中,以齿轮传递动力时的载荷为例,可以通过施加力或扭矩来模拟齿轮的工作情况。
根据实际情况设置载荷大小和方向,以便进行接触应力的仿真分析。
3.网格划分接着对齿轮的几何模型进行网格划分,生成有限元网格。
在ANSYS中,可以通过自动网格划分功能或手动划分网格,确保模型的几何形状与加载条件得到合理的分析精度。
4.设置材料属性在进行齿轮接触应力分析前,需要设置材料的力学性质。
根据齿轮的实际材料属性,设置材料的弹性模量、泊松比等参数,以便进行接触应力的仿真分析。
5.运行分析设置完加载和材料属性后,可以进行齿轮接触应力的仿真分析。
在ANSYS中选择适当的分析模型和求解器,进行接触应力的计算和分布分析。
通过分析结果可以得到齿轮接触区域的应力分布情况,确定是否存在应力集中的问题。
6.结果分析最后,分析计算结果并进行结果的分析和优化。
根据接触应力的分布情况,确定齿轮的工作性能是否满足要求,是否存在应力过大导致损坏的风险。
如果需要,可以对齿轮的设计参数进行调整和优化,以提高齿轮的工作性能和寿命。
ansys齿轮接触分析案例
加载与求解
01
施加约束
根据实际情况,对齿轮的轴孔、 端面等部位施加适当的约束,如 固定约束、旋转约束等。
02
03
施加接触力
求解设置
根据齿轮的工作状态,在齿面之 间施加接触力,模拟实际工作情 况。
设置合适的求解器、迭代次数、 收敛准则等,确保求解的准确性 和稳定性。
后处理
结果查看
查看齿轮接触分析的应力分布、应变分布、接触压力分布等 结果。
02
分析接触区域的大小、应力分布情况,评估齿轮的传动性能和
寿命。
根据分析结果,优化齿轮的设计和制造工艺,提高其传动性能
03
和寿命。
06
CATALOGUE
ansys齿轮接触分析案例四:蜗轮蜗杆
问题描述
蜗轮蜗杆传动是一种常见的减速传动 方式,具有传动比大、传动平稳、噪 音低等优点。但在实际应用中,蜗轮 蜗杆的接触问题常常成为影响其性能 和寿命的关键因素。
属性。
边界条件和载荷
01
约束蜗杆的轴向位移,固定蜗轮的底面。
02 在蜗杆的输入端施加扭矩,模拟实际工作状态。
03 考虑温度场的影响,在模型中设置初始温度和环 境温度,并考虑热传导和热对流。
求解和结果分析
进行静力分析和瞬态动力学分析,求解接触应力 分布、摩擦力变化以及温度场分布等。
对求解结果进行后处理,提取关键数据,进行可 视化展示。
通过齿轮接触分析,可以发现潜在的 应力集中区域和齿面磨损问题,提高 齿轮的可靠性和寿命。
齿轮接触分析的应用领域
汽车工业
用于研究汽车变速器、发动机和传动系统中的齿轮接触行为,优 化齿轮设计以提高燃油经济性和可靠性。
风电领域
用于研究风力发电机组中齿轮箱的齿轮接触行为,提高风力发电设 备的效率和可靠性。
基于ANSYS WORKBENCH 的空间曲线啮合齿轮接触分析
课程论文(2015-2016学年第二学期)基于ANSYS WORKBENCH 的空间曲线啮合齿轮接触分析基于ANSYS WORKBENCH 的空间曲线啮合齿轮接触分析摘要:空间曲线啮合齿轮是近几年来华南理工大学教授陈扬枝提出的新型齿轮,对该齿轮的弯曲应力和强度设计准则都有了一定的研究。
因此,本文主要是利用ANSYS WORKBENCH软件来对该齿轮来进行接触分析的进行探讨,介绍了接触分析的方法,为空间曲线啮合齿轮提供了一种新的分析方法。
用两个初始参数几乎完全一样的两个齿轮对来进行比较分析,得到交错轴齿轮比交叉轴齿轮的等效应力更大;安装位置对分析的结果的影响也很大;等效应变和变形都能够满足我们实际的需求等这些结论。
关键词:ANSYS WORKBENCH 空间曲线啮合齿轮接触分析1.引言传统的齿轮的形式多种多样,用有限元对传统齿轮的机构进行分析是目前研究采用得最多的一种方法。
而齿轮啮合过程作为一种接触行为,因涉及接触状态的改变而成为一个复杂的非线性问题。
因此近年来,国内外学者开始采用接触有限元法对齿轮进行分析。
接触有限元法来分析齿轮结构,为齿轮的快速设计和进一步的优化设计提供条件。
空间曲线啮合齿轮(Space Curve Meshing Wheel, SCMW) [1~3]是近几年来由华南理工大学教授陈扬枝提出的新型齿轮,而空间曲线啮合交错轴齿轮则是可以运用于空间交错轴上的啮合齿轮。
不同于基于齿面啮合理论的传统齿轮机构[4、5],它们是基于一对空间共轭曲线的点啮合理论。
它的特点是:传动比大、小尺寸、质量轻等。
课题组前期已经研究了适用于该空间曲线啮合轮机构的空间曲线啮合方程[6],重合度计算公式[7],强度设计准则[8]以及制造技术[9]等,并设计出微小减速器[10]。
同时,对于该齿轮的等强度设计等方面正在进行研究。
ANSYS WORKBENCH是用ANSYS 求解实际问题的产品,它是专门从事于模型分析的有限元软件,能很好地和现有的CAD三维软件无缝接口,来对模型进行静力学、动力学和非线性分析等功能。
ANSYS齿轮接触
齿轮副的接触分析及模态分析程* 2018101171.齿轮的相关参数齿顶直径:24齿底直径:20齿数:10厚度:4密度:7.8E3弹性模量:2.06E11摩擦系数:0.1中心距:442.建立模型从主菜单中选择Preference命令,在对话框中选择“Structural”复选框定义单元类型主菜单中选择Preprocessor>Element Type>Add/Edit/Delete,设置“Solid”,“4node 182”在Element Types对话框中单击【Options】弹出单元选项对话框,对PLANE182单元进行设置定义实常数选择Preprocessor>Real Constants>Add/Edit/Delete,设置常数单元类型,中将厚度设置为4定义材料属性从主菜单中选择Preprocessor>Material Props>Material Models,设置材料的弹性模量EX=2.06E11、泊松比PRXY=0.3,材料密度为7.8E3,摩擦系数为0.1建立齿轮面模型将当前坐标系设置为总体柱坐标系。
从实用菜单中选择WorkPlane>Change Actives CS to>Global Cylindrical定义关键点:Preprocessor>Modeling>Create>Keypoints>In Active CS,编号1(20,0);定义辅助点:Preprocessor>Modeling>Create>Keypoints>In Active CS偏移工作平面到给定位置选择WorkPlane>Offset WP to>Keypoints +,选择110号辅助点旋转工作平面选择WorkPlane>Offset WP by Increments,在“XY,YZ,ZX,ZXAngles”文本框中输入-50,0,0将激活的坐标系设置为工作平面坐标系:选择WorkPlane>Change Actives CS to>Working Plane建立第二个关键点,Preprocessor>Modeling>Create>Keypoints>In Active CS ,2(12.838,0)设置总体柱坐标系,选择WorkPlane>Change Actives CSto>Global Cylindrical建立其余辅助点:Preprocessor>Modeling>Create>Keypoints>In Active CS,设置编号依次为120,130,140,150,160,其坐标依次为(16,43)、(16,46)、(16,49)、(16,52)、(16,55)a.偏移工作平面到给定位置选择WorkPlane>Offset WP to>Keypoints +,选择120号辅助点b.旋转工作平面,选择WorkPlane>Offset WP by Increments,在“XY,YZ,ZX,ZXAngles”文本框中输入3,0,0c. 将激活的坐标系设置为工作平面坐标系:选择WorkPlane>Change Actives CS to>Working Plane建立第三个关键点:Preprocessor>Modeling>Create>Keypoints>In Active CS,3(13.676,0)重复以上a—c,建立其余的辅助点和关键点,分别把工作平面平移到编号为130,140,150,160的辅助点,然后旋转工作平面,旋转角度均为3,0,0,再讲工作平面设为当前坐标系,在工作平面中分别建立编号为4,5,6,7的关键点,其坐标依次为(14.513,0)、(15.351,0)、(16.189,0)、(17.027,0)建立编号为8,9,10的关键点,选择WorkPlane>Change Actives CSto>Global Cylindrical、Preprocessor>Modeling>Create>Keypoints>In Active CS,建立关键点8(24,9.875)、9(24,13)、10(20,5)创建圆弧线选择Preprocessor>Modeling>Create>Lines>Straight Line,按顺序连接关键点,再将其相加使其成为一条线Preprocessor>Modeling>Operate>Booleans>Add>Lines,删除原来的线偏移工作平面到总坐标系的原点:WorkPlane>Offset WP to>Global Origin将工作平面与总体坐标系对齐:WorkPlane>Align WP with>Global Cartesian将工作平面旋转13°,选择WorkPlane>Offset WP by Increments,在“XY,YZ,ZX Angles”文本框中输入13,0,0将所有线沿着X-Z面进行镜像(在Y方向),选择Preprocessor>Modeling>Reflect>Lines把每个齿顶上的两条线粘起来,选择Preprocessor>Modeling>Operate>Booleans>Glue>Lines 把齿顶上的两条线加起来,成为一条线,Preprocessor>Modeling>Operate>Booleans>Add>Lines 在柱坐标系下复制线,设置坐标系选择WorkPlane>Change Actives CS to>Global Cylindrical,主菜单选择Preprocessor>Modeling>Copy>Lines把齿底上的所有线粘起来,Preprocessor>Modeling>Operate>Booleans>Glue>Lines,分别选择齿低的两条线,再把齿底上的所有线加起来把所有线粘起来,选择Preprocessor>Modeling>Operate>Booleans>Glue>Lines用当前定义的所有线生成一个面,选择Preprocessor>Modeling>Create>Areas>Arbitrary>By Lines创建圆面,选择Preprocessor>Modeling>Create>Areas>Circle>Solid Circle从齿轮面中减去圆面,选择Preprocessor>Modeling>Operate>Booleans>Subtract>Areas在直角坐标系下复制面,设置坐标系选择WorkPlane>Change Actives CS to>Global Cartesian,复制Preprocessor>Modeling>Copy>Areas创建局部坐标系,选择WorkPlane>Local Coordinate Systems>Create Local CS>At Specified Loc+将当前坐标系设置为局部坐标系,选择WorkPlane>Change Actives CS to>Specified Coord Sys在局部坐标系下复制面,选择Preprocessor>Modeling>Copy>Areas删除第二个面,选择Preprocessor>Modeling>Delete>Area and Below,生成结果划分网格对齿面划分网格,选择Preprocessor>Meshing>MeshTool定义接触对(1)从应用菜单中选择Select>Entities,在类型下拉列表中选“Lines”,点击【Apply】(2)打开先选择对话框,选择一个齿轮上可能与另一个齿轮相接触的线,点击【OK】(3)在实体选择对话框中选择“Nodes”,在选择方式中选择“Attached to ”,在单选列表中选择“Lines, all”(4)选择Select>Como/Assembly>Create Component,在“Component name”文本框中输入”node1”,点击【OK】(5)从实用菜单中选择Select>Everything(6)在实体选择对话框中在类型下拉列表中选“Lines”,选择方式选“By Num/Pick”,点击【Apply】,弹出线选择对话框,选择另一个齿轮上可能与前一个齿轮相接触的线,点击【OK】在实体选择对话框中选择“Nodes”,在选择方式中选择“Attached to ”,在单选列表中选择“Lines, all”(7)选择Select>Como/Assembly>Create Component,在“Component name”文本框中输入”node2”,点击【OK】(8)从实用菜单中选择Select>Everything(9)点击工具栏中的【接触定义向导】(10)选择工具条中的第一项,会打开下一步操作向导,在对话框中选择”NODE2”,并点击【Next】(12)在对话框选取“NODE1”,点击【NEXT】(13)点击【Create】,建立接触对3.定义边界条件并求解(1)施加位移边界,选择WorkPlane>Change Actives CS to>Global Cylindrical;选择Preprocessor>Modeling>Move/Modify>Rotate Node CS>To Active CS,打开节点选择的对话框,要求选择欲旋转的坐标系的节点;选择第一个齿轮内径上所有节点,从实用菜单中选择Select>Entities,弹出实体选择对话框,选择第一个齿轮内径上所有的节点选择Solution>Define Loads>Apply>Structural>Displacement>on Nodes,点开节点选择对话框,要求选择欲施加位移约束的节点。
基于ANSYS的圆柱直齿轮接触应力分析
基于ANSYS的圆柱直齿轮接触应力分析摘要:根据轮齿齿廓的数学模型,在ANSYS环境下建立了轮齿平面有限元模型,并进行了应力分析计算.与传统的方法相比,有限元分析法能准确地获得齿轮的真实应力场,为齿轮强度计算提供了可靠的依据.通过实例阐述了直齿轮的建模方法,并介绍了具体的设计原理,将生成的一对齿轮进行标准安装生成啮合模型。
通过ANSYS转化成由节点及元素组成的有限元模型,运用完全牛顿-拉普森方法进行接触应力的静力学求解,并介绍了算法原理。
说明了新的接触单元法的精确性、有效性和可靠性。
关键词:齿轮Ansys 接触应力接触分析有限元Based on the ANSYS spur gear contact stress analysisAbstract: According to the mathematic model of a tooth profile of gear,the finite element model of a flat of gear tooth was established under the environment of ANSYS and the stress of a gear tooth was analyzed and caculated by means of finite element method. The real stress field of gear obtained by finite element method was more accurate than that obtained by traditional method.Therefore,it can provide the dependable basis for strength calculation of teeth of the gear.The method of modeling of spur gear is illustrated by an example. The concrete design principles are introduced as well.A constructed pair of gears is fixed normatively to give birth to gear model. By way of ANSYS,the gear model is transformed to the finite element model consisting of nodes and elements. Then NR method is used to get the statics solution by contact stress,and the arithmetic principle is introduced. The new contact element method proposed in the thesis is proved to be precise,valid and reliability. Keyword:gear Ansys contact stress contact analysis finite element0 引言齿轮传动是机械传动中最广泛应用的一种传动,它具有效率高、结构紧凑、工作可靠、寿命长等优点。
基于ANSYS的直齿面齿轮的接触应力分析
1072013年9月下 第18期 总第174期1 概述随着齿轮传动向重载、高速、低噪、高可靠性方向发展,现代齿轮设计对齿轮传动系统的静、动态特性提出了更高的要求。
齿轮设计的主要内容之一是强度设计,因此,建立比较精确的分析模型,准确的掌握齿轮应力的分布特点和变化规律具有重要的意义。
①③④设计模型的几何尺寸及边界条件如下表所示,大齿轮与小齿轮的齿厚为10mm,两个齿轮的中心距离为81mm。
小齿轮为主动齿轮,大齿轮为从动齿轮,小齿轮均匀转速0.2rad/s,大齿轮承受600N.m 的阻力扭矩,计算时间为1s.(如表1表2)2 模型的建立定义小齿轮渐开线,定义小齿轮根部过渡曲线,定义小齿轮齿廓线,建立小齿轮模型,同理建立大齿轮模型,调整两个齿轮的位置,如图1所示。
3 齿轮有限元网格模型的建立在Ansys中对齿轮副进行分析,首先要建立齿轮的有限元网格模型。
依据齿轮啮合模型参数,把根据齿面方程设计的专有程序计算结果导人Ansys,建立齿轮单齿有限元网格模型如图2所示。
针对所建齿轮模型,在齿高方向划分了17层单元,过渡部分划分4层单元,齿厚方向划分41层单元,为节省计算资源,省略了齿轮的辐板和轮载部分等对接触分析结果影响不大的部分。
该模型共有7896个节点,7678个单元,轮齿采用Solid45八节点线性等参元,将生成的单齿模型数据导人到Ansys中,并对其进行旋转复制等操作,把单齿模型拓展为有限元网格模型。
4 齿面接触情况及分析过程在上述模型上施加扭矩,对面齿轮副进行分析计算。
由于面齿轮的传动误差都很小,一般都在10-4-10-2范围内,基本上呈一条直线,并且波动性不大。
下图给出面齿轮轮齿在一个啮合周期内5个啮合位置的接触情况。
其中:图3为初始啮合位置的接触情况,图4为啮合终了位置的接触情况。
图中显示了不同啃合位置面齿轮轮齿接触区域的位置和形状变化,反映了齿轮副的啃合性能。
理论上讲,面齿轮啃合时为点接触,而在加载时齿面形成椭圆状接触区,接触区的大小用接触椭圆的长轴来衡量。
基于ANSYS的齿轮接触问题研究
用柔度矩阵法求解三维弹性接触问题,只需调用一次有限元法得到各接触体可能接触点对上分别作用单位力时的柔度值,就可以完成接触问题的求解。
3有限元模型对一些比较复杂的结构计算,较为有效的方法是运用有限元模型进行数值计算,来获得所需要的计算结果。
为了模拟齿轮之间的接触力的传递情况,在2个齿轮之间考虑了接触问题,采用的有限元计算软件是ANSYS。
3.1齿轮有限元建模(1)大齿轮主要参数模数:2.5nlln齿数:30材料:45钢泊松比:0.259(2)小齿论主要参数模数:2.5mln齿数:20材料:40Cr泊松比:0.277由于ANSYS在齿轮造型比较复杂,所以,利用其比较完善的数据接口,在CAXA电子图板中利用其自带的齿轮库完成齿轮造型,以IGS文件格式导入到ANSYS中。
3.2定义单元属性由于直齿齿轮可以转化为平面问题,所以选用二维4节点片面单元PLANEl82用于建立面模型。
3.3网格划分如果用智能网格划分可能无法保证分析结果的精确,可以控制轮廓线上的单元数进行智能划分,网格划分结果见图1。
图1齿轮对整体有限元模型接触处的局部网格见图2,根据划分情况可以<起重运输机械:》2008(6)看出在接触处网格足够紧密,而不会产生应力集中的部位网格较疏松。
减少了不必要的单元,大大减少了计算量。
图2局部接触处网格划分4建模中的一些问题由于接触问题是一种高度非线性问题,其处理上存在2大难点:(1)在求解问题之前,并不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其他因素而定;(2)大多的接触问题需要计算摩擦,有几种摩擦和模型供选择,摩擦使问题的收敛变得困难。
接触问题分为2种基本类型:刚体一柔体的接触,柔体一柔体的接触。
齿轮接触问题是典型的柔体一柔体的面一面接触问题。
4.1处理界面约束的方法选择在ANSYS中,提供了4种处理界面约束的方法:(1)Lagrange乘子法;(2)罚方法;(3)啪ge法和罚方法结合;(4)增广的Lagrange法。
【2019年整理】ANSYS齿轮接触应力分析案例
Preprocessor>Modeling>Create>Keypoints>In Active CS。 b.建立关键点1。如下图,完毕点击【OK】。
齿轮的接触分析实例
(3)定义一个点作为辅助点。 a.从主菜单选择
Preprocessor>Modeling>Create>Keypoints>In Active CS。 b.建立辅助点110。如下图,完毕点击【OK】。
击【OK】。
齿轮的接触分析实例
c. ANSYS提示是否删除原来的线,选择【Delete】,点击 【OK】。
(18)偏移工作平面到总坐标系的原点: WorkPlane>Offset WP to>Global Origin。
(19)将工作平面与总体坐标系对齐: WorkPlane>Align WP with>Global Cartesian。
选择”Copied”,如下图。镜像结果。
齿轮的接触分析实例
齿轮的接触分析实例
(23)把齿顶上的两条线粘起来。 a.从主菜单选择
Preprocessor>Modeling>Operate>Booleans>Glue>Lines。 b.选择齿顶上的两条线,点击【OK】。 (24)把齿顶上的两条线加起来,成为一条线。 a.从主菜单选择
(5)从主菜单中选择Preference命令,在对 话框中选择“Structural”复选框,单击 【OK】按钮。
齿轮的接触分析实例
2. 2 定义单元类型
(1)从主菜单中选择Preprocessor>Element Type>Add/Edit/Delete,打开“Element Type”对话 框,单击【Add】。
基于ANSYS有限元软件的直齿轮接触应力分析
基于ANSYS有限元软件的直齿轮接触应力分析一、本文概述随着现代机械工业的飞速发展,齿轮作为机械设备中的关键传动元件,其性能的稳定性和可靠性对于设备的长期运行和维护至关重要。
直齿轮作为齿轮传动的一种基本形式,其接触应力的分布与大小直接影响着齿轮的工作性能和使用寿命。
因此,对直齿轮接触应力的深入研究与分析,对于提高齿轮的设计水平、优化制造工艺以及提升设备的整体性能具有重要意义。
本文旨在利用ANSYS有限元软件对直齿轮的接触应力进行分析。
简要介绍了直齿轮的基本结构和传动原理,阐述了接触应力分析的必要性和重要性。
详细阐述了ANSYS有限元软件在齿轮接触应力分析中的应用,包括建模、网格划分、材料属性设定、接触设置、求解及后处理等关键步骤。
通过实例分析,展示了ANSYS软件在直齿轮接触应力分析中的具体操作流程,并对分析结果进行了详细的解读。
总结了利用ANSYS进行直齿轮接触应力分析的优势和局限性,并对未来的研究方向进行了展望。
本文旨在为齿轮设计师和工程师提供一种有效的直齿轮接触应力分析方法,帮助他们更好地理解直齿轮的应力分布特性,优化齿轮设计,提高齿轮的工作性能和可靠性。
本文也为相关领域的学者和研究人员提供了一种有益的参考和借鉴。
二、直齿轮接触应力的理论基础在直齿轮传动过程中,接触应力是决定齿轮使用寿命和性能的关键因素之一。
因此,对其进行准确的接触应力分析至关重要。
接触应力的分析主要基于弹性力学、材料力学和摩擦学的基本理论。
弹性力学是研究弹性体在外力作用下变形和应力分布规律的学科。
在直齿轮接触问题中,通常假设齿轮材料为线性弹性材料,满足胡克定律。
齿轮在啮合过程中,由于接触力的作用,齿面会产生弹性变形,进而产生接触应力。
材料力学是研究材料在受力作用下的应力、应变和强度等性能表现的学科。
对于直齿轮,材料的选择对齿轮的接触应力分布和承载能力有重要影响。
通常,齿轮材料需要具备较高的弹性模量、屈服强度和疲劳强度等。
基于ANSYS的圆锥齿轮参数化建模及接触分析_韩兴乾
96
机械传动
Байду номын сангаас
2013 年
面, 生成规则网格。网格划分时, 对计算精度贡献较大 的部分的网格应细化, 而适当粗划对计算精度贡献不 大的部分。综合考虑以上因素及直齿圆锥齿轮的几何 特征, 对齿部细分网格, 其他部分采用相对较稀的网 格, 如图 3 所示。
化, 齿轮的实体模型和有限元模型很相似, 使得齿轮模 型的建立具有很大的重复性。因此, 如能建立齿轮的参 数化模型就能大大减少工作量, 提高工作效率。本文中 齿轮参数化建模思想是: 先基于齿轮基本参数建立一对 啮合齿轮, 划分好网格之后, 将主动齿轮和从动齿轮分 别旋转复制, 再将各齿轮节点和关键点融合, 形成整体 齿轮接触有限元模型。具体建模过程如下所述。
由于从动齿轮齿数较少, 采用轴齿轮的形式, 且考虑 到划分网格的需要, 从动齿轮分成 3 部分分别建模, 建模 方法与主动齿轮相类似[ 2] 。整对齿轮模型如图 2 所示。
图 1 啮合圆锥齿轮的几何尺寸
图 2 一对啮合齿轮模型
1. 2 定义单元类型和材料属性 首 先, 选 择 PLANE42 单 元 作 为 二 维 单 元。
图 4 部分模型的扩展
1. 5 定义接触对 采用面 面接触单元对齿轮进行三维接触分析,
由于小齿轮的齿面曲率比大齿轮的大, 所以小齿轮的 齿面是目标面, 大齿轮的齿面是接触面[ 4] 56- 57。对于 实常数的 设置, ANSYS 同 样提 供了较 简便 的 GUI 方 式: Preprocessor > Real Constants> Add/ Edit/ Delete, 在弹 出的 Real Constants 对话框中选择 CONTA 174 单元, 点 击 Edit, 弹 出/ Real Constant Set Number 3, For CONTA 1740对话框, 在其中可以设置接触分析的各项实常数。 1. 6 接触分析载荷及边界条件的施加
基于ANSYS Workbench对渐开线直齿圆柱齿轮接触疲劳寿命分析
基于ANSYS Workbench对渐开线直齿圆柱齿轮接触疲劳寿命分析ANSYS Workbench 对渐开线直齿圆柱齿轮接触疲劳寿命分析随着工业技术的发展,机械传动的要求也越来越高,其中齿轮传动作为一种重要的机械传动方式,其性能要求也更加苛刻。
齿轮传动在使用过程中,由于长时间受到外界力的作用,很容易出现接触疲劳问题,从而影响其正常工作。
因此,如何预测齿轮接触疲劳寿命,对于提高齿轮传动的可靠性,具有重要的意义。
渐开线直齿圆柱齿轮是一种传动效率高、噪音小、负载能力强的齿轮。
为了准确预测其接触疲劳寿命,我们可以使用ANSYS Workbench来进行分析。
首先,在ANSYS Workbench中建立一个3D的渐开线直齿圆柱齿轮模型,确定齿轮的几何参数和材料属性,在模型中加入齿形偏差和存在底隙等实际工作条件,再定义边界条件、力和载荷。
接下来,我们使用ANSYS中的逐步荷载分析方法,模拟齿轮在连续负载中的应力、应变和位移等变化情况。
然后,通过霍尔曼准则计算渐开线直齿圆柱齿轮的接触应力、接触疲劳极限和疲劳指数等参数,进而预测其接触疲劳寿命。
同时,为了保证分析结果的准确性,在分析过程中我们还需要考虑一些影响因素。
例如,在定义材料属性时,需要考虑其疲劳性能和断裂模式。
在模拟载荷和边界条件时,需要确保其与实际工作条件相匹配,并考虑齿轮工作时的动态因素。
最终,通过ANSYS Workbench对渐开线直齿圆柱齿轮的接触疲劳寿命进行分析,可以预测出齿轮在不同负载条件下的疲劳寿命,分析出齿轮的疲劳寿命与设计的安全寿命之间的差距,进而优化齿轮的设计方案,提高其可靠性和寿命。
总之,ANSYS Workbench作为一款常用的FEM软件,能够提供准确的齿轮接触疲劳分析,对于提高齿轮传动的性能、可靠性和寿命,具有很大的作用。
对渐开线直齿圆柱齿轮进行接触疲劳寿命分析时,需要收集并分析一些相关数据,以确定齿轮的材料属性、载荷、边界条件等因素。
ANSYS有限元分析_高级接触问题
• 2. 点一面接触单元用于某一点和任意形状 的面的接触 • -可使用多个点-面接触单元模拟棱边和 面的接触; • -不必事先知道接触的准确位置; • -两个面可以具有不同的网格; • -支持大的相对滑动; • -支持大应变和大转动。 • 例:点面接触可以模拟棱边和面之间的接 触
• 3. 点-点接触单元用于模拟单点和另一个确定点 之间的接触。 • -建立模型时必须事先知道确切的接触位置; • -多个点-点接触单元可以模拟两个具有多个单 元表面间的接触; • · 每个表面的网格必须是相同的; • · 相对滑动必须很小; • · 只对小的转动响应有效。 • 例如: 点一点接触可以模拟一些面的接触。如地 基和土壤的接触
ቤተ መጻሕፍቲ ባይዱ
• 3、选取接触刚度的指导:
• Step 1.开始采用较小的刚度值 • Step 2.对前几个子步进行计算 • Step 3.检查穿透量和每一个子步中的平衡迭代次数
• · 在粗略的检查中,如以实际比例显示整个模型时就能观察到穿透, 则穿透可能太大了,需要提高刚度重新分析。 • · 如果收敛的迭代次数过多(或未收敛),降低刚度重新分析。 • 注意:罚刚度可以在载荷步间改变,并且可以在重启动中调整。 • 牢记:接触刚度是同时影响计算精度和收敛性的最重要的参数。如 果收敛有问题,减小刚度值,重新分析 • 在敏感的分析中,还应该改变罚刚度来验证计算结果的有效性。 • -在分析中减小刚度范围,直到结果(接触压力、最大SEQV等) 不再明显改变。
一摩擦系数 • 式中: • · 一旦所受剪力超过FT,两物体将发生相对滑动。 • 4、弹性库仑摩擦模型:允许粘着和滑动。
§3 自动时间步、控制
• 接触单元的Keyopt(7)选项控制时间步的预报。 • 0-无控制:不影响时间步尺寸。当自动时间步开 关打开时,对于静态问题通常选此项。 • 1-自动缩减:如果接触状态改变较大,时间步二 分。对于动态问题,自动缩减通常是充分的。 • 2-合理的:比自动缩减费用更昂贵的算法。为保 持一个合理的时间 载荷增量,需要在接触预测中 选择此项。适用于静态分析和连续接触时瞬态分 析。 • 3-最小值:该选项为下一子步、预报时间增量的 最小值(计算费用十分昂贵,建议不用)。这个 选项在碰撞和断续接触分析中是有用的。
ANSYS齿轮接触应力分析案例
ANSYS齿轮接触应力分析案例案例描述:假设我们有一对啮合的轮齿,其中一只轮齿为主动轮齿,另一只轮齿为从动轮齿。
主动轮齿的齿数为20,模数为2,齿宽为10mm,从动轮齿的齿数为40,模数为2,齿宽为20mm。
齿轮的材料为钢材,应用于汽车传动系统。
分析步骤:1.建立齿轮的几何模型:在ANSYS中,可以通过创建参数化几何体来准确描述齿轮的几何形状。
根据给定的参数,创建一对齿轮的三维模型。
2.网格划分:对齿轮的几何模型进行网格划分,将其离散化为许多小的单元。
ANSYS提供了多种网格划分工具和方法,可以选择适合问题的方法进行网格划分。
3.定义材料属性:为齿轮指定材料属性,包括杨氏模量、泊松比和屈服强度等。
根据齿轮的材料属性进行模拟的时候,可以更准确地预测齿轮的应力分布。
4.定义边界条件:为了模拟齿轮的实际工作状态,需要定义边界条件。
例如,可以将主动轮齿固定在一个端点,并施加适当大小的转矩作用在从动轮齿上。
5.施加加载:在模拟中,需要施加一定大小的加载来模拟实际工况。
在这个案例中,可以施加适当大小的转矩来模拟传动系统的工作。
6.运行分析:完成所有模型参数的定义和加载的设置后,可以使用ANSYS的求解器来进行数值分析。
求解器将根据所定义的模型参数和加载条件,计算出齿轮接触应力的分布情况。
7.结果分析与优化:分析完成后,可以通过分析结果来评估齿轮的性能。
可以使用ANSYS的后处理工具来可视化接触应力的分布情况。
对于不满足要求的部分,可以进行优化设计。
通过以上步骤,可以建立一个对齿轮进行接触应力分析的模型,并通过ANSYS进行数值模拟和分析。
这样可以更好地了解齿轮在工作条件下的应力分布情况,并提供优化设计的参考。
《2024年基于ANSYS软件的接触问题分析及在工程中的应用》范文
《基于ANSYS软件的接触问题分析及在工程中的应用》篇一一、引言随着现代工程技术的快速发展,接触问题在各种工程领域中变得越来越重要。
ANSYS软件作为一款强大的工程仿真软件,其在接触问题上的分析和处理能力得到了广泛应用。
本文将介绍基于ANSYS软件的接触问题分析及在工程中的应用。
二、ANSYS软件接触问题分析1. 接触问题基本理论接触问题是一种典型的非线性问题,涉及到两个或多个物体在力、热、电等作用下的相互作用。
在ANSYS中,接触问题主要通过定义接触对、设置接触面参数、定义接触刚度等方式进行模拟。
2. ANSYS软件接触问题处理流程(1)建立模型:在ANSYS中建立涉及接触问题的物理模型。
(2)定义材料属性:设置模型中各部分的材料属性,包括弹性模量、密度、泊松比等。
(3)划分网格:对模型进行网格划分,以便更好地进行后续的数值分析和计算。
(4)定义接触对:根据实际需求,定义接触对,并设置相应的接触面参数。
(5)求解设置:设置求解器、求解参数等。
(6)结果分析:对求解结果进行分析,包括应力分布、位移变化等。
三、ANSYS软件在工程中的应用1. 机械工程领域在机械工程领域,ANSYS软件被广泛应用于分析各种机械零件的接触问题。
例如,齿轮传动中齿轮与齿轮之间的接触问题、轴承中滚动体与内外圈的接触问题等。
通过ANSYS软件的分析,可以有效地预测机械零件的应力分布、疲劳寿命等,为机械产品的设计和优化提供有力支持。
2. 土木工程领域在土木工程领域,ANSYS软件被广泛应用于分析土与结构之间的接触问题。
例如,桥梁、大坝等结构物与地基之间的相互作用、地震作用下建筑结构的动力响应等。
通过ANSYS软件的分析,可以有效地评估结构的稳定性和安全性,为土木工程的设计和施工提供有力支持。
3. 汽车工程领域在汽车工程领域,ANSYS软件被广泛应用于分析汽车零部件的接触问题。
例如,汽车发动机的缸体与缸盖之间的密封问题、汽车轮胎与地面的摩擦问题等。