几种特殊函数的积分
高等数学几种特殊类型函数的积分
P(x) Q( x)
a0 xn b0 x m
a1 x n1 b1 x m1
an1 x an bm1 x bm
其中m、n都是非负整数;a0 ,a1 ,,an及b0 ,b1,,bm 都是实数,并且a0 0,b0 0.
4-4 有理函数的积分
假定分子与分母之间没有公因式
1 x
(x
1 1)2
1. x1
4-4 有理函数的积分
例3
(1
1 2 x )(1
x2)
1
A 2x
Bx C 1 x2
,
1 A(1 x2 ) (Bx C )(1 2x),
整理得 1 ( A 2B)x2 (B 2C )x C A,
(1) n m, 这有理函数是真分式; (2) n m, 这有理函数是假分式;
有理函数有以下性质:
1)利用多项式除法, 假分式可以化成一个多项式和
一个真分式之和.
例如,我们可将 x 3 x 1
x2 1
1
化为多项式与真分式之和
x
ห้องสมุดไป่ตู้
x2
. 1
4-4 有理函数的积分
2)在实数范围内真分式总可以分解成几个最简式之和
(x
A2 a)k1
Ak xa
,
其中 A1 , A2 ,, Ak都是待定的常数.
(2)分母中若有因式 ( x2 px q)k ,其中 p2 4q 0 则分解后含有:
M1x ( x2 px
N1 q)k
M2x N2 ( x2 px q)k1
特殊类型函数积分
1)
Q(x)中如果含有因式
( x a)
k
则
要分解成称 k 个部分之和。且
A1 、 A2 、….
An 为常数,特别的
k=1 时,分解后得到:
A ( x a )
A3 Ak A1 A2 .... ( x a) k ( x a) k 1 ( x a) k 2 ( x a)
P( x) a0 x n a1 x n1 a2 x n2 ....... an Q( x) b0 x m b1 x m1 b2 xห้องสมุดไป่ตู้m2 ...... bn
=
A3 A A1 A2 .... k k k 1 k 2 ( x a) ( x a) ( x a) ( x a)
2
x 2 x 2 x 2
2
cos x
2
三、 简单无理式的积分
这里只讨论 R ( x ,
n
ax b ) 及
R (x,
n
ax b ) cx e 这两类函数的积分
3) 最后求 A、 M、 N、 最后用待定系数法 带入特殊 x 值 特殊有理式分解:
1】 2】 3】
A B 1 x2 x3 x 2 5x 6 1 A B C x ( x 1) 2 x ( x 1) 2 x 1
1 A Bx c 2 2 (1 2 x )( x 1) (1 2 x ) 1 x2
特殊类型函数积分
一、 有理函数的积分 1)有理式的定义:
由两个多项式的商所表示的函数:
P( x) a0 x n a1 x n1 a2 x n2 ....... an Q( x) b0 x m b1 x m1 b2 x m2 ...... bn
几种特殊类型函数的积分
几种特殊类型函数的积分一、有理函数的积分定义:设()P x 和()Q x 是两个多项式,凡形如()()P x Q x 的函数称为有理函数。
重要结论:任何一个有理函数必定可以表示为若干个形如(称为简单分式):(1) a x A -; (2) ka x A )(-;)2(≥k (3))04(22<-+++q p q px x B Ax ; (4))04()(22<-+++q p q px x B Ax k )2(≥k 。
的简单分式之和,其中A ,B ,,,,q p a 为常数,k 为正整数。
因此,对有理函数的积分只要讨论上述四种形式的积分即可。
(1) C a x a x dx +-=-⎰ln 。
(2) C a x k a x dx k k +--=--⎰1))(1(1)(, )1(>k 。
(3) dx p q p x B Ax dx qpx x B Ax ⎰⎰-+++=+++44)2(222,令2p x t +=,并记4422p q r -=,2pA B N -=,则 dx p q p x B Ax dx q px x B Ax ⎰⎰-+++=+++44)2(222⎰+=22r t tdt A ⎰++22r t dt N C rt r N r t A +++=arctan )ln(222。
(4) 同(3)可得 )2(≥k , ⎰+++k q px x B Ax )(2⎰⎰+++=k k r t dt N r t tdt A )()(2222122))(1(2-+-=k r t k A ⎰++k r t dt N )(22。
记 ⎰+=k k r t dt I )(22,则 dt r t t r I r dt r t t r t r I k k k k ⎰⎰+-=+-+=-)(11)()(1222212222222 =))(1()1(2111212⎰--+-+k k r t td k r I r ])([)1(2111122212----+-+=k k k I r t t k r I r , 于是,有递推公式121222)1(232))(1(2----++-=k k k I k r k r t k r t I 。
特殊积分公式
特殊积分公式
在数学中,特殊积分公式是一些常见的积分公式,它们可以用来求解特定类型的积分问题。
以下是一些常见的特殊积分公式:
1. 幂函数积分:
∫x^n dx = (1/(n+1)) * x^(n+1) + C,其中n不等于-1
2. 指数函数积分:
∫e^x dx = e^x + C
3. 三角函数积分:
∫sin(x) dx = -cos(x) + C
∫cos(x) dx = sin(x) + C
∫tan(x) dx = -ln|cos(x)| + C
∫cot(x) dx = ln|sin(x)| + C
∫sec(x) dx = ln|sec(x) + tan(x)| + C
∫csc(x) dx = ln|csc(x) - cot(x)| + C
4. 对数函数积分:
∫1/x dx = ln|x| + C
5. 反三角函数积分:
∫1/√(1-x^2) dx = arcsin(x) + C
∫1/(1+x^2) dx = arctan(x) + C
这些是一些常见的特殊积分公式,但在实际问题中可能还会有其他特殊积分公式。
在解决具体的积分问题时,可以根据需要使用适当的特殊积分公式。
几种特殊类型函数的积分
几种特殊类型函数的积分一、有理函数的不定积分1.化有理函数为简单函数两个多项式的商所表示的函数)(x R 称为有理函数,即mm m m m nn n n n b x b x b x b x b a x a x a x a x a x Q x P x R ++++++++++==------122110122110)()()( (1) 其中n 和m 是非负整数;n a a a a ,,,,210 及m b b b b ,,,,210 都是实数,并且0,000≠≠b a .当(1)式的分子多项式的次数n 小于其分母多项式的次数m ,即m n <时,称为有理真分式;当m n ≥时,称为有理假分式.对于任一假分式,我们总可以利用多项式的除法,将它化为一个多项式和一个真分式之和的形式.例如 12)1(112224+++-=+++x x x x x x . 多项式的积分容易求得,下面只讨论真分式的积分问题.设有理函数(1)式中m n <,如果多项式)(x Q 在实数范围内能分解成一次因式和二次质因式的乘积:μλβα)()()()()(220s rx x q px x b x a x b x Q ++++--= .其中s r q p b a ,,,,,,, 为实数;042<-q p ,…,042<-s r ;,,,βα μλ,, 为正整数,那末根据代数理论可知,真分式)()(x Q x P 总可以分解成如下部分分式之和,即βααα)()()()()(1121b x B a x A a x A a x A x Q x P -++-++-+-=-λββ)()(21112q px x N x M b x B b x B ++++-++-+-μλλλ)()(21121222s rx x S x R q px x N x M q px x N x M ++++++++++++++-srx x S x R s rx x S x R +++++++++-21222)(μμμ . (2)其中i i i i i i S R N M B A ,,,,,,, 都是待定常数,并且这样分解时,这些常数是唯一的.可见在实数范围内,任何有理真分式都可以分解成下面四类简单分式之和: (1)ax A - ,(2)ka x A )(- (k 是正整数,2≥k ), (3)qpx x B Ax +++2(042<-q p ), (4)k q px x B Ax )(2+++ (k 是正整数,04,22<-≥q p k ).2. 有理函数的不定积分求有理函数的不定积分归结为求四类简单分式的积分.下面讨论这四类简单分式的积分.(1)C a x A a x d ax A dx a x A +-=--=-⎰⎰ln )(1,(2)C a x k A a x d a x A dx a x A k k k +-⋅--=--=---⎰⎰1)(11)()()(, (3)dx qpx x B Ax ⎰+++2(042<-q p ). 将分母配方得)4()2(222p q p x q px x -++=++,作变量代换2p x u +=,则du dx p u x =-=,2;由于04,0422>-<-p q q p ,记224a p q =-,于是du au B pu A dx pq p x BAx dx qpx x B Ax ⎰⎰⎰++-=-+++=+++22222)2()4()2( du au Ap B du a u Au ⎰⎰+-++=22222C au a Ap B a u A +-++=arctan 2)ln(222C pq px p q Ap B q px x A +-+--+++=22242arctan 42)ln(2.(4)dx q px x B Ax k⎰+++)(2 (04,22<-≥q p k ).作变量代换2p x u +=,并记224a p q =-,于是 ⎰⎰⎰+-++=+++du a u ApB du a u Audx q px x B Ax k k k )(2)()(22222. 其中第一个积分C a u k A a u d a u A du a u Au k k k++⋅--=++=+--⎰⎰122222222)(1)1(2)()(2)(.第二个积分可通过建立递推公式求得.记 ⎰+=kk a u du I )(22 利用分部积分法有⎰⎰++++=+=12222222)(2)()(k k k k a u du u k a u u a u du I du a u a a u k a u u k k ⎰++-+++=12222222)()(2)( 122222)(+-++=k k k kI a kI a u u . 整理得 k k k I ka k a u u k a I 22221212)(21-++⋅=+. 于是可得递推公式]2232)()1(21[111222----++⋅-=k k k I k k a u u k a I . (3)利用(3)式,逐步递推,最后可归结为不定积分C a u a a u du I +=+=⎰arctan 1221.最后由2px u +=全部换回原积分变量,即可求出不定积分⎰+++dx q px x B Ax k )(2.例1 求⎰++-dx x x x 22)32(1. 解 ⎰⎰++-+=++-dx x x dx x x x 2222]2)1[(21)32(1 ⎰⎰+-++=2222)2(2)2(1u du du u u x u ]2212121[212)2(21222⎰+++⋅⨯⨯-+-=u du u u u C u u u +-++-=2arctan 221)2(212`C x x x x ++-+++-=21arctan 221)32(222. 例2 求dx x x ⎰-2)1(1.解 因为2)1(1-x x 可分解为1)1()1(122-+-+=-x C x B x A x x . 其中A ,B ,C 为待定系数.可以用两种方法求出待定系数.第一种方法:两端去掉分母后,得)1()1(12-++-=x Cx Bx x A . (4)即A x C AB xC A +--++=)2()(12由于(4)式是恒等式,等式两端2x 和x 的系数及常数项必须分别相等,于是有⎪⎩⎪⎨⎧==--=+1020A C ABC A , 从而解得 1=A ,1=B ,1-=C .第二种方法:在恒等式(4)中,代入特殊的x 值,从而求出待定系数.如令0=x ,得1=A ;令1=x ,得1=B ;把A ,B 的值代入(4)式,并令2=x ,得C 2211++=,即1-=C .于是⎰⎰---+=-dx x x x dx x x )11)1(11()1(122⎰⎰⎰---+=dx x dx x dx x 11)1(112 C x x x +----=1ln 11ln . 例3 求⎰+-+dx x x x 22)1)(1(22. 解 因为1)1(1)1)(1(2222222++++++-=+-+x E Dx x C Bx x A x x x , 两端去分母得)1)(1)(()1)(()1(22222+-++-+++=+x x E Dx x C Bx x A x234)2()()(x B E D A x D E x D A +-++-++=)()(C E A x C B E D --++-+-+.两端比较系数得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=+-+-=+-+=-=+220200C E A C B ED BE D A D E D A ,解方程组得1=A ,2-=B ,0=C ,1-=D ,1-=E ,故dx x x x x x dx x x x )11)1(211()1)(1(2222222⎰⎰++-+--=+-+ dx x x dx x x dx x ⎰⎰⎰++-+--=11)1(211222C x x x x +-+-++-=arctan )1ln(21111ln 22 C x x x x +-+++-=arctan 1111ln22. 例4 求⎰+-+dx x x x 6532. 解 因为32)3)(2(36532-+-=--+=+-+x B x A x x x x x x , 两端去分母得 )2()3(3-+-=+x B x A x .令2=x ,得5-=A ;令3=x ,得6=B .于是C x x dx x x dx x x x +---=---=+-+⎰⎰2ln 53ln 6)2536(6532C x x +--=56)2()3(ln . 从理论上讲,多项式)(x Q 总可以在实数范围内分解成一次因式和二次质因式的乘积,从而把有理函数)()(x Q x P 分解为多项式与四类简单分式之和,而简单分式都可以积出.所以,任何有理函数的原函数都是初等函数.但我们同时也应该注意到,在具体使用此方法时会遇到困难.首先,用待定系数法求待定系数时,计算比较繁琐;其次,当分母的次数比较高时,因式分解相当困难.因此,在解题时要灵活使用各种方法.例5 求dx x x x x x ⎰+++++12232. 解 dx x dx x dx x x x x dx x x x x x ⎰⎰⎰⎰+++=+++++=+++++1111)1)(1()1()1(12222232C x x +++=arctan 1ln .例6 求dx x x x x ⎰+-+-)54)(44(122.解 dx x x x x x x x x dx x x x x ⎰⎰+-+-+--+-=+-+-)54)(44()44()54()54)(44(1222222dx x x dx x x ⎰⎰+--+-=54144122 ⎰⎰-+----=)2(1)2(1)2()2(122x d x x d xC x x +----=)2arctan(21.例7 求dx x ⎰+114. 解 ⎰⎰⎰+--++=+dx x x dx x x dx x 112111211142424dx x x x dx x x x ⎰⎰+--++=2222221112111121 )1(2)1(121)1(2)1(12122xx d xx x x d x x +-+--+-=⎰⎰C x x x x x x ++++---=1212ln 24121arctan 221222.二、三角函数有理式的积分由三角函数和常数经过有限次四则运算所构成的函数称为三角函数有理式.因为所有三角函数都可以表示为x sin 和x cos 的有理函数,所以,下面只讨论)cos ,(sin x x R 型函数的不定积分.由三角学知道,x sin 和x cos 都可以用2tan x 的有理式表示,因此,作变量代换2tan x u =,则222122tan12tan22sec 2tan 22cos 2sin 2sin u u x x x x x x x +=+===, 2222222211tan 12tan 1sec 2tan 12sin 2cos cos u u x xx x x x x +-=+-=-=-=. 又由u x arctan 2=,得du u dx 212+=,于是 ⎰⎰++-+=du u u u u u R dx x x R 222212)11,12()cos ,(sin .由此可见,在任何情况下,变换2tan x u =都可以把积分dx x x R )cos ,(sin ⎰有理化.所以,称变换2tan x u =为万能代换.例8 求dx xx ⎰++cos sin 11. 解 设2tan x u =,则du u du u u u u u dx x x ⎰⎰⎰+=+⋅+-+++=++1112111211cos sin 112222 C xC u ++=++=2tan1ln 1ln . 例9 求dx xx ⎰-+cos 1sin 1.解 设2tan x u =,则du u u u u du u u u u u dx x x⎰⎰⎰+++=+⋅+--++=-+)1(2)1(12111121cos 1sin 12222222du u u du u ⎰⎰++=)1(2122du u u u u du u ⎰⎰+-++=)1()1(212222⎰⎰⎰+-+=du u u du u du u 2212121C u u u ++-+-=)1ln(ln 212 C x x x +--=)2ln(sec 2cot 2tan ln 22.虽然利用代换2tan x u =可以把三角函数有理式的积分化为有理函数的积分,但是,经代换后得出的有理函数积分一般比较麻烦.因此,这种代换不一定是最简捷的代换.例10 求dx xx ⎰+sin 1sin .解 dx xx x dx x x x dx x x ⎰⎰⎰-=--=+222cos sin sin sin 1)sin 1(sin sin 1sin dx x x dx xx ⎰⎰--=222cos cos 1cos sin ⎰⎰⎰+--=dx dx x x d x 22cos 1cos cos 1C x x x ++-=tan cos 1. 例11 求dx x⎰+2cos 311. 解 x d x dx x x dx xtan 4tan 13sec sec cos 3112222⎰⎰⎰+=+=+ C x +=)2tan arctan(21.三、简单无理函数的积分(一)),(nb ax x R +型函数的积分),(u x R 表示x 和u 两个变量的有理式.其中a ,b 为常数.对于这种类型函数的积分,作变量代换u b ax n=+,则a b u x n -=,du anu dx n 1-=,于是du a nuu a b u R dx b ax x R n n n1),(),(-⋅-=+⎰⎰ . (5)(5)式右端是一个有理函数的积分.例12 求⎰++dx x 3211. 解 令u x =+32,则23-=u x ,du u dx 23=,于是⎰⎰⎰++-=+=++du u u du u u dx x 111313211223 C u u u du u u +++-=++-=⎰)1ln 2(3)111(32C x x x +++++-+=333221ln 323)2(23. 例13 求dx xx ⎰+31.解 为了同时去掉被积函数中的两个根式,取3和2的最小公倍数6,并作变量代换 u x =6,则6u x =,du u dx 56=,23u x =,3u x =,于是du u u du u u dx xx⎰⎰⎰+=+=+1616128283u d uu u u ⎰++-+-=)111(62246 C u u u u u ++-+-=arctan 6625676357 C x x x x x x ++-+-=66656arctan 6625676.(二)),(ndcx b ax x R ++型函数的积分这里),(u x R 仍然表示x 和u 两个变量的有理式.其中d c b a ,,,为常数.对于这种类型函数的不定积分,作变量代换u d cx b ax n=++,则nn cu a b du x --=,du cu a bc ad nu dx n n 21)()(--=-,于是du cu a bc ad nu u cu a b du R dx d cx b ax x R n n n nn21)()(),(),(--⋅--=++-⎰⎰. (6)(6)式右端是一个有理函数的积分.例14 求dx xx x ⎰+11.解 令u x x =+1, 则112-=u x ,du u u dx 22)1(2--=,于是 du u u du u u du u u u u dx x x x ⎰⎰⎰⎰-+--=--=--⋅-=+111212)1(2)1(112222222Cu u u du u ++---=-+-=⎰11ln 2)111(22C u u u +--++-=1ln )1ln(222C x xx x x ++++++-=ln )11ln(212.例15 求dx x x ⎰-+342)1()1(1. 解⎰⎰+--+=-+dx x x x x dx x x 334211)1)(1(1)1()1(1,令u x x =+-311,则311u x x =+-,3311u u x -+=,du u u dx 232)1(6-=, 于是 du u dx x x x dx x x ⎰⎰⎰=+--=-+23234212311)1(1)1()1(1 C x x C u +-+-=+-=3112323.。
第四节 几种特殊类型函数的积分
2 3a 4 .
显然
1 D1
xdS xdxdy 0 ,
1 1dxdy 0,
xdS x D
2 1
讨论3 时, 将投影域选在xoz 上.
(注意: y 1 x 2 分为左、右两片)
(左右两片投影相同)
xdS xdS xdS
3 31 32
2 2 2 x 1 y x yz dxdz Dxz
xoz
2 x 1
D xz
1
x2 1 x
2
dxdz
21
x2 x dx 0 dz 2 1 x
,
xdS 0 0 .
2 2 2 为内接于球面 例4 计算 ( x y z )dS , 其中
1. 若曲面 :
则
z z( x , y )
f ( x , y, z )dS
D
2 2 f [ x , y , z ( x , y )] 1 z x z y dxdy;
xy
( x, z ) 2.若曲面 :
则 f ( x , y , z )dS
第四节 对面积的曲面积分
一、概念的引入
二、对面积的曲面积分的定义 三、计算法
一、概念的引入
实例
若曲面 是光滑的 , 它的面密度为连
续函数( x , y , z ) , 求它的质量.
所谓曲面光滑 即曲面上各点处都 有切平面,且当点在 曲面上连续移动时, 切平面也连续转动.
二、对面积的曲面积分的定义
1 0 ( 1) dxdy 2dxdy,
故
2
( x y z ) y )dxdy 2 (5 x )dxdy
常见函数的积分公式
常见函数的积分公式积分是微积分的一个重要概念,它是求解函数面积、曲线长度、体积等问题的基本工具。
在求解函数的积分时,常用的函数积分公式可以帮助我们简化计算,提高效率。
本文将介绍一些常见的函数积分公式,并解释它们的意义和用途,以帮助读者更好地理解和应用。
1. 常数函数积分公式:常数函数的积分公式非常简单,即∫a dx = ax + C,其中a为常数,C为积分常数。
这个公式表示,对于常数函数来说,其积分结果是函数的系数乘以自变量,并加上一个常数C。
这个常数C表示积分后函数的不确定性,因为对一个函数来说,存在无数个原函数。
2. 幂函数积分公式:幂函数的积分公式是微积分中最基本且常用的公式。
对于幂函数f(x) = x^n,其中n不等于-1,其积分公式为∫x^n dx = (1/(n+1)) x^(n+1) + C。
这个公式表示,对于幂函数来说,其积分结果是函数的指数加一的倒数乘以自变量的指数加一次幂,并加上一个常数C。
这个公式可以帮助我们计算多项式函数的积分,以及求解定积分问题。
3. 正弦函数和余弦函数积分公式:正弦函数的积分公式是∫sin(x) dx = -cos(x) + C,余弦函数的积分公式是∫cos(x) dx = sin(x) + C。
这两个公式表示,对于正弦函数和余弦函数来说,其积分结果是函数的相反函数,并加上一个常数C。
这些公式可以帮助我们求解周期性函数的积分,以及解决与波动、振动相关的问题。
4. 指数函数和对数函数积分公式:指数函数的积分公式是∫e^x dx = e^x + C,对数函数的积分公式是∫1/x dx = ln|x| + C。
这两个公式表示,对于指数函数和对数函数来说,其积分结果是函数本身,并加上一个常数C。
这些公式可以帮助我们求解与增长、衰减、复利等问题相关的函数积分。
除了以上这些常见的函数积分公式外,还有其他一些特殊函数的积分公式,如三角函数的积分、反三角函数的积分、双曲函数的积分等。
三角函数的积分计算
三角函数的积分计算在数学中,三角函数是一类经典的函数,包括正弦函数、余弦函数、正切函数等。
三角函数的积分计算是数学分析的重要部分,它在许多实际问题的求解中起到了至关重要的作用。
本文将介绍三角函数的积分计算方法,包括基本积分公式、特殊积分公式以及常见的积分例题。
一、基本积分公式1. 正弦函数积分:∫ sin x dx = -cos x + C2. 余弦函数积分:∫ cos x dx = sin x + C3. 正切函数积分:∫ tan x dx = -ln|cos x| + C二、特殊积分公式1. 正弦函数的幂函数积分:∫ sin^2(x) dx = (1/2) x - (1/4) sin(2x) + C2. 余弦函数的幂函数积分:∫ cos^2(x) dx = (1/2) x + (1/4) sin(2x) + C3. 正切函数的幂函数积分:∫ tan^2(x) dx = x - tanx + C4. 正弦函数和余弦函数的积分:∫ sin(x) cos(x) dx = -1/2 cos^2(x) + C5. 正切函数的倒数积分:∫ 1/tan(x) = ln |sin(x)| + C三、常见积分例题1. 计算∫ sin^3(x) cos^4(x) dx:使用三角函数的和差化积公式,将积分化简为∫ sin^3(x) (1-sin^2(x)) cos^2(x) dx,并分别使用换元法和基本积分公式计算,得到最终结果为-(1/4)sin^4(x) + (1/5)sin^6(x) + C。
2. 计算∫ (sin^3(x) + cos^3(x))^2 dx:展开平方后得到二次多项式,再次利用三角函数的和差化积公式,将积分化简为∫ (1+sin^6(x)+2sin^3(x)+cos^6(x)+2cos^3(x)-2sin^3(x)cos^3(x)) dx。
分别使用基本积分公式计算各项,最终结果为 x + (1/7) sin^7(x) + (1/4) cos^4(x) - (1/9) sin^9(x) - (1/5) cos^5(x) + 2/5 C。
几种特殊函数的积分
p p x px q x q , 2 4 p 令 x t 2
记 x 2 px q t 2 a 2 ,
则
Mx N Mt b,
p2 2 a q , 4
Mp b N , 2
Mx N 2 dx n ( x px q ) Mt b 2 dt 2 dt 2 n 2 n (t a ) (t a )
真分式化为部分分式之和的待定系数法
x3 x3 A B 例1 2 , x 5 x 6 ( x 2)( x 3) x 2 x 3
x 3 A( x 3) B( x 2), x 3 ( A B ) x ( 3 A 2 B ),
1 dx . 例4 求积分 2 x( x 1) 1 1 1 1 dx 解 2 2 dx x ( x 1) x ( x 1) x 1 1 1 1 dx dx dx 2 x ( x 1) x 1
1 ln x ln x 1 C. x 1
三、简单无理函数的积分
ax b 讨论类型 R( x, ax b ), R( x , ), cx e
n
n
解决方法 作代换去掉根号.
1 1 x 例10 求积分 dx x x
解
1 x 2 1 x 令 t t , x x
1 sin x dx. 例9 求积分 sin 3 x sin x A B A B 解 sin A sin B 2 sin cos 2 2 1 sin x 1 sin x sin 3 x sin x dx 2 sin 2 x cos x dx 1 sin x dx 2 4 sin x cos x 1 1 1 1 dx dx 2 2 4 sin x cos x 4 cos x
几种特殊类型的函数积分
反三角函数积分公式
∫sinxdx=−cosx+Cint sin x , dx = -cos x + C∫sinxdx=−cosx+C
∫cosxdx=sinx+Cint cos x , dx = sin x + C∫cosxdx=sinx+C
∫tanxdx=ln|secx|+Cint tan x , dx = ln |sec x| + C∫tanxdx=ln∣secx∣+C
底数小于1的对数函数积分公式
∫logₐ(x) dx = xlogₐ(x) - ∫x/lna dx = xlogₐ(x) x/lna + C,其中C为积分常数。
对数函数积分应用
解决对数方程
计算对数值
通过积分的方法,可以将对数方程转 化为代数方程,从而更容易求解。
利用对数函数的积分公式,可以计算 对数值,例如计算ln(e)、lg(10)等。
积分性质
对于三角函数的积分,有基本的 积分公式,如∫sin(x)dx = -cos(x) + C,∫cos(x)dx = sin(x) + C等。
三角函数的积分具有一些重要的 性质,如∫[sin(x)]^2dx = ∫[1 cos(2x)]/2dx = x/2 - sin(2x)/4 + C。
积分变换
底数小于1的对数函 数
如以0.5为底的对数函数,记作 logₐ(x),其定义域为(0, +∞), 其中a为正实数且a≠1。
对数函数积分公式
自然对数函数积分公式
∫ln(x) dx = xln(x) - x + C,其中C为积分常数。
常用对数函数积分公式
课件:几种特殊函数的积分
例6
x8
(
1 x2
dx 1)
1 x2 x2 x8( x2 1)dx
1 x8
1 x6( x2
1)dx
1 x8
1 x6
1 x4( x2
1)dx
1 x8
1 x6
1 x4
1 x2(x2
1)dx
1 x8
1 x6
1 x4
1 x2
1 x2
1dx
1 7x7
1 5x5
1 3x3
1 x
arctan
x
ln sin
x
1 2
1 sin2
x
C
例10
求积分
7 sinx cos x dx. 3sinx 4cos x
解
7sinx cosx 3sinx 4cosx
d
x
(1
3 cos x 3sinx
4sinx 4 cos x
)dx
x ln3sinx 4cosx C
三、简单无理函数的积分
讨论类型
A1 A2 Ak
x a (x a)2
(x a)k
其中 A1 , A2 ,, Ak 都是常数.
2)分母中若有因式( x2 px q)k,其中
p2 4q 0 ,则分解后为:
A1x B1 A2 x B2 Ak x Bk
x2 px q (x2 px q)2
(x2 px q)k
5 6 (待定系数法) x2 x3
x
2
x
3 5x
6
dx
5ln x 2 6ln x 3 C
1)分母中若有因式( x a)k,则分解后为
A1 xa
A2 ( x a)2
(x
高等数学方明亮44几种特殊类型函数的积分.ppt
,
1 A(1 x2 ) (Bx C)(1 2x),
整理得 1 ( A 2B)x2 (B 2C)x C A,
A 2B 0,
B A
(1
2C 0, C 1,
1 2x)(1
x2)
A 4, 5 4
5 1 2
B 2,C 52xx来自5 1 x21 5
1 5.
,
2024年9月27日星期五
一、 有理函数的积分
(Integration of Rational Function)
有理函数的定义:两个多项式的商表示的函数.
P(x) Q( x)
a0 xn b0 x m
a1 x n1 b1 x m1
an1 x an bm1 x bm
其中m、n都是非负整数;a0 ,a1 ,,an及b0 ,b1,,bm 都是实数,并且a0 0,b0 0.
1 6a3
ln
x3 a3 x3 a3
C
(2) 原式
sin2 x sin3
x
cos2 cos x
x
dx
dx sin x cos x
cos sin 3
x x
dx
d tan x tan x
d sin sin 3
x x
2024年9月27日星期五
29
目录
上页
下页
返回
2. 求
(a
sin
x
1 b
解法 2 令
a sin ,
a2 b2
b cos
a2 b2
原式
a2
1
b2
dx
cos2 (x )
a
2
1
b2
tan(x
)
几种特殊类型函数地积分
几种特殊类型函数的积分一、有理函数的不定积分1.化有理函数为简单函数两个多项式的商所表示的函数)(x R 称为有理函数,即mm m m m nn n n n b x b x b x b x b a x a x a x a x a x Q x P x R ++++++++++==------122110122110)()()( (1) 其中n 和m 是非负整数;n a a a a ,,,,210 及m b b b b ,,,,210 都是实数,并且0,000≠≠b a .当(1)式的分子多项式的次数n 小于其分母多项式的次数m ,即m n <时,称为有理真分式;当m n ≥时,称为有理假分式.对于任一假分式,我们总可以利用多项式的除法,将它化为一个多项式和一个真分式之和的形式.例如12)1(112224+++-=+++x x x x x x . 多项式的积分容易求得,下面只讨论真分式的积分问题.设有理函数(1)式中m n <,如果多项式)(x Q 在实数围能分解成一次因式和二次质因式的乘积:μλβα)()()()()(220s rx x q px x b x a x b x Q ++++--= .其中s r q p b a ,,,,,,, 为实数;042<-q p ,…,042<-s r ;,,,βα μλ,, 为正整数,那末根据代数理论可知,真分式)()(x Q x P 总可以分解成如下部分分式之和,即βααα)()()()()(1121b x B a x A a x A a x A x Q x P -++-++-+-=-λββ)()(21112q px x N x M b x B b x B ++++-++-+-μλλλ)()(21121222s rx x S x R q px x N x M q px x N x M ++++++++++++++-srx x S x R s rx x S x R +++++++++-21222)(μμμ . (2) 其中i i i i i i S R N M B A ,,,,,,, 都是待定常数,并且这样分解时,这些常数是唯一的.可见在实数围,任何有理真分式都可以分解成下面四类简单分式之和: (1)a x A - , (2)k a x A )(- (k 是正整数,2≥k ), (3)qpx x B Ax +++2(042<-q p ), (4)kq px x B Ax )(2+++ (k 是正整数,04,22<-≥q p k ).2. 有理函数的不定积分求有理函数的不定积分归结为求四类简单分式的积分.下面讨论这四类简单分式的积分.(1)C a x A a x d ax A dx a x A +-=--=-⎰⎰ln )(1,(2)C a x k A a x d a x A dx a x A k k k+-⋅--=--=---⎰⎰1)(11)()()(, (3)dx qpx x B Ax ⎰+++2(042<-q p ). 将分母配方得)4()2(222p q p x q px x -++=++,作变量代换2px u +=,则du dx p u x =-=,2;由于04,0422>-<-p q q p ,记224a p q =-,于是 du a u B pu A dx p q p x B Ax dx qpx x B Ax ⎰⎰⎰++-=-+++=+++22222)2()4()2( du au ApB du a u Au ⎰⎰+-++=22222C au a Ap B a u A +-++=arctan 2)ln(222 C pq p x p q Ap B q px x A +-+--+++=22242arctan 42)ln(2.(4)dx q px x B Ax k⎰+++)(2 (04,22<-≥q p k ).作变量代换2px u +=,并记224a p q =-,于是⎰⎰⎰+-++=+++du a u ApB du a u Au dx q px x B Ax k k k )(2)()(22222. 其中第一个积分C a u k A a u d a u A du a u Au k k k ++⋅--=++=+--⎰⎰122222222)(1)1(2)()(2)(. 第二个积分可通过建立递推公式求得.记 ⎰+=kk a u du I )(22 利用分部积分法有⎰⎰++++=+=12222222)(2)()(k kk k a u du u k a u u a u du I du a u a a u k a u u k k ⎰++-+++=12222222)()(2)(122222)(+-++=k k kkI a kI a u u .整理得 k k k I ka k a u u k a I 22221212)(21-++⋅=+. 于是可得递推公式]2232)()1(21[111222----++⋅-=k k k I k k a u u k a I . (3)利用(3)式,逐步递推,最后可归结为不定积分C a u aa u du I +=+=⎰arctan 1221. 最后由2px u +=全部换回原积分变量,即可求出不定积分⎰+++dx q px x B Ax k )(2. 例1 求⎰++-dx x x x 22)32(1. 解⎰⎰++-+=++-dx x x dx x x x 2222]2)1[(21)32(1 ⎰⎰+-++=2222)2(2)2(1u du du u u x u]2212121[212)2(21222⎰+++⋅⨯⨯-+-=u du u u uC u u u +-++-=2arctan 221)2(212`C x x x x ++-+++-=21arctan 221)32(222.例2 求dx x x ⎰-2)1(1. 解 因为2)1(1-x x 可分解为1)1()1(122-+-+=-x C x B x A x x . 其中A ,B ,C 为待定系数.可以用两种方法求出待定系数.第一种方法:两端去掉分母后,得)1()1(12-++-=x Cx Bx x A . (4)即 A x C A B x C A +--++=)2()(12由于(4)式是恒等式,等式两端2x 和x 的系数及常数项必须分别相等,于是有⎪⎩⎪⎨⎧==--=+1020A C A B C A , 从而解得 1=A ,1=B ,1-=C .第二种方法:在恒等式(4)中,代入特殊的x 值,从而求出待定系数.如令0=x ,得1=A ;令1=x ,得1=B ;把A ,B 的值代入(4)式,并令2=x ,得C 2211++=,即1-=C .于是⎰⎰---+=-dx x x x dx x x )11)1(11()1(122 ⎰⎰⎰---+=dx x dx x dx x 11)1(112C x x x +----=1ln 11ln . 例3 求⎰+-+dx x x x 22)1)(1(22. 解 因为1)1(1)1)(1(2222222++++++-=+-+x E Dx x C Bx x A x x x , 两端去分母得)1)(1)(()1)(()1(22222+-++-+++=+x x E Dx x C Bx x A x234)2()()(x B E D A x D E x D A +-++-++=)()(C E A x C B E D --++-+-+.两端比较系数得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=+-+-=+-+=-=+220200C E A C B ED BE D A D E D A ,解方程组得1=A ,2-=B ,0=C ,1-=D ,1-=E ,故dx x x x x x dx x x x )11)1(211()1)(1(2222222⎰⎰++-+--=+-+ dx x x dx x x dx x ⎰⎰⎰++-+--=11)1(211222C x x x x +-+-++-=arctan )1ln(21111ln 22 C x x x x +-+++-=arctan 1111ln22. 例4 求⎰+-+dx x x x 6532. 解 因为32)3)(2(36532-+-=--+=+-+x B x A x x x x x x ,两端去分母得 )2()3(3-+-=+x B x A x . 令2=x ,得5-=A ;令3=x ,得6=B .于是Cx x dx x x dx x x x +---=---=+-+⎰⎰2ln 53ln 6)2536(6532C x x +--=56)2()3(ln . 从理论上讲,多项式)(x Q 总可以在实数围分解成一次因式和二次质因式的乘积,从而把有理函数)()(x Q x P 分解为多项式与四类简单分式之和,而简单分式都可以积出.所以,任何有理函数的原函数都是初等函数.但我们同时也应该注意到,在具体使用此方法时会遇到困难.首先,用待定系数法求待定系数时,计算比较繁琐;其次,当分母的次数比较高时,因式分解相当困难.因此,在解题时要灵活使用各种方法.例5 求dx x x x x x ⎰+++++12232. 解dx x dx x dx x x x x dx x x x x x ⎰⎰⎰⎰+++=+++++=+++++1111)1)(1()1()1(12222232C x x +++=arctan 1ln .例6 求dx x x x x ⎰+-+-)54)(44(122 .解 dx x x x x x x x x dx x x x x ⎰⎰+-+-+--+-=+-+-)54)(44()44()54()54)(44(1222222dx x x dx x x ⎰⎰+--+-=54144122 ⎰⎰-+----=)2(1)2(1)2()2(122x d x x d xC x x +----=)2arctan(21.例7 求dx x ⎰+114. 解⎰⎰⎰+--++=+dx x x dx x x dx x 112111211142424dx x x x dx x x x ⎰⎰+--++=2222221112111121 )1(2)1(121)1(2)1(12122xx d xx x x d x x +-+--+-=⎰⎰C x x x x x x ++++---=1212ln 24121arctan 221222.二、三角函数有理式的积分由三角函数和常数经过有限次四则运算所构成的函数称为三角函数有理式.因为所有三角函数都可以表示为x sin 和x cos 的有理函数,所以,下面只讨论)cos ,(sin x x R 型函数的不定积分.由三角学知道,x sin 和x cos 都可以用2tan x 的有理式表示,因此,作变量代换2tan x u =,则222122tan12tan22sec 2tan22cos 2sin 2sin u u x xx x x x x +=+===, 22222222112tan 12tan 12sec 2tan 12sin 2cos cos u u x xx x x x x +-=+-=-=-=. 又由u x arctan 2=,得du u dx 212+=,于是 ⎰⎰++-+=du u u u u u R dx x x R 222212)11,12()cos ,(sin . 由此可见,在任何情况下,变换2tan x u =都可以把积分dx x x R )cos ,(sin ⎰有理化.所以,称变换2tan x u =为万能代换.例8 求dx xx ⎰++cos sin 11. 解 设2tan x u =,则du u du u u u u u dx x x ⎰⎰⎰+=+⋅+-+++=++1112111211cos sin 112222C xC u ++=++=2tan1ln 1ln . 例9 求dx xx ⎰-+cos 1sin 1.解 设2tan x u =,则du u u u u du u u u u u dx xx ⎰⎰⎰+++=+⋅+--++=-+)1(2)1(12111121cos 1sin 12222222du u u du u ⎰⎰++=)1(2122du u u u u du u ⎰⎰+-++=)1()1(212222⎰⎰⎰+-+=du u u du u du u 2212121C u u u ++-+-=)1ln(ln 212 C x x x +--=)2ln(sec 2cot 2tan ln 22.虽然利用代换2tan x u =可以把三角函数有理式的积分化为有理函数的积分,但是,经代换后得出的有理函数积分一般比较麻烦.因此,这种代换不一定是最简捷的代换.例10 求dx xx ⎰+sin 1sin . 解 dx x x x dx xx x dx x x ⎰⎰⎰-=--=+222cos sin sin sin 1)sin 1(sin sin 1sin dx xx dx x x ⎰⎰--=222cos cos 1cos sin ⎰⎰⎰+--=dx dx x x d x 22cos 1cos cos 1C x x x ++-=tan cos 1. 例11 求dx x ⎰+2cos 311. 解x d x dx x x dx xtan 4tan 13sec sec cos 3112222⎰⎰⎰+=+=+ C x +=)2tan arctan(21.三、简单无理函数的积分(一)),(nb ax x R +型函数的积分),(u x R 表示x 和u 两个变量的有理式.其中a ,b 为常数.对于这种类型函数的积分,作变量代换u b ax n=+,则a b u x n -=,du anu dx n 1-=,于是 du a nuu a b u R dx b ax x R n n n 1),(),(-⋅-=+⎰⎰ . (5)(5)式右端是一个有理函数的积分.例12 求⎰++dx x 3211. 解 令u x =+32,则23-=u x ,du u dx 23=,于是⎰⎰⎰++-=+=++du u u du u u dx x 111313211223 C u u u du u u +++-=++-=⎰)1ln 2(3)111(32C x x x +++++-+=333221ln 323)2(23.例13 求dx xx ⎰+31.解 为了同时去掉被积函数中的两个根式,取3和2的最小公倍数6,并作变量代换u x =6,则6u x =,du u dx 56=,23u x =,3u x =,于是du u u du u u dx xx⎰⎰⎰+=+=+1616128283u d uu u u ⎰++-+-=)111(62246 C u u u u u ++-+-=arctan 6625676357 C x x x x x x ++-+-=66656arctan 6625676.(二)),(ndcx b ax x R ++型函数的积分 这里),(u x R 仍然表示x 和u 两个变量的有理式.其中d c b a ,,,为常数.对于这种类型函数的不定积分,作变量代换u d cx b ax n=++,则nn cu a b du x --=,du cu a bc ad nu dx n n 21)()(--=-,于是du cu a bc ad nu u cu a b du R dx d cx b ax x R n n n nn21)()(),(),(--⋅--=++-⎰⎰. (6) (6)式右端是一个有理函数的积分.例14 求dx xx x ⎰+11. 解 令u x x =+1, 则112-=u x ,du u u dx 22)1(2--=,于是 duu u du u u du u u u u dx x x x ⎰⎰⎰⎰-+--=--=--⋅-=+111212)1(2)1(112222222C u u u du u ++---=-+-=⎰11ln 2)111(22C u u u +--++-=1ln )1ln(222 C x x xx x++++++-=ln )11ln(212.例15 求dx x x ⎰-+342)1()1(1.解 ⎰⎰+--+=-+dx x x x x dx x x 334211)1)(1(1)1()1(1,令ux x =+-311,则311u x x =+-,3311u u x -+=,du u u dx 232)1(6-=, 于是du u dx x x x dx x x ⎰⎰⎰=+--=-+23234212311)1(1)1()1(1C x x C u +-+-=+-=3112323.。
几种特殊类型函数的积分
2
.
解 设 3 x 2 u .于是xu22,dx3u2d u ,从而
1
dx 3x
2
1
1 u
·3u2d u
3
u2 1
1du u
3 (u
1 1 )du 1 u
3(
u2 2
uln|1u|)C
3 3 (x 2)2 33 x 2 ln |1 3 x 2 | +C. 2
练习
求积分:
(1)
2
dx cos
an bm
其中m和n都 是非负整数;a0 ,a1 ,a2 ,… ,an 及b0 ,b1 ,b2
,… ,bm都是实数,并且a00,b00.当n<m时,称这有理函数
是真分式;而当nm时,称这有理函数是假分式.假分式总可以
化成一个多项式与一个真分式之和的形式.例如
x3 x 1 x2 1
x
1 x2 1
.
例2 求
x
2
x
2 2x
3
dx
.
解
x2
x
2
2 x
3
dx
(1 2
x
2x 2 2 2x
3
3
x
2
1 2
x
)dx 3
1 2
x
2x 2 2 2x
dx 3
3
x
2
1 2
x
dx 3
1 2
d (x2 2x 3) x2 2x 3
3
d (x 1) (x 1)2 ( 2)2
1 ln(x2 2x 3) 3 arctan x 1 C .
2
dx.
解
x2
3x 1 3x
几种特殊类型函数的积分
x 2 tan 2
2u 1 u
2 du dx 1 u
2
2
1 u 1 u
2
2
2
2 tan
万能代换
sin x dx. 例7. 求(1) 1 sin x
1 dx. (2) 3 cos x
利用万能公式处理比较复杂,更多地是利 用三角恒等式化简被积函数
1 dx. 例8. 求 2 sec x sin x tan x
例5. 求
( x 2 x 2) (2 x 2) dx 解: 原式 2 2 ( x 2 x 2)
dx d( x 2 2 x 2) 2 2 ( x 1) 1 ( x 2 x 2) 2
2
1 arctan(x 1) 2 C x 2x 2
( m n)
例9. 求
和差化积公式
解:
1 1 ∴原式 = sin 4 x dx sin 2 x d x 2 2 1 1 sin 4 x d(4 x) sin 2 x d(2 x) 4 8
1 sin x cos3x (sin 4 x sin 2 x) 2
解: (1)用赋值法
1 A B C 1 1 1 2 2 x( x 1) x x 1 ( x 1) x x 1 ( x 1) 2
右端通分后比较两端分子得
1 A( x 1)2 Bx( x 1) Cx 令 x=0 得 A=1 令 x=1 得 C=1 令 x=2 得 B=-1
例2. 求 解: 原式 1
4 1 2x 1 dx dx 2 5 1 2x 5 1 x 2 d(1 2 x) 1 2 x dx 1 dx 1 x2 1 x2 5 5 5 1 2x 2 2 1 d ( 1 x ) 1 arctan x ln 1 2 x 5 5 5 1 x2
几种特殊类型函数的积分
假分式总可以化成一个多项式与一个真分式之和的形式.例如,
x3 x 1 x(x2 1) 1
x
1
.
x2 1
x2 1
x2 1
求真分式的不定积分时,如果分母可因式分解,则先因式分解,然后化成部分分式再积分.
1.1 有理函数的积分
例1
求
x2
x
3 5x
6
dx
.
解 设 x 3 x 3 A B ,则
x ln sec x ln 1 tan x C .
2
2
2
1.2 三角函数有理式的积分
说明 并非所有三角函数有理式积分计算都要通过变换化为有理函数的积分.例如,
1
cos x sin
x
dx
1
1 sin
x
d(1
sin
x)
ln(1
sin
x)
C
.
高等数学
x2 5x 6 (x 2)(x 3) x 2 x 3
A(x 3) B(x 2) (A B)x 3A 2B x 3 ,
即 A B 1, 3A 2B 3,
解得 A 5 , B 6 ,所以
x2
x
3 5x
6
dx
5 x2
x
6
3
dx
5
x
1
2
dx
6
x
1
3
dx
5ln | x 2 | 6ln | x 3| C .
7
7
1.2 三角函数有理式的积分
三角函数有理式是指由三角函数和常数经过有限次四则运算所构成的函数,其特点是分子 分母都包含三角函数的和差与乘积运算.由于各种三角函数都可以用 sin x 及 cos x 的有理式表 示,故三角函数有理式也就是 sin x , cos x 的有理式.
第四节几种特殊类型函数的积分
2
比较x2项得 :
5
0 A 2B
B 2
5
比较常数项得: 1 AC
C 1 5
4
21
1
x 5 5 5
(1 2x)(1 x 2 ) 1 2x 1 x 2
4 5
1
1 2
x
1 5
2 1
x
x
1
2
5
再如:
1
1 2x 1 x 2 32
A Bx C 1 2x 1 x2
2
2
2
10
若分解后的有理分式出现 A 、 Ax B 这种部分分式,
( x a)n x 2 a 2 n
前面已经解决若。出现 Mx N 如何解决?
( x 2 px q)n
讨论
Mx N dx.
( x 2 px q)n
x2
px q
x
p 2
q
p2
,
2
4
令 x p t , p2 q 1 ( p2 4q) 0, 即 q p2 0,
x 1 x3
x 1 x3
x
1 x3
ln x 2 3
1 d 1 x3 ln x 2 ln1 x3 C
1 x3
3
简单!
法2 令:1 x3 A B Cx D x 1 x3 x 1 x 1 x x2
通分得: 1 x 3 A 1 x 3 Bx 1 x x 2 Cx Dx1 x
1 x2
解
1
4 1 1 2x 1
(1 2x)(1 x 2 ) 5 1 2x 5 1 x 2
1
2
1
x1
x
2
dx
4 5
1
1 2