朱玉贤现代分子生物学第四版第一章绪论

合集下载

朱玉贤分子生物学习题题库,DOC.docx

朱玉贤分子生物学习题题库,DOC.docx

第一章绪论练习题请就你感兴趣的分子生物学发展史上的重大事件或重要人物或重要理论作以相关论述?第二章染色体与DNA练习题 1一、【单选题】1.生物遗传信息传递中心法则是【】A.DNA→ RNA→蛋白质B.RNA→ DNA→蛋白质C.DNA→蛋白质→ RNAD.RNA→蛋白质→ DNA2.关于 DNA 复制的叙述,下列哪项是错误的【】A. 为半保留复制B. 为不对称复制C.为半不连续复制D.新链合成的方向均为3' → 5'3.合成 DNA 的原料有【】A.dAMP dGMP dCMP dTMPB.dADP dGDP dCDP dTDPC.dATP dGTP dCTP dTTPD.AMP UMP CMP GMP4.DNA 合成时碱基互补规律是【】A.A-UC-GB.T-AC -GC.A - GC- UD.A - GC-T5.关于 DNA 的复制错误的【】:A包括一个双螺旋中两条子链的合成B遵循新的子链与其亲本链相配对的原则C依赖于物种特异的遗传密码D是碱基错配最主要的来源6.一个复制子是:【】A 细胞分裂期间复制产物被分离之后的DNA 片段B 复制的 DNA 片段和在此过程中所需的酶和蛋白C 任何自发复制的DNA 序列 ( 它与复制起始点相连)D 任何给定的复制机制的产物(如:单环 )E 复制起点和复制叉之间的DNA 片段7.真核生物复制子有下列特征,它们:【】A比原核生物复制子短得多,因为有末端序列的存在B比原核生物复制子长得多,因为有较大的基因组C通常是双向复制且能融合D 全部立即启动,以确保染色体在S 期完成复制E 不是全部立即启动,在任何给定的时间只有大约15 %是有活性的8.下述特征是所有(原核生物、真核生物和病毒)复制起始位点都共有的是:【】A 起始位点是包括多个短重复序列的独特DNA 片段B起始位点是形成稳定二级结构的回文序列C多聚体 DNA 结合蛋白专一性识别这些短的重复序列D起始位点旁侧序列是 A-T 丰富的,能使 DNA 螺旋解开E起始位点旁侧序列是 G-C 丰富的,能稳定起始复合物9.下列关于DNA 复制的说法是正确的有:【】A按全保留机制进行B接 3’→ 5方’向进行C需要 4 种 dNMP 的参与D需要 DNA 连接酶的作用E涉及 RNA 引物的形成F需要 DNA 聚合酶Ⅰ10.在原核生物复制子中以下哪种酶除去RNA 引发体并加入脱氧核糖核苷酸 ? 【】A DNA 聚合酶 IIIB DNA 聚合酶 IIC DNA 聚合酶 ID 外切核酸酶MFl欢迎阅读E DNA 连接酶【参考答案】 1.C6.二、【多项选择题】1.DNA聚合酶 I 的作用有【】A.3 ’-5’外切酶的活性B.修复酶的功能C.在细菌中 5’-3’外切酶活性是必要的D.外切酶活性,可以降解RNA/DNA杂交体中的 RNA 引物E.5 ’-3’聚合酶活性2.下列关于大肠杆菌 DNA聚合酶 I 的叙述哪些是正确的?【】A.该酶能从 3’羟基端逐步水解单链DNAB.该酶在双螺旋区具有 5’-3’外切酶活性C.该酶在 DNA 中需要游离的 3’-OHD.该酶在 DNA 中需要游离的 5’-OHE.有校对功能3.下列有关 DNA 聚合酶 I 的描述,哪些是正确的?【】A.催化形成 3’-5’-磷酸二酯键B.有 3’-5’核酸外切酶作用C.有 5‘-3’核酸外切酶作用D.是原核细胞 DNA 复制时的主要合成酶E.是多功能酶4.有关 DNA 复制时的引物的说法下列正确的有【】A.一般引物是 RNAB.催化引物合成的酶称引发酶C.哺乳动物的引物是 DNAD.引物有游离的 3‘-OH ,成为合成 DNA 的起点E.引物有游离的 5‘-OH5.DNA聚合酶 I 的作用是【】A.修复 DNA 的损伤与变异B.去除复制过程中的引物C.填补合成DNA 片段间的空隙D.将 DNA 片段连接起来E.合成 RNA 片段6.下列关于 DNA 复制的叙述哪些是正确的?A.每条互补链的合成方向是 5‘-3’ B.DNA 聚合酶沿母链滑动方向从 3‘-5’ C.两条链同时复制只有一个起点D.真核细胞的每个染色体的复制合成原料是 dNMP 7.下列有关 DNA 聚合酶作用的叙述哪些是正确的?A.酶I 在 DNA 损伤的修复中发挥作用B.酶 II 是 DNA 复制的主要酶C.酶 III 是 DNA 复制的主要酶D.酶 IV 在 DNA 复制时有切除引物的作用E.酶 I 切除 RNA 引物8.DNA 聚合酶 I 具有的酶活性包括A.5 ’-3’外切酶活性B.3’-5’外切酶活性C.5’-3’聚合酶活性D.3’-5’聚合酶活性E.内切酶活性9.下列有关大肠杆菌DNA 复制的叙述哪些是正确的?A.双螺旋中一条链进行不连续合成B.生成冈崎片断C.需要 RNA 引物D.单链结合蛋白可防止复制期间的螺旋解链E.DNA 聚合酶 I 是 DNA 复制最主要酶10.DNA 复制的特点是A.半保留复制欢迎阅读欢迎阅读B.半不连续C.一般是定点开始,双向等速进行D.复制的方向是沿模板链的 5‘-3’方向E. 一般需要 RNA 引物11.需要 DNA 连接酶参与的反应为A.DNA 复制B.DNA 损伤修复C.DNA 的体外重组D.RNA 的转录E.RNA 的复制12.下列关于DNA 连接酶的叙述哪些是正确的?A.在双螺旋的互补核苷酸之间形成链间共价键B.有的酶可被 ATP 激活,有的酶可被 NAD+ 激活C.由于 DNA 链出现一个缺口( gap),使螺旋解旋后引发 DNA 复制D.在双螺旋 DNA 分子中切口( nick )相邻两个片段的 3’-羟基和5’-磷酸基之间形成 3’-5’磷酸二酯键,而将两个片段连接起来E.连接二个 RNA 片段13.关于 DNA 聚合酶 I 的叙述哪些是正确的?A. 此酶能从3’-羟基端逐步水解单链DNAB. 在 DNA 双股螺旋区,此酶具有5’-3’核酸酶活性C.DNA 的复制,损伤修复都需要它D.是 DNA 复制过程中最主要的酶E.此酶具有连接酶活性14.下列关于大肠杆菌DNA 连接酶的叙述哪些是正确的?A. 催化双股螺旋 DNA 分子中二个切口( nick )相邻单股 DNA 片段的连接反应,生成磷酸二酯键B.DNA 复制需要C.是基因工程中重要的工具酶D.催化二个单股 DNA 链之间生成磷酸二酯键E.DNA 损伤修复需要15.下列关于大肠杆菌DNA 连接酶的叙述正确的是A.催化两段冈崎片段的相连B.催化两条游离的单链 DNA 分子间形成磷酸二酯键C.需 GTP 为能源D.需 ATP 为能源E.连接二个肽段16.DNA 连接酶催化的反应A. 在两股单链 DNA 互补碱基之间形成氢键生成双螺旋,完成复制过程B. 需 ATP 供能C.使复制中的RNA 引物与冈崎片段相互聚合D.使相邻的 DNA 片段间以 3’-5’磷酸二酯键相连E.催化 RNA 引物的合成17.DNA 聚合酶 III 催化的反应A .作用物为dNTPB .合成反应的方向为5’-3’C.以 NAD+ 为辅酶D.生成磷酸二酯键E.需要 DNA 模板18.DNA 复制的特点是A.半保留复制B.需合成 RNA 引物C.形成复制叉D.有半不连续性E.合成 DNA 方向是 3’-5’19.关于 DNA 聚合酶的催化作用有A.DNA pol I在损伤修复中发挥作用B.DNA pol I有去除引物,填补合成片段空隙的作用C.DNA pol III是复制中起主要作用的酶D.DNA pol II是复制中起主要作用的酶E.DNA pol I是多功能酶20.参与原核 DNA 复制的 DNA 聚合酶有A.DNA 聚合酶 IB.DNA 聚合酶 IIC.DNA 聚合酶 IIID.DNA 聚合酶αE.DNA 聚合酶δ21.参与复制中解旋、解链的酶和蛋白质有A.解链酶B.DNA 结合蛋白C.DNA 拓扑异构酶D.核酸外切酶E.引发酶22.DNA 复制需要下列哪些成分参与A.DNA 模板B.DNA 指导的 DNA 聚合酶C.反转录酶D.四种核糖核苷酸E.RNA 引物23.将细菌培养在含有放射性物质的培养液中,使双链都带有标记,然后使之在不含标记物的培养液中生长三代,其结果是A.第一代细菌的DNA 都带有标记B.第二代细菌的DNA 都带有标记C.不出现两股链都带标记的子代细菌D.第三代多数细菌的 DNA 不带有标记E.以上都不对24.端粒酶和其他DNA 合成酶有何区别?A.从 5’-3’方向合成 DNAB.酶含有 RNA 成分C.酶以自身RNA 为模板D.以 dNTP 合成 DNAE.是特异的逆转录酶25.DNA 的复制作用A.包括用于互相配对成双螺旋的子链的合成B.按照新合成子链与一条亲本链结合的原则C.依赖于物种特异的遗传密码D.是半保留复制E.是描述基因表达的过程26.下面哪些碱基对能在双链 DNA 中发现? A.A-U B. G-T C. C-G D. T-A E. C-A 27.对一给定的原点,“引发体”含有:A.引发酶B.防止 DNA 降解的单链结合蛋白C.Dna B 和 Dna A 蛋白D.拓扑异构酶E.DNA 聚合酶 III28.DNA 复制需要A.DNA 聚合酶B.RNA 聚合酶C.DNA 连接酶D.解链酶E.拓扑异构酶29.以下哪些关于限制性内切酶的说法是正确的A.一些酶在识别位点之外切割 DNA 链B.一般在特异性序列,即识别位点切割DNAC.能切割 DNA 而产生一致的末端序列D.一些酶在其识别位点切割两条DNA 链,形成粘性末端E.一些酶在其识别位点切割两条DNA 链,形成平端末端【多选参考答案】1.ABCDE2.ABCE3.ABCE4.ABD5.ABC6.ABC7.ACE8.ABC9.ABC 10.ABCE 11.ABC 12.BD 13.ABC 14.ABCE 15. AD 16.BD欢迎阅读欢迎阅读17.ABDE 18.ABCD 19.ABCE 20.AC 21.ABC 22.ABE 23.ACD24.BCE 25.BD 26.CD 27.AC 28.ACDE 29.ABCDE三、【是非题】1.DNA 的半保留复制是由Meselson 和 Stahl 首先证明的。

《现代分子生物学》朱玉贤第四版 第1章 绪论

《现代分子生物学》朱玉贤第四版  第1章  绪论

关于诺贝尔奖
• 1962年沃森、克里克和威尔金斯获得诺贝尔生理学或医学 奖的时候,富兰克林已经在4年前因为卵巢癌而去世。按 照惯例,诺贝尔奖不授予已经去世的人。此外,同一奖项 至多只能由3个人分享,假如富兰克林活着,她会得奖吗? 性别差异是否会成为公平竞争的障碍?后人为了这个永远 不能有答案的问题进行过许多猜测与争论。
1.3.4基因组、功能基因组与生物信息学研究
• 后基因组时代生物信息学的作用将更加举足轻重, 要读懂“天书”,仅仅依靠传统的实验观察手段 无济于事,必须借助高性能计算机和高效数据处 理的算法语言。只有如此,“天书”才能发挥它 应有的价值。
• 生命科学的革命性巨变已把生物信息学推到了前 台,生物信息技术已成为后基因时代的核心技术 之一,在蛋白质组学、功能基因组学、药物基因 组学等领域必将更有用武之地,从而对生命科学 (尤其是医学)的发展产生无法估计的巨大影响。
通过DNA连接酶把不同的DNA片段连接成一个整体。a. DNA
的粘性末端; b. DNA的平末端; c. 化学合成的具有EcoRI粘性末 端的DNA片段。
重组DNA操作过程示意图
根 癌 土 壤 农 杆 菌 ( Agrobaoterium ห้องสมุดไป่ตู้umefaciens) 侵 染 植 物 细 胞 后 能 将 其 Ti (tumor inducing)质粒上的一段DNA(TDNA)插入到被侵染细胞的基因组,并能稳定 地遗传给后代,植物的遗传转化(植物基因工 程)技术随之得到迅速发展。
2、基因表达调控研究
蛋白质分子控制了细胞的一切代谢活动,而决 定蛋白质结构和合成时序的信息都由核酸(主 要是脱氧核糖核酸)分子编码,所以,基因表 达实质上就是遗传信息的转录和翻译过程。
3、结构分子生物学

2024年度-朱玉贤现代分子生物学第四版

2024年度-朱玉贤现代分子生物学第四版
包括去除信号肽、二硫键的形成、化学修饰和剪切等。去除信号肽是某些分泌蛋白和膜蛋白合成时的 重要步骤;二硫键的形成对于稳定蛋白质的三级结构具有重要作用;化学修饰如磷酸化、糖基化等可 以影响蛋白质的活性、稳定性和定位;剪切可以产生具有不同功能的蛋白质片段。
蛋白质翻译后加工的意义
对于蛋白质的成熟、定位和功能发挥具有重要作用。例如,信号肽的去除可以使蛋白质从细胞内分泌 到细胞外或定位到细胞膜上;化学修饰可以调控蛋白质的活性和稳定性,从而影响细胞的生理功能; 剪切可以产生具有不同功能的蛋白质片段,增加蛋白质的多样性。
17
转录与转录后加工的调控
转录的调控主要通过转录 因子与DNA的结合来实 现,可以影响RNA聚合酶 的活性和选择性。
转录和转录后加工的调控 具有协同作用,可以共同 调节基因的表达水平和蛋 白质的功能。
ABCD
转录后加工的调控涉及多 种蛋白质和RNA的相互作 用,可以影响RNA的加工 效率和产物种类。
29
基因工程与基因组学的应用前景
农牧业领域
通过基因工程改良作物和畜禽品种, 提高产量和品质,增强抗逆性;应用 基因组学解析重要农艺性状形成的分 子机制,指导新品种选育。
工业领域
利用基因工程生产工业酶、生物燃料 和生物材料等;应用基因组学优化工 业生产过程和开发新产品。
医学领域
基因工程可用于生产重组蛋白药物、 基因诊断和基因治疗等;基因组学可 用于解析人类疾病的遗传基础,发现 新的治疗靶点和药物。
异常的转录和转录后加工 调控可能导致疾病的发生 ,如癌症、遗传性疾病等 。
18
05
蛋白质翻译与翻译后加工
19
蛋白质翻译的过程与特点
蛋白质翻译的过程
起始、延长和终止三个阶段。起始阶段,核糖体与mRNA结合,形成起始复合物;延长阶段,tRNA携带氨基酸 进入核糖体,进行肽链的延伸;终止阶段,释放完成翻译的蛋白质。

现代分子生物学笔记朱玉贤

现代分子生物学笔记朱玉贤

第一章绪论分子生物学分子生物学的基本含义 (p8)分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。

分子生物学与其它学科的关系分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以至信息科学等多学科相互渗透、综合融会而产生并发展起来的,凝聚了不同学科专长的科学家的共同努力。

它虽产生于上述各个学科,但已形成它独特的理论体系和研究手段,成为一个独立的学科。

生物化学与分子生物学关系最为密切 :生物化学是从化学角度研究生命现象的科学,它着重研究生物体内各种生物分子的结构、转变与新陈代谢。

传统生物化学的中心内容是代谢,包括糖、脂类、氨基酸、核苷酸、以及能量代谢等与生理功能的联系。

分子生物学则着重阐明生命的本质----主要研究生物大分子核酸与蛋白质的结构与功能、生命信息的传递和调控。

细胞生物学与分子生物学关系也十分密切:传统的细胞生物学主要研究细胞和亚细胞器的形态、结构与功能。

探讨组成细胞的分子结构比单纯观察大体结构能更加深入认识细胞的结构与功能,因此现代细胞生物学的发展越来越多地应用分子生物学的理论和方法。

分子生物学则是从研究各个生物大分子的结构入手,但各个分子不能孤立发挥作用,生命绝非组成成分的随意加和或混合,分子生物学还需要进一步研究各生物分子间的高层次组织和相互作用,尤其是细胞整体反应的分子机理,这在某种程度上是向细胞生物学的靠拢。

第一章序论1859年发表了《物种起源》,用事实证明“物竞天择,适者生存”的进化论思想。

指出:物种的变异是由于大自然的环境和生物群体的生存竞争造成的,彻底否定了“创世说”。

达尔文第一个认识到生物世界的不连续性。

意义:达尔文关于生物进化的学说及其唯物主义的物种起源理论,是生物科学史上最伟大的创举之一,具有不可磨灭的贡献。

细胞学说细胞学说的建立及其意义德国植物学家施莱登和德国动物学家施旺共同提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位。

朱玉贤《现代分子生物学》(第4版)笔记和课后习题(含考研真题)详解

朱玉贤《现代分子生物学》(第4版)笔记和课后习题(含考研真题)详解

目录第1章绪论 (4)1.1复习笔记 (4)1.2课后习题详解 (5)1.3名校考研真题详解 (7)第2章染色体与DNA (10)2.1复习笔记 (10)2.2课后习题详解 (17)2.3名校考研真题详解 (22)第3章生物信息的传递(上)——从DNA到RNA (36)3.1复习笔记 (36)3.2课后习题详解 (44)3.3名校考研真题详解 (49)第4章生物信息的传递(下)——从mRNA到蛋白质 (62)4.1复习笔记 (62)4.2课后习题详解 (71)4.3名校考研真题详解 (78)第5章分子生物学研究法(上)——DNA、RNA及蛋白质操作技术 (90)5.1复习笔记 (90)5.2课后习题详解 (96)5.3名校考研真题详解 (101)第6章分子生物学研究法(下)——基因功能研究技术 (114)6.1复习笔记 (114)6.2课后习题详解 (120)6.3名校考研真题详解 (124)第7章原核基因表达调控 (132)7.1复习笔记 (132)7.2课后习题详解 (138)7.3名校考研真题详解 (140)第8章真核基因表达调控 (147)8.1复习笔记 (147)8.2课后习题详解 (154)8.3名校考研真题详解 (158)第9章疾病与人类健康 (168)9.1复习笔记 (168)9.2课后习题详解 (174)9.3名校考研真题详解 (177)第10章基因与发育 (182)10.1复习笔记 (182)10.2课后习题详解 (183)10.3名校考研真题详解 (185)第11章基因组与比较基因组学 (186)11.1复习笔记 (186)11.2课后习题详解 (189)11.3名校考研真题详解 (192)第1章绪论1.1复习笔记一、分子生物的概念分子生物学是从分子水平研究生物结构、组织和功能的一门学科,以核酸、蛋白质等生物大分子的结构、形态及其在遗传信息和细胞信息传递中的作用和功能为研究对象。

1-绪论分子生物学

1-绪论分子生物学

种解释不能成立,因为单独注射经过处理的SⅢ时并不能致死小家
鼠。(2)R型已转变为S型。这一点也不能成立,因为剖检发现的 是SⅢ不是SⅡ,R型从SⅡ突变而来,理应转化为 SⅡ。(3)R型
从杀死的SⅢ获得某种物质,导致类型转化,从而恢复了原先因基
因突变而丧失的合成荚膜的能力。
证实遗传信息的载体是DNA(二)
产生的一门新的交叉学科。它是当前生
命科学中发展最快并正在与其它学科
广泛交叉与渗透的重要前沿领域。
分子生物学是从分子水平研究生命本质的科学。 即是研究生命分子机理的科学。首先注重于 研究生命本质的共性方面:分子结构、分子 遗传、分子结构与功能及表型的关系。
目前常把基因结构和表达产物功能的研究称 为分子生物学。
Robert Weaver 《Molecular Biology》
• 分子生物学是研究核酸、蛋白质等生 物大分子的形态、结构特征及其重要 性、规律性和相互关系的科学,是人 类从分子水平上真正揭示生物世界的 奥秘,由被动地适应自然界转向主动 地改造和重组自然界的基础学科。
朱玉贤《现代分子生物学》
分子生物学是遗传学和生物化学发展而
(Warren Weaver是当时洛克菲勒基金会自然科学方面的主持人,他相信 由于在X射线晶体学等方面的发展,生物学正在进入一个大的转变期,他也 因此建议将基金会的资金用于资助生物领域的研究。)
1950年,英国物理学家William Astbury以“分子生 物学”为题在美国的哈佛大学作了公开讲演,这 被认为是分子生物学的首次提出。
Molecular Biology
教材:《现代分子生物学》朱玉贤等著 参考书:《基因的分子生物学》沃森等著 关于我: 王 瑶 教授,博导 87092087 wangyao@ 理科大楼D304

现代分子生物学笔记(朱玉贤版)

现代分子生物学笔记(朱玉贤版)

现代分子生物学笔记(朱玉贤版)第一讲序论二、现代分子生物学中的主要里程碑分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。

当人们意识到同一生物不同世代之间的连续性是由生物体自身所携带的遗传物质所决定的,科学家为揭示这些遗传密码所进行的努力就成为人类征服自然的一部分,而以生物大分子为研究对像的分子生物学就迅速成为现代社会中最具活力的科学。

从1847年Schleiden和Schwann提出"细胞学说",证明动、植物都是由细胞组成的到今天,虽然不过短短一百多年时间,我们对生物大分子--细胞的化学组成却有了深刻的认识。

孟德尔的遗传学规律最先使人们对性状遗传产生了理性认识,而Morgan的基因学说则进一步将"性状"与"基因"相耦联,成为分子遗传学的奠基石。

Watson和Crick所提出的脱氧核糖酸双螺旋模型,为充分揭示遗传信息的传递规律铺平了道路。

在蛋白质化学方面,继Sumner在1936年证实酶是蛋白质之后,Sanger利用纸电泳及层析技术于1953年首次阐明胰岛素的一级结构,开创了蛋白质序列分析的先河。

而Kendrew和Perutz利用X射线衍射技术解析了肌红蛋白(myoglobin)及血红蛋白(hemoglobin)的三维结构,论证了这些蛋白质在输送分子氧过程中的特殊作用,成为研究生物大分子空间立体构型的先驱。

1910年,德国科学家Kossel第一个分离了腺嘌呤,胸腺嘧啶和组氨酸。

1959年,美国科学家Uchoa第一次合成了核糖核酸,实现了将基因内的遗传信息通过RNA 翻译成蛋白质的过程。

同年,Kornberg实现了试管内细菌细胞中DNA的复制。

1962年,Watson(美)和Crick(英)因为在1953年提出DNA的反向平行双螺旋模型而与Wilkins共获Noble生理医学奖,后者通过X射线衍射证实了Watson-Crick模型。

现代分子生物学第一章绪论

现代分子生物学第一章绪论

细胞的其它成分,如脂类、糖类和核酸 也相继在这一阶段被认识和纯化。当仍 无法解释细胞内最重要的生命活动,细 胞成分是如何进行世代相传的?
1.1.3 经典的生物化学和遗传学
孟德尔 Gregor Mendel ( 1822-
1884),奥地利科学家,
经典遗传学的奠基人,
发现并提出遗传学定
律。
1857-1864 的 7 年中,进行了豌豆的杂交研究, 1865 年发表了他的划时代的论文《植物杂交试 验》,1884年逝世;1900年他的理论被重新发现。
来,即生物是由细胞和细胞的产物所组成;
② 所有细胞在结构和组成上基本相似;
③ 新细胞是由已存在的细胞分裂而来; ④ 生物的疾病是因为其细胞机能失常。
1.1.3 经典的生物化学和遗传学 ● 19世纪中叶,植物细胞提取液得到蛋白质 实现了用酵母无细胞提取物和葡萄糖进 行氧化反应,生成乙醇,证明化学物质
1绪论2染色体与dna3生物信息的传递上从dna到rna4生物信息的传递下从mrna到蛋白质5分子生物学研究方法上dnarna及蛋白操作技术6分子生物学研究方法下基因功能研究技术7基因的表达与调控上原核8基因的表达与调控下真核9疾病与人类健康癌症病毒和基因治疗10基因与发育11基因组与比较基因组学第一章绪论11引言12分子生物学简史13分子生物学研究内容14分子生物学展望11引言111创世说与进化论达尔文1859年物种起源确立了进化论的概念18311836年以博物学家的身份乘贝格尔号参加了英国派遣的环球航行喜欢观察各种小动习惯
第一章
1.1 引言
绪论
1.2 分子生物学简史 1.3 分子生物学研究内容 1.4 分子生物学展望
1.1 引言
1.1.1创世说与进化论

现代分子生物学课后习题集及答案(朱玉贤

现代分子生物学课后习题集及答案(朱玉贤

现代分子生物学课后习题集及答案(朱玉贤现代分子生物学课后习题及答案(共10章)第一章绪论1.你对现代分子生物学的含义和包括的研究范围是怎么理解的?2.分子生物学研究内容有哪些方面?3.分子生物学发展前景如何?4.人类基因组计划完成的社会意义和科学意义是什么?答案:1.分子生物学是从分子水平研究生命本质的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递屮的作用为研究对象,是当前生命科学屮发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域。

狭义:偏重于核酸的分子生物学,主要研究基因或DNA的复制.转录.达和调节控制等过程,其屮也涉及与这些过程有关的蛋白质和酶的结构与功能的研究。

分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。

所谓在分子水平上研究生命的本质主要是指对遗传.生殖. 生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。

这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内.细胞间通讯过程屮发挥着重要作用的蛋白质等生物大分子。

这些生物大分子均具有较大的分子量,由简单的小分子核昔酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统。

阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。

2.分子生物学主要包含以下三部分研究内容:A.核酸的分子生物学,核酸的分子生物学研究核酸的结构及其功能。

由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(moleculargeics)是其主要组成部分。

由于50年代以来的迅速发展,该领域已形成了比较完整的理论体系和研究技术,是目前分子生物学内容最丰富的一个领域。

研究内容包括核酸/基因组的结构.遗传信息的复制.转录与翻译,核酸存储的信息修复与突变,基因达调控和基因工程技术的发展和应用等。

[VIP专享]现代分子生物学笔记朱玉贤

[VIP专享]现代分子生物学笔记朱玉贤

第一章绪论分子生物学分子生物学的基本含义 (p8)分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。

分子生物学与其它学科的关系分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以至信息科学等多学科相互渗透、综合融会而产生并发展起来的,凝聚了不同学科专长的科学家的共同努力。

它虽产生于上述各个学科,但已形成它独特的理论体系和研究手段,成为一个独立的学科。

生物化学与分子生物学关系最为密切 :生物化学是从化学角度研究生命现象的科学,它着重研究生物体内各种生物分子的结构、转变与新陈代谢。

传统生物化学的中心内容是代谢,包括糖、脂类、氨基酸、核苷酸、以及能量代谢等与生理功能的联系。

分子生物学则着重阐明生命的本质----主要研究生物大分子核酸与蛋白质的结构与功能、生命信息的传递和调控。

细胞生物学与分子生物学关系也十分密切:传统的细胞生物学主要研究细胞和亚细胞器的形态、结构与功能。

探讨组成细胞的分子结构比单纯观察大体结构能更加深入认识细胞的结构与功能,因此现代细胞生物学的发展越来越多地应用分子生物学的理论和方法。

分子生物学则是从研究各个生物大分子的结构入手,但各个分子不能孤立发挥作用,生命绝非组成成分的随意加和或混合,分子生物学还需要进一步研究各生物分子间的高层次组织和相互作用,尤其是细胞整体反应的分子机理,这在某种程度上是向细胞生物学的靠拢。

第一章序论1859年发表了《物种起源》,用事实证明“物竞天择,适者生存”的进化论思想。

指出:物种的变异是由于大自然的环境和生物群体的生存竞争造成的,彻底否定了“创世说”。

达尔文第一个认识到生物世界的不连续性。

意义:达尔文关于生物进化的学说及其唯物主义的物种起源理论,是生物科学史上最伟大的创举之一,具有不可磨灭的贡献。

细胞学说细胞学说的建立及其意义德国植物学家施莱登和德国动物学家施旺共同提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位。

朱玉贤现代分子生物学第四版第一章绪论

朱玉贤现代分子生物学第四版第一章绪论

Watson和Crick所提出的脱氧核糖酸双螺旋 模型,为充分揭示遗传信息的传递规律铺平
了道路。
1953, Watson &
Crick 提出DNA的反向平 行双螺旋模型; Wilkins通过对 DNA分子的X射线 衍射研究证实了该 模型。
Rosalind E. Franklin
1920-1958
1.2 分子生物学简史
结构 1958年,DNA半保留复制 1961年,Jacob & Monod 提出了调节基因表达的操
纵子模型


冥 思 苦 想
之 间 , 一 切






………
30
二、建立和发展阶段
1970年,Smith & Wilcox 分离到第一种限制性 核酸内切酶
1972~1973年,Boyer & Berg 发展了重组DNA 技术,并完成了第一个细菌基因的克隆,开创 基因工程的新纪元
分子生物学实验室常用设备
温度控制系统 冰箱:4 0C、-20 0C、-70 0C 恒温培养箱:隔水式、电热式 鼓风干燥箱 恒温水浴 微量加热器 恒温空气摇床 PCR仪 制冰机 高压蒸汽灭菌锅
47
基因工程实验室一览
48
常规仪器1
49
常规仪器2
50
常规仪器3
基因组、功能基因组与生物信息学
• 对人类等基因组全序列测序的完成,为确定基因对 人类生长发育和疾病的预防治疗提供了一个前所未 有的大舞台;
• 蛋白组计划(功能基因组计划)的提出和实施,将 快速、高效、大规模鉴定基因的产物和功能;
• 依靠计算机快速高效运算并进行统计分类和结构功 能预测的生物信息学将最大限度地开发和运用基因 组学所产生的庞大数据。

朱玉贤现代分子生物学第4版考研知识点过关题目练习题集

朱玉贤现代分子生物学第4版考研知识点过关题目练习题集

第1章绪论一、选择题1953年,Watson和Crick提出()。

A.多核苷酸DNA链通过氢键连接成一个双螺旋B.DNA的复制是半保留的,常常形成亲本——子代双螺旋杂合链C.三个连续的核苷酸代表一个遗传密码D.遗传物质通常是DNA而非RNA【答案】A【解析】1953年,Watson和Crick提出DNA反向平行的双螺旋结构模型,为充分揭示遗传信息的传递规律铺平了道路。

DNA双螺旋结构的基本特点是:①DNA由两条互相平行的脱氧核苷酸长链盘绕而成,且为反向平行。

②DNA中的脱氧核糖和磷酸交替连接,排在外侧,构成基本骨架。

③两条链上的含氮碱基排列在内侧,并遵循碱基互补配对原则(即A与T,G与C配对)通过氢键结合形成碱基对。

二、名词解释1.分子生物学答:分子生物学是指研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学。

其基本原理为:(1)构成生物体各类有机大分子的单体在不同生物中都是相同的;(2)生物体内一切有机大分子的构成都遵循共同的原则;(3)某一特定生物体所拥有的核酸及蛋白质分子决定了它的属性。

分子生物的研究方面主要包括:(1)重组DNA技术(基因工程);(2)基因表达调控研究;(3)生物大分子的结构功能研究(结构分子生物学);(4)基因组、功能基因组与生物信息学研究。

2.基因答:基因是指产生一条多肽链或功能RNA分子所必需的全部核苷酸序列,基因的本质是DNA分子上具有编码功能的一个片段。

基因是遗传的基本单位,按功能可分为结构基因和调节基因,其中结构基因是指可被转录为mRNA,并被翻译成蛋白质多肽链的DNA序列;调节基因是指可控制结构基因表达的DNA序列。

三、简答题1.中心法则的主要内容是什么?答:中心法则(central dogma)是由Crick于1954年提出,揭示了遗传信息的传递方向,反映了DNA、RNA 和蛋白质之间的相互关系。

中心法则是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程;也可以从DNA传递给DNA,即完成DNA的复制过程。

现代分子生物学(第四版)朱玉贤课件 PPT 第1章 绪论

现代分子生物学(第四版)朱玉贤课件 PPT 第1章 绪论
特别是基因的一般结构与生物功能,基因活 性的修饰与调节; 4. 掌握分子克隆与DNA重组的基本技术与原 理,了解现代分子生物学基本研究方法; 5.了解基因组与比较基因组学的新成果, 新进展。
主要教材与参考书
1.《现代分子生物学》 第3版(2007)朱玉贤、李毅、郑晓峰
2. 现代生物学精要(Instant Notes)系列 《分子生物学》第二版(2002)刘进元 《Molecular Biology》2e P.C.turner,et al 3. Principles of Biochemistry
1994 Gilman Rodbell 美国
1995
Lewis Nusslein-Volhard Wieschaus
美国 德国 美国
建立DNA测序方法
诺贝尔生理医学奖
建立和发展了单克隆抗体技术
诺贝尔生理医学奖
发现可移动癌基因
诺贝尔化学奖 诺贝尔生理医学奖
G蛋白在细胞内信息传导中的作用 诺贝尔生理医学奖
发现了控制果蝇体节发育的基因
诺贝尔生理医学奖
年份
科学家
Doherty 1996 Zinkernagel
国籍
澳 瑞士
1997 Prusiner

Furchgott

1998
Ignarro Murad
1999 Blobel

Carlsson

2000 Greengard
预计到2020年,生物医药占全球药品的比重 将超过1/3,生物质能源占世界能源消费的比 重将达5%左右,生物基材料将替代10%-20%的 化学材料。
生物制造、生物能源、生物环保等一 批新兴产业正在快速形成。
据Ernst&Young研究报告,2010年生 物环境、生物工业处理、生物海洋技术世界市 场规模将达到 134亿美元、327亿美元、288 亿美元。

现代分子生物学第一章

现代分子生物学第一章
15
二、分子生物学定义
从分子水平研究生物大分子的结构与功能从 而阐明生命现象本质的科学 ,主要指遗传信息的 传递(复制)、保持(损伤和修复)、基因的表 达(转录和翻译)与调控。
16
第一章 绪论
回顾所学知识点 分子生物学定义 分子生物学发展简史 分子生物学研究内容 分子生物学展望
17
三、分子生物学发展简史
桑格(Sanger) 吉尔伯特( Gilbert) 伯格(Berg)
了遗传密码及其在蛋白质合成方面的技能而 分享诺贝尔生理医学奖。
31
32

3、发展阶段(1970年代以后) ● 1970年,Temin 和Baltimore在RNA肿瘤病
毒中发现逆转录酶。
RNA 复 制
复 制 DNA转 录 RNA 翻 译
逆 转 录
蛋 白 质
33
34
35
1980年,与Gilbert和Berg共享诺贝尔化学奖
逆 转 录
蛋 白 质
中国科学院2001年硕士入学考试分子遗传学试题:
何谓中心法则?如何基于该法则来解释生物形状
的遗传和变异?(10分)
24
25
● 1958年,Meselson 和Stahl证明 DNA半保留 复制。 半保留复制是遗传消息能准确传代的保证。是 物质稳性的分子基础。
26
Stahl
Meselson
分离规律(The Law of Segregation)
自 由 组 合 规 律 ( The Law of Independent
Assortment)
13
在孟德尔遗传学的基础上,美国著名的遗传学家 Morgan又提出了基因学说。连锁遗传规律
14
第一章 绪论

分子生物学(朱玉贤第四版)复习纲要

分子生物学(朱玉贤第四版)复习纲要

绪论一、名词1、分子生物学 Molecular Biology2、中心法则 Central Dogma二、问答1、简述孟德尔、摩尔根、Avery、沃森和克里克、雅各布和莫诺,尼伦伯格和科拉纳等人对分子生物学发展的贡献2、早期验证遗传物质是DNA的实验有哪些,具体过程是?3、分子生物研究的内容包括哪些?DNA的复制、转录与翻译DNA重组技术基因表达调控研究生物大分子的结构功能研究—结构分子生物学基因(组)、功能基因(组)与生物信息学研究第1章、染色体与DNA第一节、染色体与DNA名词1、DNA双螺旋:两条多核苷酸链反向平行盘绕所生成的双链结构.2、DNA三级结构: DNA 双螺旋进一步扭曲盘绕形成的特定空间结构。

3、核小体:是由核心颗粒(H2A、H2B、H3、H4各两个分子生成的八聚体)和连接区DNA(大约200bpDNA)组成4、卫星DNA:又称随体DNA。

因为真核细胞DNA的一部分是不被转录的异染色质成分,其碱基组成与主体DNA不同,因而可用密度梯度离心。

卫星DNA通常是高度串联重复的DNA5、端粒(Telomere):是位于真核细胞线性染色体末端的特殊结构,由一段重复串联的DNA序列与端粒结合蛋白构成.6、端粒T环结构:端粒形成T环结构使染色体末端封闭起来,免遭破坏.7、单顺反子:真核基因转录产物为单顺反子,即一条mRNA模板只含有一个翻译起始点和一个终止点,因而一个基因编码一条多肽链或RNA链。

8、断裂基因(splitting gene):真核生物结构基因,由若干个和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续组成的完整蛋白质,这些基因称为断裂基因9、间隔基因(Interrupted gene):由于这组基因发生突变时会导致果蝇体节模式发生间隔缺失现象,所以将它们称为间隔基因10、外显子(Exon) 是真核生物基因的一部分,它在剪接(Splicing)后仍会被保存下来,并可在蛋白质生物合成过程中被表达为蛋白质11、内含子(Intron ) 在转录后的加工中,从最初的转录产物除去的内部的核苷酸序列12、单核苷酸多态性 Single Nucleotide Polymorphism,SNP:主要是指在基因组水平上由单个的变异所引起的。

朱玉贤分子生物学习题题库

朱玉贤分子生物学习题题库

第一章绪论练习题请就你感兴趣的分子生物学发展史上的重大事件或重要人物或重要理论作以相关论述第二章染色体与DNA练习题1一、【单选题】1.生物遗传信息传递中心法则是【】→RNA→蛋白质→DNA→蛋白质→蛋白质→→蛋白质→DNA2.关于DNA复制的叙述,下列哪项是错误的【】A.为半保留复制B.为不对称复制C.为半不连续复制D.新链合成的方向均为3'→5'3.合成DNA的原料有【】dGMP dCMP dTMPdGDP dCDP dTDPdGTP dCTP dTTPUMP CMP GMP合成时碱基互补规律是【】-UC-G -AC-G-GC-U -GC-T5.关于DNA的复制错误的【】:A包括一个双螺旋中两条子链的合成B遵循新的子链与其亲本链相配对的原则C依赖于物种特异的遗传密码D是碱基错配最主要的来源6.一个复制子是:【】A细胞分裂期间复制产物被分离之后的DNA片段B复制的DNA片段和在此过程中所需的酶和蛋白C任何自发复制的DNA序列(它与复制起始点相连)D任何给定的复制机制的产物(如:单环)E复制起点和复制叉之间的DNA片段7.真核生物复制子有下列特征,它们:【】A比原核生物复制子短得多,因为有末端序列的存在B比原核生物复制子长得多,因为有较大的基因组C通常是双向复制且能融合D全部立即启动,以确保染色体在S期完成复制E不是全部立即启动,在任何给定的时间只有大约15%是有活性的8.下述特征是所有(原核生物、真核生物和病毒)复制起始位点都共有的是:【】A起始位点是包括多个短重复序列的独特DNA片段B起始位点是形成稳定二级结构的回文序列C多聚体DNA结合蛋白专一性识别这些短的重复序列D起始位点旁侧序列是A-T丰富的,能使DNA螺旋解开E起始位点旁侧序列是G-C丰富的,能稳定起始复合物9.下列关于DNA复制的说法是正确的有:【】A按全保留机制进行B接3’→5’方向进行C需要4种dNMP的参与D需要DNA连接酶的作用E涉及RNA引物的形成F需要DNA聚合酶Ⅰ10.在原核生物复制子中以下哪种酶除去RNA引发体并加入脱氧核糖核苷酸【】A DNA聚合酶IIIB DNA聚合酶IIC DNA聚合酶ID外切核酸酶MFlE DNA连接酶【参考答案】.二、【多项选择题】聚合酶I的作用有【】A.3’-5’外切酶的活性B.修复酶的功能C.在细菌中5’-3’外切酶活性是必要的D.外切酶活性,可以降解RNA/DNA杂交体中的RNA引物E.5’-3’聚合酶活性2.下列关于大肠杆菌DNA聚合酶I的叙述哪些是正确的【】A.该酶能从3’羟基端逐步水解单链DNAB.该酶在双螺旋区具有5’-3’外切酶活性C.该酶在DNA中需要游离的3’-OHD.该酶在DNA中需要游离的5’-OHE.有校对功能3.下列有关DNA聚合酶I的描述,哪些是正确的【】A.催化形成3’-5’-磷酸二酯键B.有3’-5’核酸外切酶作用C.有5‘-3’核酸外切酶作用D.是原核细胞DNA复制时的主要合成酶E.是多功能酶4.有关DNA复制时的引物的说法下列正确的有【】A.一般引物是RNAB.催化引物合成的酶称引发酶C.哺乳动物的引物是DNAD.引物有游离的3‘-OH,成为合成DNA 的起点E.引物有游离的5‘-OH聚合酶I的作用是【】A.修复DNA的损伤与变异B.去除复制过程中的引物C.填补合成DNA片段间的空隙D.将DNA片段连接起来E.合成RNA片段6.下列关于DNA复制的叙述哪些是正确的A.每条互补链的合成方向是5‘-3’聚合酶沿母链滑动方向从3‘-5’C.两条链同时复制只有一个起点D.真核细胞的每个染色体的复制合成原料是dNMP7.下列有关DNA聚合酶作用的叙述哪些是正确的A.酶I在DNA损伤的修复中发挥作用B.酶II是DNA复制的主要酶C.酶III是DNA复制的主要酶D.酶IV在DNA复制时有切除引物的作用E.酶I切除RNA引物聚合酶I具有的酶活性包括A.5’-3’外切酶活性B.3’-5’外切酶活性C.5’-3’聚合酶活性D.3’-5’聚合酶活性E.内切酶活性9.下列有关大肠杆菌DNA复制的叙述哪些是正确的A.双螺旋中一条链进行不连续合成B.生成冈崎片断C.需要RNA引物D.单链结合蛋白可防止复制期间的螺旋解链聚合酶I是DNA复制最主要酶复制的特点是A.半保留复制B.半不连续C.一般是定点开始,双向等速进行D.复制的方向是沿模板链的5‘-3’方向E. 一般需要RNA引物11.需要DNA连接酶参与的反应为复制损伤修复的体外重组的转录的复制12.下列关于DNA连接酶的叙述哪些是正确的A.在双螺旋的互补核苷酸之间形成链间共价键B.有的酶可被ATP激活,有的酶可被NAD+激活C.由于DNA链出现一个缺口(gap),使螺旋解旋后引发DNA复制D.在双螺旋DNA分子中切口(nick)相邻两个片段的3’-羟基和5’-磷酸基之间形成3’-5’磷酸二酯键,而将两个片段连接起来E.连接二个RNA片段13.关于DNA聚合酶I的叙述哪些是正确的A.此酶能从3’-羟基端逐步水解单链DNAB.在DNA双股螺旋区,此酶具有5’-3’核酸酶活性的复制,损伤修复都需要它D.是DNA复制过程中最主要的酶E.此酶具有连接酶活性14.下列关于大肠杆菌DNA连接酶的叙述哪些是正确的A.催化双股螺旋DNA分子中二个切口(nick)相邻单股DNA片段的连接反应,生成磷酸二酯键复制需要C.是基因工程中重要的工具酶D.催化二个单股DNA链之间生成磷酸二酯键损伤修复需要15.下列关于大肠杆菌DNA连接酶的叙述正确的是A.催化两段冈崎片段的相连B.催化两条游离的单链DNA分子间形成磷酸二酯键C.需GTP为能源D.需ATP为能源E.连接二个肽段连接酶催化的反应A.在两股单链DNA互补碱基之间形成氢键生成双螺旋,完成复制过程B.需ATP供能C.使复制中的RNA引物与冈崎片段相互聚合D.使相邻的DNA片段间以3’-5’磷酸二酯键相连E.催化RNA引物的合成聚合酶III催化的反应A.作用物为dNTPB.合成反应的方向为5’-3’C.以NAD+为辅酶D.生成磷酸二酯键E.需要DNA模板复制的特点是A.半保留复制B.需合成RNA引物C.形成复制叉D.有半不连续性E.合成DNA方向是3’-5’19.关于DNA聚合酶的催化作用有pol I在损伤修复中发挥作用pol I有去除引物,填补合成片段空隙的作用pol III是复制中起主要作用的酶pol II是复制中起主要作用的酶pol I是多功能酶20.参与原核DNA复制的DNA聚合酶有聚合酶I聚合酶II聚合酶III聚合酶α聚合酶δ21.参与复制中解旋、解链的酶和蛋白质有 A.解链酶 结合蛋白 拓扑异构酶 D.核酸外切酶 E.引发酶 复制需要下列哪些成分参与 模板 指导的DNA 聚合酶 C.反转录酶 D.四种核糖核苷酸 引物 23.将细菌培养在含有放射性物质的培养液中,使双链都带有标记,然后使之在不含标记物的培养液中生长三代,其结果是 A.第一代细菌的DNA 都带有标记 B.第二代细菌的DNA 都带有标记 C.不出现两股链都带标记的子代细菌 D.第三代多数细菌的DNA 不带有标记 E.以上都不对 24.端粒酶和其他DNA 合成酶有何区别 A.从5’-3’方向合成DNA B.酶含有RNA 成分C.酶以自身RNA 为模板D.以dNTP 合成DNAE.是特异的逆转录酶的复制作用A.包括用于互相配对成双螺旋的子链的合成B .按照新合成子链与一条亲本链结合的原则C.依赖于物种特异的遗传密码D .是半保留复制E.是描述基因表达的过程26.下面哪些碱基对能在双链DNA 中发现A. A-UB. G-TC. C-GD. T-AE. C-A27.对一给定的原点,“引发体”含有: A. 引发酶 B. 防止DNA 降解的单链结合蛋白 C. Dna B 和Dna A 蛋白 D. 拓扑异构酶 E. DNA 聚合酶III 复制需要 聚合酶 聚合酶 连接酶 D.解链酶 E.拓扑异构酶 29.以下哪些关于限制性内切酶的说法是正确的A.一些酶在识别位点之外切割DNA 链B.一般在特异性序列,即识别位点切割DNAC.能切割DNA 而产生一致的末端序列D.一些酶在其识别位点切割两条DNA 链,形成粘性末端E.一些酶在其识别位点切割两条DNA 链,形成平端末端 【多选参考答案】 15. AD 三、【是非题】 的半保留复制是由Meselson 和Stahl 首先证明的。

分子生物学第一章 绪论

分子生物学第一章  绪论

1830s
• Matthias
Schleiden
• Theodor Schwann
Antonie Philips van Leeuwenhoek
• Antonie Philips van Leeuwenhoek
(October 24, 1632 – August 26, 1723) was
a Dutch tradesman and scientist from Delft,
纪律与要求
• 课前预习
• 认真听课
• 做好笔记

课后复习

资料阅读

积极讨论

参与实验
第一篇 绪论
• 回顾所学知识点 • 分子生物学定义 • 分子生物学发展简史 • 分子生物学研究内容 • 分子生物学展望
一、回顾所学知识点
How Molecular Biology Came about?
1、创世说与进化论
32.403 14.629 14.384 6.432 6.535 36.28 28.114 53.298 31.676 8.987
教学内容及学时安排:
• 1. 绪论(2) • 2. 染色体与DNA (6) • 3. 生物信息的传递(上)——从DNA到RNA(6) • 4. 生物信息的传递(下)——从mRNA到蛋白质(6) • 5. 分子生物学研究方法(8) • 6. 基因的表达与调控(上)——原核(6) • 7. 基因的表达与调控(下)——真核(6) • 8. 疾病与人类健康(自学) • 9. 基因与发育(自学) • 10. 基因组与比较基因组学(自学) • 11. 课程讨论及复习(2)
Matthias Jakob Schleiden
• Matthias Jakob Schleiden (5 April 1804 – 23 June 1881) was a German botanist and co-founder of the cell theory, along with Theodor Schwann and Rudolf Virchow.

现代分子生物学要点总结(朱玉贤版)

现代分子生物学要点总结(朱玉贤版)

现代分子生物学要点总结(朱玉贤版)一、绪论两个经典实验1、肺炎球菌在老鼠体内的毒性实验:先将光滑型致病菌(S型)烧煮杀活性以后、以及活的粗糙型细菌(R型)分别侵染小鼠发现这些细菌自然丧失了治病能力;当他们将经烧煮杀死的S型细菌和活的R型细菌混合再感染小鼠时,实验小鼠每次都死亡。

解剖死鼠,发现有大量活的S型细菌。

实验表明,死细菌DNA进行了可遗传的转化,从而导致小鼠死亡。

2、T2噬菌体感染大肠杆菌:当细菌培养基中分别带有35S或32P标记的氨基酸或核苷酸,子代噬菌体就相应含有35S标记的蛋白质或32P标记的核酸。

分别用这些噬菌体感染没有放射性标记的细菌,经过1~2个噬菌体DNA复制周期后进行检测,子代噬菌体中几乎不含带35S标记的蛋白质,但含30%以上的32P标记。

说明在噬菌体传代过程中发挥作用的可能是DNA而不是蛋白质。

基因的概念:基因是产生一条多肽链或功能RNA分子所必需的全部核苷酸序列。

二、染色体与DNA嘌呤嘧啶腺嘌呤鸟嘌呤胞嘧啶尿嘧啶胸腺嘧啶染色体性质:1、分子结构相对稳定;2、能够自我复制,使亲、子代之间保持连续性;3、能指导蛋白质的合成,从而控制生命过程;4、能产生可遗传的变异。

组蛋白一般特性:1、进化上极端保守,特别是H3、H4;2、无组织特异性;3、肽链上氨基酸分布的不对称性;4、存在较普遍的修饰作用;5、富含赖氨酸的组蛋白H5非组蛋白:HMG蛋白;DNA结合蛋白;A24非组蛋白真核生物基因组DNA真核细胞基因组最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能蛋白质所隔开。

人们把一种生物单倍体基因组DNA的总量称为C值,在真核生物中C值一般是随着生物进化而增加的,高等生物的C值一般大于低等动物,但某些两栖类的C值甚至比哺乳动物还大,这就是著名的C值反常现象。

真核细胞DNA序列可被分为3类:不重复序列、中度重复序列、高度重复序列。

真核生物基因组的特点:1、真核生物基因组庞大,一般都远大于原核生物的基因组;2、真核基因组存在大量的的重复序列;3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,这是真核生物与细菌和病毒之间的最主要的区别;4、真核基因组的转录产物为单顺反之;5、真核基因组是断裂基因,有内含子结构;6、真核基因组存在大量的顺式元件,包括启动子、增强子、沉默子等;7、真核基因组中存在大量的DNA多态性;8、真核基因组具有端粒结构。

北大分子生物学讲义-朱玉贤

北大分子生物学讲义-朱玉贤

北大生命科学院分子生物学课程教学讲义朱玉贤第一讲序论略二、现代分子生物学中的主要里程碑分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。

当人们意识到同一生物不同世代之间的连续性是由生物体自身所携带的遗传物质所决定的,科学家为揭示这些遗传密码所进行的努力就成为人类征服自然的一部分,而以生物大分子为研究对像的分子生物学就迅速成为现代社会中最具活力的科学。

从1847年Schleiden和Schwann提出”细胞学说”,证明动、植物都是由细胞组成的到今天,虽然不过短短一百多年时间,我们对生物大分子--细胞的化学组成却有了深刻的认识。

孟德尔的遗传学规律最先使人们对性状遗传产生了理性认识,而Morgan的基因学说则进一步将"性状"与”基因”相耦联,成为分子遗传学的奠基石。

Watson和Crick所提出的脱氧核糖酸双螺旋模型,为充分揭示遗传信息的传递规律铺平了道路。

在蛋白质化学方面,继Sumner在1936年证实酶是蛋白质之后,Sanger利用纸电泳及层析技术于1953年首次阐明胰岛素的一级结构,开创了蛋白质序列分析的先河。

而Kendrew和Perutz利用X射线衍射技术解析了肌红蛋白(myoglobin)及血红蛋白(hemoglobin)的三维结构,论证了这些蛋白质在输送分子氧过程中的特殊作用,成为研究生物大分子空间立体构型的先驱。

1910年,德国科学家Kossel第一个分离了腺嘌呤,胸腺嘧啶和组氨酸。

1959年,美国科学家Uchoa第一次合成了核糖核酸,实现了将基因内的遗传信息通过RNA翻译成蛋白质的过程。

同年,Kornberg实现了试管内细菌细胞中DNA的复制.1962年,Watson(美)和Crick(英)因为在1953年提出DNA的反向平行双螺旋模型而与Wilkins共获Noble生理医学奖,后者通过X射线衍射证实了Watson-Crick模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Watson和Crick所提出的脱氧核糖酸双螺旋 模型,为充分揭示遗传信息的传递规律铺平
了道路。
1953, Watson &
Crick 提出DNA的反向平 行双螺旋模型; Wilkins通过对 DNA分子的X射线 衍射研究证实了该 模型。
4
转基因羊 具有生长快、毛
质、肉质好、疾病少 及耐粗饲料等优点。
通过研究“基因敲 除”的小鼠将帮助研究 人类的癌症、糖尿病和 高血压等慢性疾病与遗 传的关系。
在猴子的未受精卵中加入 附加基因,并利用它成功培育 出健康活泼的小猴“安迪”。
通过对“安迪”的研究我 们可以简单地引进如老年性痴 呆病的基因、帕金森病基因等, 加快针对这类疾病疫苗的开发 研究。
Avery等人的工作树立了遗传学理论上全新的观点— —DNA是遗传信息的载体。
DNA也是病毒的遗传物质
美国冷泉港卡内基遗传学实验室科学家 Hershey 和 他 的 学 生 Chase 在 1952 年 从 事 噬 菌 体侵染细菌的实验。 噬菌体专门寄生在细菌体内,其头、尾外部都 是由蛋白质组成的外壳,头内主要是DNA。
2005 第五版
第一章 绪论
多少年来,人们反复提出的几个与一切生命 现象有关的问题: 1.生命是怎样起源的? 2.为什么“有其父必有其子”? 3.动、植物个体是怎样从一个受精卵发育而 来的?
1.1 引言
1.1.1 创世说与进化论
达尔文 1859年《物种起源》,确立了进化论的概念
分子进化论
1.1.2 细胞学说(1847)
早期生物学家的另一大贡献是提出了细胞理论。
德国 植物学家Schleiden 德国 动物学家Schwann
动植物的基本单元是细胞,这是细胞学说的核心。
1.1.3 经典的生物化学和遗传学
● 19世纪中叶,蛋白质(发现动植物细胞提取 液中主要是一些能受热或酸变性形成纤维状沉淀 的物质)
●19世纪中叶到20世纪初,组成蛋白质的20种基 本氨基酸被相继发现( 1935年,苏氨酸) ●著名生物化学家Fisher还论证了连接相邻氨基 酸的“肽键”的形成。
• 1959年,美国科学家Uchoa第一次合成了 核糖核酸,实现了将基因内的遗传信息通过 RNA翻译成蛋白质的过程。
• 1959年,Kornberg实现了试管内细菌细胞 中DNA的复制。
证明DNA就是遗传物质的 具有重要意义的实验
• Griffith(1928)及Avery(1944)等人关 于致病力强的光滑型(S型)肺炎链球菌 DNA导致致病力弱的粗糙型(R型)细菌 发生遗传转化的实验;
孟德尔的 遗传学规律 最先使人们对 性状遗传 产生了理性认识
Gregor Mendel (1822-1884). The Father of Genetics
在孟德尔遗传学的基础上,美国著名的遗传学家 Morgan又提出了基因学说。连锁遗传规律
摩尔根(T. H. Morgan, 1866-1945)
DNA是动物细胞的遗传物质
当DNA加入到某种在培养 基中培养的真核单细胞生 物群落中,核酸就会进入 到细胞中去,其中有一部 分就会合成出一些新的蛋 白质。 导入DNA的表达将使细胞 产生一些新的特性。
图. 胸腺嘧啶核苷激酶的合成
DNA到底是什么样的呢? Avery在1944年的报告中这样写道:当溶液中 酒精的体积达到9/10时,有纤维状物质析出;如 稍加搅动,这种物质便会像棉线绕在线轴上一样 绕在硬棒上,溶液中的其他成分则以颗粒状沉淀 留在下面。溶解纤维状物质并重复沉淀数次,可 提高其纯度。这一物质具有很强的生物学活性, 初步实验证实它很可能就是DNA。
15
• 孟德尔(奥地利)的遗传学规律最先使人们 对性状遗传产生了理性认识;
• Morgan(美)的基因学说则进一步将“性 状”与“基因”相耦联,成为分子遗传学的 奠基石。
1.1.4 DNA的发现与基因学说的创立
• 1910年,德国科学家Kossel第一个分离了 腺嘌呤,胸腺嘧啶和组氨酸, 获诺贝尔生理医 学奖。
现代分子生物学
课程基本要求
• 熟知核酸的基本生物化学特性; • 熟知生物信息的储存与表达过程; • 掌握DNA、RNA和蛋白质的基本代谢过程,特别
是基因的一般结构与生物功能,基因活性的修饰 与调节; • 掌握分子克隆与DNA重组的基本技术与原理,了 解现代分子生物学基本研究方法,了解基因治疗 与基因组学的新成果,新进展。
• Hershey和Chase(1952)关于DNA是遗 传物质的实验;
DNA是细菌的遗传物质.
DNA是细菌的遗传物质
• 解剖死鼠,发现有大量活的 S型细菌。他们推测,死细 菌中的某一成分——转化源 (transforming principle ) 将无致病力的细菌转化成病 原细菌。
• 10 年 后 的 实 验 表 明 , DNA 就 是 转 化 源 。 死 细 菌 DNA 指导了这一可遗传的转化, 从而导致了小鼠死亡。
此书被誉为分子物学的“圣经”
7
主要参考书
1. Genes VIII (IX). Benjamin Lewin 2. Molecular Biology of the Gene
James D. Watson, et al. 2004 第五版 3.《现代遗传学原理》
徐晋麟等,科学出版社,2001 4. Lehninger Principles of Biochemistry,
教材: 朱玉贤等,现代分子生物学 ,第四版
References: Sambrook J, et al. Molecular cloning-A Laboratory manual. 3rd ed. 2001, Cold Spring Harbor Laboratory Press Technology Press
分子生物学是生物学研究的一个分支
生物学:研究生命现象、生命本质、生命活动 及其规律的科学。
整体水平
细胞水平
分子水平
细胞生物学:从细胞水平理解生命活动 遗传学:从遗传角度理解生命活动 生物化学:从化学组成角度来理解生物大 分子和生物代谢。 普通生物学(动物&植物)& 微生物学: 不同生物类型的特点 分子生物学:从分子水平理解生命活动
相关文档
最新文档