钢梁稳定性计算步骤

合集下载

钢梁稳定性计算步骤之欧阳文创编

钢梁稳定性计算步骤之欧阳文创编

钢梁整体稳定性验算步骤1. 根据《钢结构设计规范》(GB 50017-2003)4.2.1条,判断是否可不计算梁的整体稳定性。

2. 如需要计算2.1 等截面焊接工字形和轧制H型钢简支梁1)根据表B.1注1,求ξ。

l1——H型钢或等截面工字形简支梁受压翼缘的自由长度,对跨中无侧向支承点的梁,l1为其跨度;对跨中有侧向支撑点的梁,l1为受压翼缘侧向支承点间的距离(梁的支座处视为有侧身支承)。

b1——截面宽度。

2)根据表B.1,求βb。

3)根据公式B.1-1注,求I1和I2,求αb。

如果αb>0.8,根据表B.1注6,调整βb。

4)根据公式B.1-1注,计算ηb。

5)根据公式B.1-1,计算φb。

6)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

7)根据公式4.2.2,验算稳定性。

2.2 轧制普通工字钢简支梁1)根据表B.2选取φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.3 轧制槽钢简支梁1)根据公式B.3,计算φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.4 双轴对称工字形等截面(含H型钢)悬臂梁1)根据表B.1注1,求ξ。

l1——悬臂梁的悬伸长度。

b1——截面宽度。

2)根据表B.4,求βb。

3)根据公式B.1-1,计算φb。

4)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

5)根据公式4.2.2,验算稳定性。

2.5 受弯构件整体稳定系数的近似计算(均匀弯曲,)2.5.1 工字形截面(含H型钢)双轴对称1)根据公式B.5-1,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b代替φb,当φb>1.0,取φb=1.0。

2)根据公式4.2.2,验算稳定性。

2.5.2 工字形截面(含H型钢)单轴对称1)根据公式B.5-2,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b代替φb,当φb>1.0,取φb=1.0。

钢梁稳定性计算步骤之欧阳家百创编

钢梁稳定性计算步骤之欧阳家百创编

钢梁整体稳定性验算步骤欧阳家百(2021.03.07)1. 根据《钢结构设计规范》(GB 50017-2003)4.2.1条,判断是否可不计算梁的整体稳定性。

2. 如需要计算2.1 等截面焊接工字形和轧制H型钢简支梁1)根据表B.1注1,求ξ。

l1——H型钢或等截面工字形简支梁受压翼缘的自由长度,对跨中无侧向支承点的梁,l1为其跨度;对跨中有侧向支撑点的梁,l1为受压翼缘侧向支承点间的距离(梁的支座处视为有侧身支承)。

b1——截面宽度。

2)根据表B.1,求βb。

3)根据公式B.1-1注,求I1和I2,求αb。

如果αb>0.8,根据表B.1注6,调整βb。

4)根据公式B.1-1注,计算ηb。

5)根据公式B.1-1,计算φb。

6)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

7)根据公式4.2.2,验算稳定性。

2.2 轧制普通工字钢简支梁1)根据表B.2选取φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.3 轧制槽钢简支梁1)根据公式B.3,计算φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.4 双轴对称工字形等截面(含H型钢)悬臂梁1)根据表B.1注1,求ξ。

l1——悬臂梁的悬伸长度。

b1——截面宽度。

2)根据表B.4,求βb。

3)根据公式B.1-1,计算φb。

4)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

5)根据公式4.2.2,验算稳定性。

2.5 受弯构件整体稳定系数的近似计算(均匀弯曲,)2.5.1 工字形截面(含H型钢)双轴对称1)根据公式B.5-1,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b代替φb,当φb>1.0,取φb=1.0。

2)根据公式4.2.2,验算稳定性。

2.5.2 工字形截面(含H型钢)单轴对称1)根据公式B.5-2,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b代替φb,当φb>1.0,取φb=1.0。

钢梁稳定性计算步骤之欧阳计创编

钢梁稳定性计算步骤之欧阳计创编

钢梁整体稳定性验算步骤1. 根据《钢结构设计规范》(GB 50017-2003)4.2.1条,判断是否可不计算梁的整体稳定性。

2. 如需要计算2.1 等截面焊接工字形和轧制H型钢简支梁1)根据表B.1注1,求ξ。

l1——H型钢或等截面工字形简支梁受压翼缘的自由长度,对跨中无侧向支承点的梁,l1为其跨度;对跨中有侧向支撑点的梁,l1为受压翼缘侧向支承点间的距离(梁的支座处视为有侧身支承)。

b1——截面宽度。

2)根据表B.1,求βb。

3)根据公式B.1-1注,求I1和I2,求αb。

如果αb>0.8,根据表B.1注6,调整βb。

4)根据公式B.1-1注,计算ηb。

5)根据公式B.1-1,计算φb。

6)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

7)根据公式4.2.2,验算稳定性。

2.2 轧制普通工字钢简支梁1)根据表B.2选取φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.3 轧制槽钢简支梁1)根据公式B.3,计算φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.4 双轴对称工字形等截面(含H型钢)悬臂梁1)根据表B.1注1,求ξ。

l1——悬臂梁的悬伸长度。

b1——截面宽度。

2)根据表B.4,求βb。

3)根据公式B.1-1,计算φb。

4)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

5)根据公式4.2.2,验算稳定性。

2.5 受弯构件整体稳定系数的近似计算(均匀弯曲,)2.5.1 工字形截面(含H型钢)双轴对称1)根据公式B.5-1,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b代替φb,当φb>1.0,取φb=1.0。

2)根据公式4.2.2,验算稳定性。

2.5.2 工字形截面(含H型钢)单轴对称1)根据公式B.5-2,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b代替φb,当φb>1.0,取φb=1.0。

钢梁稳定性计算步骤

钢梁稳定性计算步骤

钢梁整体稳定性验算步骤1)根据表注 1,求 ξ。

l t ξ = b 1 h11l ——H 型钢或等截面工字形简支梁受压翼缘的自由长度,对跨中无侧向支承点的梁, l 为其跨度;对跨中有侧向支撑点的梁, l 为受压翼缘侧向支承点间的距离(梁的支座处视为有侧身支承)。

b ——截面宽度。

2)根据表,求 βb 。

3)根据公式注,求 I 1 和 I 2 ,求 αb 。

如果 αb >,根据表注 6, 调整 βb 。

4)根据公式注,计算 ηb 。

5)根据公式,计算 φb 。

6)如果 φb >,根据公式,采用 φ’b 代替 φb 。

7)根据公式,验算稳定性。

1)根据表选取 φb 。

1 1112)如果 φb >,根据公式,采用 φ’b 代替 φb 。

3)根据公式,验算稳定性。

1)根据公式,计算 φb 。

2)如果 φb >,根据公式,采用 φ’b 代替 φb 。

3)根据公式,验算稳定性。

1)根据表注 1,求 ξ。

ξ = l 1b t 1h1l ——悬臂梁的悬伸长度。

b ——截面宽度。

2)根据表,求 βb 。

3)根据公式,计算 φb 。

4)如果 φb >,根据公式,采用 φ’b 代替 φb 。

5)根据公式,验算稳定性。

入 ≤120√235/fy1)根据公式,计算 φb ,当 φb >时,不必根据公式,采用 φ’b代替 φb ,当 φb >,取 φb =。

2)根据公式,验算稳定性。

y 111)根据公式,计算 φb ,当 φb >时,不必根据公式,采用 φ’b代替 φb ,当 φb >,取 φb =。

2)根据公式,验算稳定性。

1)根据公式,计算 φb ,当 φb >时,不必根据公式,采用 φ’b代替 φb 。

2)根据公式,验算稳定性。

1)根据公式,计算 φb ,当 φb >时,不必根据公式,采用 φ’b代替 φb 。

2)根据公式,验算稳定性。

√235/fy1)根据公式,计算 φb ,当 φb >时,不必根据公式,采用 φ’b代替 φb 。

钢梁稳定性计算步骤之欧阳科创编

钢梁稳定性计算步骤之欧阳科创编

钢梁整体稳定性验算步骤1. 根据《钢结构设计规范》(GB 50017-2003)4.2.1条,判断是否可不计算梁的整体稳定性。

2. 如需要计算2.1 等截面焊接工字形和轧制H型钢简支梁1)根据表B.1注1,求ξ。

l1——H型钢或等截面工字形简支梁受压翼缘的自由长度,对跨中无侧向支承点的梁,l1为其跨度;对跨中有侧向支撑点的梁,l1为受压翼缘侧向支承点间的距离(梁的支座处视为有侧身支承)。

b1——截面宽度。

2)根据表B.1,求βb。

3)根据公式B.1-1注,求I1和I2,求αb。

如果αb>0.8,根据表B.1注6,调整βb。

4)根据公式B.1-1注,计算ηb。

5)根据公式B.1-1,计算φb。

6)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

欧阳科创编7)根据公式4.2.2,验算稳定性。

2.2 轧制普通工字钢简支梁1)根据表B.2选取φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.3 轧制槽钢简支梁1)根据公式B.3,计算φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.4 双轴对称工字形等截面(含H型钢)悬臂梁1)根据表B.1注1,求ξ。

l1——悬臂梁的悬伸长度。

b1——截面宽度。

2)根据表B.4,求βb。

3)根据公式B.1-1,计算φb。

4)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

5)根据公式4.2.2,验算稳定性。

2.5 受弯构件整体稳定系数的近似计算(均匀弯曲,)2.5.1 工字形截面(含H型钢)双轴对称1)根据公式B.5-1,计算φb,当φb>0.6时,不必根据欧阳科创编公式B.1-2,采用φ’b代替φb,当φb>1.0,取φb=1.0。

2)根据公式4.2.2,验算稳定性。

2.5.2 工字形截面(含H型钢)单轴对称1)根据公式B.5-2,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b代替φb,当φb>1.0,取φb=1.0。

钢梁稳定性计算步骤之欧阳歌谷创编

钢梁稳定性计算步骤之欧阳歌谷创编

钢梁整体稳定性验算步骤欧阳歌谷(2021.02.01)1. 根据《钢结构设计规范》(GB 50017-2003)4.2.1条,判断是否可不计算梁的整体稳定性。

2. 如需要计算2.1 等截面焊接工字形和轧制H型钢简支梁1)根据表B.1注1,求ξ。

l1——H型钢或等截面工字形简支梁受压翼缘的自由长度,对跨中无侧向支承点的梁,l1为其跨度;对跨中有侧向支撑点的梁,l1为受压翼缘侧向支承点间的距离(梁的支座处视为有侧身支承)。

b1——截面宽度。

2)根据表B.1,求βb。

3)根据公式B.1-1注,求I1和I2,求αb。

如果αb>0.8,根据表B.1注6,调整βb。

4)根据公式B.1-1注,计算ηb。

5)根据公式B.1-1,计算φb。

6)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

7)根据公式4.2.2,验算稳定性。

2.2 轧制普通工字钢简支梁1)根据表B.2选取φb。

欧阳歌谷创编2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.3 轧制槽钢简支梁1)根据公式B.3,计算φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.4 双轴对称工字形等截面(含H型钢)悬臂梁1)根据表B.1注1,求ξ。

l1——悬臂梁的悬伸长度。

b1——截面宽度。

2)根据表B.4,求βb。

3)根据公式B.1-1,计算φb。

4)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

5)根据公式4.2.2,验算稳定性。

2.5 受弯构件整体稳定系数的近似计算(均匀弯曲,)2.5.1 工字形截面(含H型钢)双轴对称1)根据公式B.5-1,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b代替φb,当φb>1.0,取φb=1.0。

2)根据公式4.2.2,验算稳定性。

2.5.2 工字形截面(含H型钢)单轴对称1)根据公式B.5-2,计算φb,当φb>0.6时,不必根据公式欧阳歌谷创编B.1-2,采用φ’b代替φb,当φb>1.0,取φb=1.0。

钢梁稳定性计算步骤之欧阳美创编

钢梁稳定性计算步骤之欧阳美创编

钢梁整体稳定性验算步骤1. 根据《钢结构设计规范》(GB 50017-2003)4.2.1条,判断是否可不计算梁的整体稳定性。

2. 如需要计算2.1 等截面焊接工字形和轧制H型钢简支梁1)根据表B.1注1,求ξ。

l1——H型钢或等截面工字形简支梁受压翼缘的自由长度,对跨中无侧向支承点的梁,l1为其跨度;对跨中有侧向支撑点的梁,l1为受压翼缘侧向支承点间的距离(梁的支座处视为有侧身支承)。

b1——截面宽度。

2)根据表B.1,求βb。

3)根据公式B.1-1注,求I1和I2,求αb。

如果αb>0.8,根据表B.1注6,调整βb。

4)根据公式B.1-1注,计算ηb。

5)根据公式B.1-1,计算φb。

6)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

7)根据公式4.2.2,验算稳定性。

2.2 轧制普通工字钢简支梁欧阳美创编2021.01.01 欧阳美创编1)根据表B.2选取φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.3 轧制槽钢简支梁1)根据公式B.3,计算φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.4 双轴对称工字形等截面(含H型钢)悬臂梁1)根据表B.1注1,求ξ。

l1——悬臂梁的悬伸长度。

b1——截面宽度。

2)根据表B.4,求βb。

3)根据公式B.1-1,计算φb。

4)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

5)根据公式4.2.2,验算稳定性。

2.5 受弯构件整体稳定系数的近似计算(均匀弯曲,)2.5.1 工字形截面(含H型钢)双轴对称1)根据公式B.5-1,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b代替φb,当φb>1.0,取φb=1.0。

2)根据公式4.2.2,验算稳定性。

欧阳美创编2021.01.01 欧阳美创编2.5.2 工字形截面(含H型钢)单轴对称1)根据公式B.5-2,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b代替φb,当φb>1.0,取φb=1.0。

钢梁稳定性计算步骤

钢梁稳定性计算步骤

钢梁稳定性计算步骤 Final revision by standardization team on December 10, 2020.钢梁整体稳定性验算步骤1.根据《钢结构设计规范》(GB50017-2003)4.2.1条,判断是否可不计算梁的整体稳定性。

2.如需要计算2.1等截面焊接工字形和轧制H型钢简支梁1)根据表B.1注1,求ξ。

ξ=l1t1 b1hl1——H型钢或等截面工字形简支梁受压翼缘的自由长度,对跨中无侧向支承点的梁,l1为其跨度;对跨中有侧向支撑点的梁,l1为受压翼缘侧向支承点间的距离(梁的支座处视为有侧身支承)。

b1——截面宽度。

2)根据表B.1,求βb。

3)根据公式B.1-1注,求I1和I2,求αb。

如果αb>0.8,根据表B.1注6,调整βb。

4)根据公式B.1-1注,计算ηb。

5)根据公式B.1-1,计算φb。

6)如果φb >0.6,根据公式B.1-2,采用φ’b代替φb。

7)根据公式4.2.2,验算稳定性。

2.2轧制普通工字钢简支梁1)根据表B.2选取φb。

2)如果φb >0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.3轧制槽钢简支梁1)根据公式B.3,计算φb。

2)如果φb >0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.4双轴对称工字形等截面(含H型钢)悬臂梁1)根据表B.1注1,求ξ。

ξ=l1t1 b1hl1——悬臂梁的悬伸长度。

b1——截面宽度。

2)根据表B.4,求βb。

3)根据公式B.1-1,计算φb。

4)如果φb >0.6,根据公式B.1-2,采用φ’b代替φb。

5)根据公式4.2.2,验算稳定性。

2.5受弯构件整体稳定系数的近似计算(均匀弯曲,λλ≤λλλ√λλλλλ⁄)2.5.1工字形截面(含H型钢)双轴对称1)根据公式B.5-1,计算φb ,当φb>0.6时,不必根据公式B.1-2,采用φ’b 代替φb,当φb>1.0,取φb=1.0。

钢梁稳定性计算步骤之欧阳学创编

钢梁稳定性计算步骤之欧阳学创编

钢梁整体稳定性验算步骤1. 根据《钢结构设计规范》(GB 50017-2003)4.2.1条,判断是否可不计算梁的整体稳定性。

2. 如需要计算2.1 等截面焊接工字形和轧制H型钢简支梁1)根据表B.1注1,求ξ。

l1——H型钢或等截面工字形简支梁受压翼缘的自由长度,对跨中无侧向支承点的梁,l1为其跨度;对跨中有侧向支撑点的梁,l1为受压翼缘侧向支承点间的距离(梁的支座处视为有侧身支承)。

b1——截面宽度。

2)根据表B.1,求βb。

3)根据公式B.1-1注,求I1和I2,求αb。

如果αb>0.8,根据表B.1注6,调整βb。

4)根据公式B.1-1注,计算ηb。

5)根据公式B.1-1,计算φb。

6)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

7)根据公式4.2.2,验算稳定性。

2.2 轧制普通工字钢简支梁1)根据表B.2选取φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.3 轧制槽钢简支梁1)根据公式B.3,计算φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.4 双轴对称工字形等截面(含H型钢)悬臂梁1)根据表B.1注1,求ξ。

l1——悬臂梁的悬伸长度。

b1——截面宽度。

2)根据表B.4,求βb。

3)根据公式B.1-1,计算φb。

4)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

5)根据公式4.2.2,验算稳定性。

2.5 受弯构件整体稳定系数的近似计算(均匀弯曲,)2.5.1 工字形截面(含H型钢)双轴对称1)根据公式B.5-1,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b代替φb,当φb>1.0,取φb=1.0。

2)根据公式4.2.2,验算稳定性。

2.5.2 工字形截面(含H型钢)单轴对称1)根据公式B.5-2,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b代替φb,当φb>1.0,取φb=1.0。

钢梁稳定性计算步骤之欧阳与创编

钢梁稳定性计算步骤之欧阳与创编

钢梁整体稳定性验算步骤1. 根据《钢结构设计规范》(GB 50017-2003)4.2.1条,判断是否可不计算梁的整体稳定性。

2. 如需要计算2.1 等截面焊接工字形和轧制H型钢简支梁1)根据表B.1注1,求ξ。

l1——H型钢或等截面工字形简支梁受压翼缘的自由长度,对跨中无侧向支承点的梁,l1为其跨度;对跨中有侧向支撑点的梁,l1为受压翼缘侧向支承点间的距离(梁的支座处视为有侧身支承)。

b1——截面宽度。

2)根据表B.1,求βb。

3)根据公式B.1-1注,求I1和I2,求αb。

如果αb>0.8,根据表B.1注6,调整βb。

4)根据公式B.1-1注,计算ηb。

5)根据公式B.1-1,计算φb。

6)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

7)根据公式4.2.2,验算稳定性。

欧阳与创编2.2 轧制普通工字钢简支梁1)根据表B.2选取φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.3 轧制槽钢简支梁1)根据公式B.3,计算φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.4 双轴对称工字形等截面(含H型钢)悬臂梁1)根据表B.1注1,求ξ。

l1——悬臂梁的悬伸长度。

b1——截面宽度。

2)根据表B.4,求βb。

3)根据公式B.1-1,计算φb。

4)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

5)根据公式4.2.2,验算稳定性。

2.5 受弯构件整体稳定系数的近似计算(均匀弯曲,)2.5.1 工字形截面(含H型钢)双轴对称1)根据公式B.5-1,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b代替φb,当φb>1.0,取φb=1.0。

欧阳与创编2)根据公式4.2.2,验算稳定性。

2.5.2 工字形截面(含H型钢)单轴对称1)根据公式B.5-2,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b代替φb,当φb>1.0,取φb=1.0。

钢梁稳定性计算步骤

钢梁稳定性计算步骤

钢梁稳定性计算步骤标准化工作室编码[XX968T-XX89628-XJ668-XT689N]钢梁整体稳定性验算步骤1.根据《钢结构设计规范》(GB50017-2003)4.2.1条,判断是否可不计算梁的整体稳定性。

2.如需要计算2.1等截面焊接工字形和轧制H型钢简支梁1)根据表B.1注1,求ξ。

ξ=l1t1 b1hl1——H型钢或等截面工字形简支梁受压翼缘的自由长度,对跨中无侧向支承点的梁,l1为其跨度;对跨中有侧向支撑点的梁,l1为受压翼缘侧向支承点间的距离(梁的支座处视为有侧身支承)。

b1——截面宽度。

2)根据表B.1,求βb。

3)根据公式B.1-1注,求I1和I2,求αb。

如果αb>0.8,根据表B.1注6,调整βb。

4)根据公式B.1-1注,计算ηb。

5)根据公式B.1-1,计算φb。

6)如果φb >0.6,根据公式B.1-2,采用φ’b代替φb。

7)根据公式4.2.2,验算稳定性。

2.2轧制普通工字钢简支梁1)根据表B.2选取φb。

2)如果φb >0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.3轧制槽钢简支梁1)根据公式B.3,计算φb。

2)如果φb >0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.4双轴对称工字形等截面(含H型钢)悬臂梁1)根据表B.1注1,求ξ。

ξ=l1t1 b1hl1——悬臂梁的悬伸长度。

b1——截面宽度。

2)根据表B.4,求βb。

3)根据公式B.1-1,计算φb。

4)如果φb >0.6,根据公式B.1-2,采用φ’b代替φb。

5)根据公式4.2.2,验算稳定性。

2.5受弯构件整体稳定系数的近似计算(均匀弯曲,λλ≤λλλ√λλλλλ⁄)2.5.1工字形截面(含H型钢)双轴对称1)根据公式B.5-1,计算φb ,当φb>0.6时,不必根据公式B.1-2,采用φ’b 代替φb,当φb>1.0,取φb=1.0。

钢梁稳定性计算

钢梁稳定性计算

钢梁整体稳定的计算要求和公式
单向受弯钢梁整体稳定计算公式:
/()x b x M W f ϕ≤
双向受弯工形截面钢梁整体稳定计算公式:
/()/()x b x y y y M W M W f ϕγ+≤
以上两式中:
M x 、M y ——绕强轴(x 轴)、弱轴(y 轴)作用的弯矩;
W x 、W y ——按受压纤维确定的对x 轴、y 轴的毛截面抵抗矩; φb ——绕强轴弯曲所确定的厂休稳定系数,计算见下节;
γy ——对弱轴的截面塑性发展系数,查下表1。

表1 截面塑性发展系数γx 、γy 值
规范规定符合下列情况之一的钢梁可不计算其整体稳定性:
(1) 有面板(各种钢筋混泥土板和钢板)密铺在梁的受压翼缘上与其牢固相连,能阻止梁受压翼缘的侧向位移时。

(2) 工形截面简支梁受压翼缘的自由长度l 1与其宽度b 1不超过下列数值时: 跨中无侧向支承点,荷载作用在上翼缘:
跨中无侧向支承点,荷载作用在下翼缘:
跨中有侧向支承点:
(3)箱形截面(图1)简支梁的截面高宽比h/b≤6且l1/b0≤95(235/f y)时。

当采用箱形截面时,这一点很容易满足。

钢梁稳定性计算

钢梁稳定性计算

钢梁整体稳定的计算要求和公式
单向受弯钢梁整体稳定计算公式:
/()x b x M W f ϕ≤
双向受弯工形截面钢梁整体稳定计算公式:
/()/()x b x y y y M W M W f ϕγ+≤
以上两式中:
M x 、M y ——绕强轴(x 轴)、弱轴(y 轴)作用的弯矩;
W x 、W y ——按受压纤维确定的对x 轴、y 轴的毛截面抵抗矩; φb ——绕强轴弯曲所确定的厂休稳定系数,计算见下节;
γy ——对弱轴的截面塑性发展系数,查下表1。

表1 截面塑性发展系数γx 、γy 值
规范规定符合下列情况之一的钢梁可不计算其整体稳定性:
(1) 有面板(各种钢筋混泥土板和钢板)密铺在梁的受压翼缘上与其牢固相连,能阻止梁受压翼缘的侧向位移时。

(2) 工形截面简支梁受压翼缘的自由长度l 1与其宽度b 1不超过下列数值时: 跨中无侧向支承点,荷载作用在上翼缘:
跨中无侧向支承点,荷载作用在下翼缘:
跨中有侧向支承点:
(3)箱形截面(图1)简支梁的截面高宽比h/b≤6且l1/b0≤95(235/f y)时。

当采用箱形截面时,这一点很容易满足。

钢梁稳定性计算步骤之欧阳音创编

钢梁稳定性计算步骤之欧阳音创编

钢梁整体稳定性验算步骤1. 根据《钢结构设计规范》(GB 50017-2003)4.2.1条,判断是否可不计算梁的整体稳定性。

2. 如需要计算2.1 等截面焊接工字形和轧制H型钢简支梁1)根据表B.1注1,求ξ。

l1——H型钢或等截面工字形简支梁受压翼缘的自由长度,对跨中无侧向支承点的梁,l1为其跨度;对跨中有侧向支撑点的梁,l1为受压翼缘侧向支承点间的距离(梁的支座处视为有侧身支承)。

b1——截面宽度。

2)根据表B.1,求βb。

3)根据公式B.1-1注,求I1和I2,求αb。

如果αb>0.8,根据表B.1注6,调整βb。

4)根据公式B.1-1注,计算ηb。

5)根据公式B.1-1,计算φb。

欧阳音创编2021.03.116)如果φb>0.6,根据公式B.1-2,采用φ’b 代替φb。

7)根据公式4.2.2,验算稳定性。

2.2 轧制普通工字钢简支梁1)根据表B.2选取φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b 代替φb。

3)根据公式4.2.2,验算稳定性。

2.3 轧制槽钢简支梁1)根据公式B.3,计算φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b 代替φb。

3)根据公式4.2.2,验算稳定性。

2.4 双轴对称工字形等截面(含H型钢)悬臂梁1)根据表B.1注1,求ξ。

l1——悬臂梁的悬伸长度。

b1——截面宽度。

2)根据表B.4,求βb。

3)根据公式B.1-1,计算φb。

4)如果φb>0.6,根据公式B.1-2,采用φ’b欧阳音创编2021.03.11代替φb。

5)根据公式4.2.2,验算稳定性。

2.5 受弯构件整体稳定系数的近似计算(均匀弯曲,)2.5.1 工字形截面(含H型钢)双轴对称1)根据公式B.5-1,计算φb,当φb>0.6时,不必根据公式 B.1-2,采用φ’b代替φb,当φb>1.0,取φb=1.0。

2)根据公式4.2.2,验算稳定性。

钢梁稳定性计算步骤之欧阳语创编

钢梁稳定性计算步骤之欧阳语创编

钢梁整体稳定性验算步骤1. 根据《钢结构设计规范》(GB 50017-2003)4.2.1条,判断是否可不计算梁的整体稳定性。

2. 如需要计算2.1 等截面焊接工字形和轧制H型钢简支梁1)根据表B.1注1,求ξ。

l1——H型钢或等截面工字形简支梁受压翼缘的自由长度,对跨中无侧向支承点的梁,l1为其跨度;对跨中有侧向支撑点的梁,l1为受压翼缘侧向支承点间的距离(梁的支座处视为有侧身支承)。

b1——截面宽度。

2)根据表B.1,求βb。

3)根据公式B.1-1注,求I1和I2,求αb。

如果αb>0.8,根据表B.1注6,调整βb。

4)根据公式B.1-1注,计算ηb。

5)根据公式B.1-1,计算φb。

6)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

7)根据公式4.2.2,验算稳定性。

2.2 轧制普通工字钢简支梁1)根据表B.2选取φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.3 轧制槽钢简支梁1)根据公式B.3,计算φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.4 双轴对称工字形等截面(含H型钢)悬臂梁1)根据表B.1注1,求ξ。

l1——悬臂梁的悬伸长度。

b1——截面宽度。

2)根据表B.4,求βb。

3)根据公式B.1-1,计算φb。

4)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

5)根据公式4.2.2,验算稳定性。

2.5 受弯构件整体稳定系数的近似计算(均匀弯曲,)2.5.1 工字形截面(含H型钢)双轴对称1)根据公式B.5-1,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b代替φb,当φb>1.0,取φb=1.0。

2)根据公式4.2.2,验算稳定性。

2.5.2 工字形截面(含H型钢)单轴对称1)根据公式B.5-2,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b代替φb,当φb>1.0,取φb=1.0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢梁整体稳定性验算步骤
1.根据《钢结构设计规范》(GB50017-2003)4.
2.1条,判断是否可不计算梁的整体稳定性。

2.如需要计算
2.1等截面焊接工字形和轧制H型钢简支梁
1)根据表B.1注1,求ξ。

ξ
l1——H型钢或等截面工字形简支梁受压翼缘的自由长度,对跨中无侧向支承点的梁,l1为其跨度;对跨中有侧向支撑点的梁,l1为受压翼缘侧向支承点间的距离(梁的支座处视为有侧身支承)。

b1——截面宽度。

2)根据表B.1,求βb。

3)根据公式B.1-1注,求I1和I2,求αb。

如果αb>0.8,根据表B.1注6,调整βb。

4)根据公式B.1-1注,计算ηb。

5)根据公式B.1-1,计算φb。

6)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

7)根据公式4.2.2,验算稳定性。

2.2轧制普通工字钢简支梁
1)根据表B.2选取φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.3轧制槽钢简支梁
1)根据公式B.3,计算φb。

2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

3)根据公式4.2.2,验算稳定性。

2.4双轴对称工字形等截面(含H型钢)悬臂梁
1)根据表B.1注1,求ξ。

ξ
l1——悬臂梁的悬伸长度。

b1——截面宽度。

2)根据表B.4,求βb。

3)根据公式B.1-1,计算φb。

4)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。

5)根据公式4.2.2,验算稳定性。

2.5受弯构件整体稳定系数的近似计算(均匀弯曲,

2.5.1工字形截面(含H型钢)双轴对称
1)根据公式B.5-1,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b代替φb,当φb>1.0,取φb=1.0。

2)根据公式4.2.2,验算稳定性。

2.5.2工字形截面(含H型钢)单轴对称
1)根据公式B.5-2,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b代替φb,当φb>1.0,取φb=1.0。

2)根据公式4.2.2,验算稳定性。

2.5.3T型截面(弯矩作用在对称轴平面,绕x轴),翼缘受压,双角钢T形截面
1)根据公式B.5-3,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b代替φb。

2)根据公式4.2.2,验算稳定性。

2.5.4T型截面(弯矩作用在对称轴平面,绕x轴),翼缘受压,部分T型钢和两板组合T形截面
1)根据公式B.5-4,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b代替φb。

2)根据公式4.2.2,验算稳定性。

2.5.5T型截面(弯矩作用在对称轴平面,绕x轴),弯矩使翼缘受拉且腹板宽厚比不大于
1)根据公式B.5-5,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b代替φb。

2)根据公式4.2.2,验算稳定性。

钢梁局部稳定性验算步骤
1.根据《钢结构设计规范》(GB50017-2003)4.3.1条,判断钢梁是否需要配置加劲肋,以及是否需要计算配置加劲肋后腹板的稳定性。

2.如需要配置加劲肋,根据4.
3.2条,判断加劲肋的布置形式。

3.如需要计算腹板稳定性
3.1仅配置横向加劲肋的腹板
1)根据式或式,计算“用于腹板受弯计算时的通用高厚比λb”;
2)根据式、式或式,计算σcr;
3)根据式或式,计算λs;
4)根据式、式或式,计算τcr;
5)根据式或式,计算λc;
6)根据式、式或式,计算σc,cr;
7)根据式,计算各区格的局部稳定性。

3.2同时用横向加劲肋和纵向加劲肋加强的腹板
3.2.1受压翼缘与纵向加劲肋之间的区格
1)根据式或式,计算λb1;
2)根据式、式或式,计算σcr1;
3)根据式或式,计算λs1,其中h0要换成h1,h1是纵向加劲肋至腹板计算高度受压边缘的距离;
4)根据式、式或式,计算τcr1;
5)根据式或式,计算λc1;
6)根据式、式或式,计算σc,cr1;
7)根据式,计算受压翼缘与纵向加劲肋之间区格的局部稳定性。

3.2.2受拉翼缘与纵向加劲肋之间的区格
1)根据式,计算λb2;
2)根据式、式或式,计算σcr2。

3)根据式或式,计算λs2,其中h0要换成h2,h2=h0-h1;
4)根据式、或,计算τcr2;
5)根据式或式,计算λc2,其中h0要换成h2,当a/h2>2时,取a/h2=2;
6)根据式4a、式4b或式4c,计算σc,cr2。

7)根据式计算受拉翼缘与纵向加劲肋区格的稳定性。

3.2.3在受压翼缘与纵向加劲肋之间设有短加劲肋的区格
1)根据式或,计算λb1;
2)根据式、式或式,计算σcr1;
3)根据式或式,计算λs1;
4)根据式、或,计算τcr1,其中将a要换成a1,a1为短加劲肋间距;
5)根据式或式计算λc1;
6)根据式、式或式计算σc,cr1;
7)根据式计算在受压翼缘与纵向加劲肋之间设有短加劲肋区格的稳定性。

相关文档
最新文档