高斯平面直角坐标与大地坐标转换

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高斯平面直角坐标与大地坐标转换

高斯平面直角坐标系与大地坐标系

1 高斯投影坐标正算公式

(1)高斯投影正算:已知椭球面上某点的大地坐标()B L ,,求该点在高斯投影平面上的直角坐标()y x ,,即()),(,y x B L ?的坐标变换。(2)投影变换必须满足的条件

中央子午线投影后为直线;中央子午线投影后长度不变;投影具有正形性质,即正形投影条件。(3)投影过程

在椭球面上有对称于中央子午线的两点1P 和2P ,它们的大地坐标分别为(B L ,)及(B l ,),式中l 为椭球面上P 点的经度与中央子午线)(0L 的经度差:0L L l -=, P 点在中央子午线之东, l 为正,在西则为负,则投影后的平面坐标一定为),(1y x P '和),(2y x P -'。

(4)计算公式

''+-''+''+-''+''''=''+-''+''''+

=54255

32234

22342

2)185(cos 120)1(6cos )95(cos sin 2sin 2l t t B N l t B N l B N y l t B B N l B N X x ρηρρηρρ

当要求转换精度精确至时,用下式计算:

''-++-'

'+''+-'

'+''''=''+-''+''++-''+''''+

=52224255

32233

64256

44223422)5814185(cos 720)1(cos 6cos )5861(cos sin 720)495(cos sin 24sin 2l t t t B N

l t B N l B N y l t t B B N

l t B B N

l B N X x ηηρηρρρηηρρ

2 高斯投影坐标反算公式

(1)高斯投影反算:已知某点的高斯投影平面上直角坐标()y x ,,求该点在椭球面上的大

地坐标()B L ,,即()),(,B L y x ?的坐标变换。(2)投影变换必须满足的条件

x 坐标轴投影成中央子午线,是投影的对称轴; x 轴上的长度投影保持不变;

投影具有正形性质,即正形投影条件。(3)投影过程

根据x 计算纵坐标在椭球面上的投影的底点纬度f B ,接着按f B 计算(B B f -)及经差l ,最后得到)(B B B B f f --=、l L L +=0。

(4)计算公式

+++++++-=++--+++

-

=5

22242532236

425

4222332)8624285(cos 1201)21(cos 61cos 1)459061(720)935(242y t t t B N y t B N y B N l y t t N M t y t t N M t y N M t B B f f f f f f f f f f

f f f f f f f f

f

f f f f f f

f f f

f ηηηηη

当要求转换精度至10.0''时,可简化为下式:

+++++-=-+++

-

=5

4253

223

4

222232)24285(cos 1201)21(cos 61cos 1)935(242y t t B N y t B N y B N l y t t N M t y N M t B B f

f f f f f f

f f f f

f f f f f f

f f f

f ηηη

3 高斯投影相邻带的坐标换算

(1)产生换带的原因

高斯投影为了限制高斯投影的长度变形,以中央子午线进行分带,把投影范围限制在中

央子午线东、西两侧一定的范围内。因而,使得统一的坐标系分割成各带的独立坐标系。在工程应用中,往往要用到相邻带中的点坐标,有时工程测量中要求采用ο3带、ο5.1带或任意

带,而国家控制点通常只有ο6带坐标,这时就产生了ο6带同ο3带(或ο5.1带、任意带)之间的相互坐标换算问题,如图所示:

(2)应用高斯投影正、反算公式间接进行换带计算

计算过程

把椭球面上的大地坐标作为过渡坐标。首先把某投影带(比如Ⅰ带)内有关点的平面坐标I ),(y x ,利用高斯投影反算公式换算成椭球面上的大地坐标),(B l ,进而得到l L L +=I 0;然后再由大地坐标),(l B ,利用投影正算公式换算成相邻带的(第Ⅱ带)的平面坐标II ),(y x 。

在这一步计算时,要根据第Ⅱ带的中央子午线II 0L 来计算经差l ,亦即此时II

0L L l -=。

算例

在中央子午线ο123I 0=L 的Ⅰ带中,有某一点的平面直角坐标m 726.57283741=x ,

m 193.2101981+=y ,现要求计算该点在中央子午线ο129II 0=L 的第Ⅱ带的平面直角坐标。

计算步骤①.

根据1x ,1y 利用高斯反算公计算换算1B ,1L ,得到4902.4383511'''=οB ,

2136.13201261'''=οL 。

②.

采用已求得的1B ,1L ,并顾及到第Ⅱ带的中央子午线ο

129II 0=L ,求得

486.46752'''-=οl ,利用高斯正算公式计算第Ⅱ带的直角坐标II x ,II y

③.为了检核计算的正确性,要求每步都应进行往返计算

4 子午线收敛角公式

(1)子午线收敛角的概念

如图所示,p '、N p ''及Q p ''分别为椭球面p 点、过p 点的子午线pN 及平行圈pQ 在高斯平面上的描写。由图可知,所谓点p '子午线收敛角就是N p ''在p '上的切线 n p ''与t p ''坐标北之间的夹角,用γ表示。在椭球面上,因为子午线同平行圈正交,又由于

相关文档
最新文档