阀门定位器部分

阀门定位器部分
阀门定位器部分

仪表专业知识调节阀部分试题(三)

阀门定位器部分

一、填空题

1、阀门定位器是气动调节阀的辅助设备,包括电气阀门定位器和气动阀门定位器,用于改善调节阀工作特性,实现正确定位。

2、为了保证从调节器来的控制信号与调节阀的行程位置相联系,提高调节特性的品质,必须利用阀门定位器。

3、阀门定位器是基于力平衡原理工作的。

4、定位器和调节阀连接的反馈杆脱落失去反馈时,成了高放大倍数气动放大器。如果定位器是正作用的,输出跑到最大,如果是反作用的,则输出跑到零。

5、气动调节阀主要由以下辅助装置构成:①定位器;②减压阀;③储气罐;④手轮机构;⑤阀位开关;⑥气动保位阀;⑦电磁阀;⑧气动继动器等组成。

二、判断题

1、安装阀门定位器的重要作用是可以用于消除执行器薄膜和弹簧的不稳定性,以及各可动部分的干摩擦察影响,从而提高调节阀的精确定位和可靠性。(对)

2、利用阀门定位器不能实现分程控制。(错)

3、某技术人员将气动反作用执行机构订货时误订为正作用执行机构,则最简单的执行处理方法是重新配置气动机构组件。(错)

4、定位器利用闭环原理,将输出量阀位反馈回来与输入量比较,即阀位信号直接与信号比较。(对)

三、选择题

1、( A、B、C、D、E、F、G )情况下需要用阀门定位器。

A、摩察力大,需要精确定位的场合。

B、缓慢过程需要提高调节阀响应速度的场合。

C、需要提高执行机构输出力和切断能力的场合。

D、分程调节的场合。

E、需要改变调节阀流量特性的场合。

F、调节器比例带很宽但又要求阀对小信号有影响。

G、无弹簧的执行机构调节阀。

2、下面的叙述中,正确的是(B )。

A、阀门定位器的输出信号大小与输入信号大小成正比。

B、阀杆的行程与阀门定位器的输入信号大小成正比。

C、阀杆的行程与阀门定位器的输出信号大小成正比。

3、生产现场有一台气动阀门定位器,表现为有输入信号无输出压力,你认为造成的主要原因有( B、C )。

A、阀内件卡涩等故障。

B、放大器故障。

C、喷嘴挡板污垢。

4、一般来讲,气动阀门定位器的线性不好的原因有(A )。

A、喷嘴挡板平衡度不好。

B、仪表人员未调校好。

5、有一台电器阀门定位器,表现为有输入电流信号,但执行机构不动作,你认为原因有(A、B、C )。

A、力矩转换线圈断线。

B、气压力不符合要求。

C、连接错误。

6、一台气动阀门定位器的回程误差大,通常有以下原因(A、B)。

A、应该紧固的部件有松动。

B、滑动件摩察力大。

C、喷嘴挡板组装不良。

四、简答题

1、阀们定位器的作用有那些?

答:

A.改善调节阀的静态特性,提高阀门位置的线性度.

B.改善调节阀的动态特性,减少调节信号的的传递滞后性.

C.改变调节阀的流量特性

D.改变调节阀对信号的影响范围,实现分程控制

E.使阀门动作反向

2、一台气动调节阀,若阀杆在全行程的50%位置,则通过阀的流量是否也在最大流量的50%?

答;不一定.要看阀的特性,在阀两端压差恒定的情况下,如是快开阀,则流量大于50%,如是直线阀则等于50%;对数阀则小于50%

2004年7月12日

数字式电气阀门定位器简介及技术比较

数字式电气阀门定位器简介及技术比较 1阀门定位器 阀门定位器是控制阀的重要附属装置,实质上是一个定值控制的闭合回路,它与气动执行器配套使用,可以改善控制阀的静态特性和动态特性、克服阀杆的摩擦力和消除不平衡力的影响,实现控制阀根据控制信号的准确定位,最终保证控制系统及工业过程有效运行。阀门定位器适用于:· 摩擦力大,需要精确定位的场合;· 缓慢过程需要提高控制阀响应速度的场 合;· 需要提高执行机构输出力和切断能力的场合;· 分程控制和控制阀运行中有时需要改变正反作用形式的场合· 需要改变控制阀流量特性的场合;· 高压差的场合 按照阀门定位器设计结构和工作原理可分类为: 1.气动阀门定位器2.电气阀门定位器3. 数字式电气阀门定位器(也称为智能电气阀门定位器smart positioner )数字式电气阀门 定位器是采用微处理技术和功能模块的新一代高性能电气阀门定位器,具有自校准自适应自诊断功能和免维护运行,也分带通信类型(HART 、Profibus-PA 、FF)和不 带通信类型。 阀门定位器的生产厂商很多,系列/型号繁杂,但能提供高性能数字式电气阀门定位器的还不多,目前主要有:samson的378x型373x系列、Fisher的 DVC2000/DVC5000/DVC6000 、Foxboro-Eckardt 的SRD960/991、Siemens的SIPART PS2、Masoneilan 的SNI II 、ABB(H&B )的TZID-C 、Metso Neles 的ND9000 、Yamatake 的SVP3000 、Yokogawa 的FVP 、Keystone 的EPP100/200、Burkert 的8635/1067 、等等,部分厂商的数字式电气阀门定位器外观见图1。 2S AMSON 阀门定位器德国SAMSON 公司是1907 年成立的全球知名控制阀及控制设备专业制造商,设计生产有品种齐全的控制阀及控制仪表,同时生产高性能的全系列阀门定位器。1952 年生产出欧洲第一台气动阀门定位器,1989 年推出数字式电气阀门定位器,目前更是全球数字式电气阀门定位器的领军厂商。Samson 设计生产的全系列阀门定位器有:(1)数字式电气阀门定位器· 4~20mA 不带通信 3730-1 型,微处理器、LCD 显示和单键式操作,符合IEC 65108/SIL 4 ;

定位器部分解析

第四节智能阀门定位器 随着工业技术和计算机技术的发展,阀门定位器从最初的气动挡板力平衡式、线圈力平衡式、电气集成力平衡式阀门定位器,发展到加入微控制器的智能型电气阀门定位器,并向全数字化和使用现场总线技术方向发展。在实际工业控制工程中,生产对流量控制方面的要求越来越高,不但要求控制精度高、响应速度快,同时要求控制方式上多样化,这就对阀门定位器的性能提出了更高要求。 目前,智能型电气阀门定位器已经越来越广泛地应用在各种工业控制领域并发挥着重要的作用。例如,如美国Fisher - Rosemount 公司生产的基于现场总线式DVC 系列阀门定位器系统,德国Siemens 公司生产的SIPART PS2系列阀门定位器等,依靠各自的特色和稳定可靠的性能,已经被广泛应用于各大炼化企业中,成为生产过程控制中的重要组成部分。 在本书将以山武公司YAMATAKE SVP3000、ABB公司的TZID-C 、Siemens公司SIPART PS2系列及Fisher - Rosemount 公司的DVC6000系列智能阀门定位器为例,介绍一下智能阀门定位器的调校及故障处理。 首先我们要了解一下智能阀门定位器的结构及原理。 每种定位器在设计上都有它自己的独到之处,但在其基本原理上还是大致相同,只是在放大器的结构上采用了不同处理方法,有普通式、三位式和压电阀式等几种。而且有很多厂商在双输出调节时采用外接辅助放大器来实现的。 其基本原理如下:外部条件应具备4—20mA的信号源与可以驱动调节的气源,接通气源将减压阀压力调整为调节阀额定压力并给定>4mA的控制信号驱动定位器的电路模块及微处理器。假设给定信号值为8mA,电信号通过A/D转换模块将模拟信号装换为数字信号给微处理器将驱动EPM(电气转换)驱动模块控制EPM模块再将气信号给气动放大器那么定位器产生气输出,调节阀动作同时带动定位器的反馈杆动作通过VTD(位置传感器)将位移转换成4—20mA的电信号给A/D转换器由微处理器进行比较处理,当给定值=控制量的时候调节阀也就稳定下来。那么微处理器的给定值 (比较值)来至初始化以后,针对不同行程的调节阀和不同的反馈杆安装位置它都会产生相应的值。在这里要说明的是VTD位置传感器的动作是靠反馈杆上的大齿轮带动传感器上的小齿轮,位置传感器转角并不是360°。在最大值和最小值工作区间以外有一个小的缺口也就是定位器的盲区。所以每款定位器都有它自己的转角要求。 智能定位器原理图:

ABB定位器和FISHER阀门定位器调试步骤与方法

ABB定位器和FISHER阀门定位器 调试步骤与方法 一、ABB定位器 调试步骤: 1、定位器面板设置: 2、内部接线(4根)反馈和指令线。

3、调试前的重要参数切换方式: (1)切换就地、远方。按住MODE键不要松开,再点击↑↓键可以进行切换。 (2)用(1) 的方式进入1.1(远方控制)1.2(就地控制) (3)若要实现快开,则先按住↑键再按键↓键;实现快关,则先按住↓键再按住↑键,方可完成操作。 (4)用 (1)的方式进入1.3,出现单词SENS-POS,其意思是显示调节定位器后连杆与后旋钮弧度保持在对称的范围内。 4、调试步骤 (1) P1.0:将↑↓键同时按,然后点击”ENTER”键,出现单词“LINEAR”调节角行程和直行程。 (2)P1.1:按住MODE键,点击↑↓键,进入P1.1菜单。常按ENTER键3S,然后面板显示倒数计时为0后松开,就出现自整定,直到出现完成“COMPIETE”单词。 (3)P1.4:退出(EXIT)会显示“保存”和“不保存”,按住“ENTER”3S,则保存调试,若不保存,直接按↑键,退出到“放弃”单词,然后再按住“ENTER”3S,退出。 (4)P2.3出现REVERSE单词,显示的是调节阀门和定位器的正反作用。 (5)P3.2出现CW/CCW单词,调节的是DCS和就地

定位器指令的正反作用。 (6)P3.3出现EXIT单词,意思为退出。 (7)P8.2出现DIGEET单词,则调节的是DCS和就地定位器反馈的正反作用。 以上参数为重要参数调试步骤,详情请查看说明书! 二、FISHER阀门定位器 DVC6000调试步骤: 打开275/375手操器从主菜单(Main Menu)选择Hart应用(HART Application)从On line找到该定位器。依次进入Setup&Diag ——Detailed Setup——Mode——

阀门定位器的日常维护

气动执行机构对其影响最大的就是环境,一是使用环境,二就是用气的环境即气的质量好坏。 对此,我们一般在使用气动执行机构的时候特别要求其密封性和使用气的质量(干净)。 密封性上就要求每次检修后都要把定位器盖子中的密封圈放到指定位置,如果密封圈没有,可以使用密封胶密封,这样不影响下次检修并可以反复密封。对于膜头的密封性可以不太考虑,只是在有腐蚀气体环境中使用薄膜阀(一般的)对其寿命有影响。人为的就只有更换薄膜和O型圈。 对于使用气体的质量,一定要减少水分和油污。空气中的油污常常堵塞节流孔,水分的影响就不用说了。 再说说平时的维护 气动执行机构在平时的维护中其实注意的就几点: 1.是否有漏气的现象。 2.气压是否稳定。 3.保持定位器的干净卫生。 4.对于使用气体不太干净的公司,可以在进气前加个过滤器。和定时检查定位器的恒节流孔是否堵塞。(检查是要锁定目标) 5.时间长的公司一般定位器上的小峰表容易坏掉。可以定期更换。 引用| 回复 | 2011-11-06 21:23:49 2楼 bhdxzgp 1.要经常检查反馈连杆连接是否完好,有紧固螺钉的要检查是否松动。 2.定位器中反馈连杆的轴要做好润滑,防止动作迟滞,使反馈滞后。 3.要经常检查定位器中是否有不该漏气的地方漏气,发现这种情况应在工艺允许的时候更换密封垫。 4.要保证仪表风清洁,即要保证过滤减压阀好用,防止堵塞定位器中的气路。 引用| 回复 | 2011-11-07 07:47:38 3楼 勇者 气动阀门定位器接收来自控制器或控制系统中4~20mA等弱电信号,并向气动执行机构输送空气信号来控制阀门位置的装置。其与气动调节阀配套使用,构成闭环控制回路。把控制系统给出的直流电流信号转换成驱动调节阀的气信号,控制调节阀的动作。同时根据调节阀的开度进行反馈,使阀门位置能够按系统输出的控制信号进行正确定位。 (1)调节阀不动作。故障现象及原因如下: a.无信号、无气源:①气源未开。②由于气源含水在冬季结冰,导致风管堵塞或过滤器、减压阀堵塞失灵。③压缩机故障。④气源总管泄漏。 b.有气源,无信号:①调节器故障。②信号管泄漏。③定位器波纹管漏气。④调节网膜片损坏。 c.定位器无气源:①过滤器堵塞。②减压阀故障。③管道泄漏或堵塞。 d.定位器有气源,无输出:定位器的节流孔堵塞。 e.有信号、无动作:①阀芯脱落,②阀芯与阀座卡死。③阀杆弯曲或折断。④阀座阀芯冻结或焦块污物。⑤执行机构弹簧因长期不用而锈死。 (2)调节阀的动作不稳定,故障现象和原因如下: a.气源压力不稳定:①压缩机容量太小。②减压阀故障。 b.信号压力不稳定:①控制系统的时间常数(T=RC)不适当。②调节器输出不稳定。 c.气源压力稳定,信号压力也稳定,但调节阀的动作仍不稳定:①定位器中放大器的球阀受脏物磨损关不严,耗气量特别增大时会产生输出震荡。②定位器中放大器的喷咀挡板不平行,挡板盖不住喷咀。③输出管、线漏气。④执行机构刚性太小。⑤阀杆运动中摩擦阻力大,与相接触部位有阻滞现象。 引用| 回复 | 2011-11-07 11:50:42 4楼

阀门定位器的工作原理与结构(很详细的介绍)

阀门定位器的工作原理与结构(很详细的介绍) -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

阀门定位器的工作原理与结构 阀门定位器是气动调节阀的关键附件之一,其作用是把调节装置输出的电信号变成驱动调节阀动作的气信号。它具有阀门定位功能,既克服阀杆摩擦力,又可以克服因介质压力变化而引起的不平衡力,从而能够使阀门快速的跟随,并对应于调节器输出的控制信号,实现调节阀快速定位,提升其调节品质。随着智能仪表技术的发展,微电子技术广泛应用在传统仪表中,大大提高了仪表的功能与性能。 阀门定位器(图1) 阀门定位器的原理:反馈杆反馈阀门的开度位置发生变化,当输入信号产生的电磁力矩与定位器的反馈系统产生的力矩相等,定位器力平衡系统处于平衡状态,定位器处于稳定状态,此时输入信号与阀位成对应比例关系。当输入信号变化或介质流体作用力等发生变化时,力平衡系统的平衡状态被打破,磁电组件的作用力与因阀杆位置变化引起的反馈回路产生的作用力就处于不平衡状态,由于喷嘴和挡板作用,使定位器气源输出压力发生变化,执行机构气室压力的变化推动执行机构运动,使阀杆定位到新位置,重新与输入信号相对应,达到新的平衡状态。在使用中改变定位器的反馈杆的结构(如凸轮曲线),可以改变调节阀的正、反作用,流量特性等,实现对调节阀性能的提升。 智能阀门定位器结构如下图所示,其中虚线内为定位器部分,右侧为气动执行机构。控制和驱动电路,以及位置反馈传感器的数据采集电路,均位于定位器内的电路板中。控

制电路主要完成控制信号和位置反馈信号的数据采集与处理工作,同时形成稳定输出电压。驱动电路用于PWM电流滤波后的功率放大。喷嘴挡板、喷嘴以及相应组件构成了I/P 转换器,实现电气转换。调节喷嘴挡板和喷嘴的间距,通过气体放大器,完成对输出气体的调节。反馈杆和位置反馈传感器,完成气动执行机构位移的检测,并组成完整的闭环控制系统。 智能阀门定位器结构图(图2)

定位器原理

一、前言 电气阀门定位器是气动调节阀的关键附件之一,其作用是把调节装置输出的电信号变成驱动调节阀动作的气信号。它具有阀门定位功能,既克服阀杆摩擦力,又可以克服因介质压力变化而引起的不平衡力,从而能够使阀门快速的跟随,并对应于调节器输出的控制信号,实现调节阀快速定位,提升其调节品质。随着智能仪表技术的发展,微电子技术广泛应用在传统仪表中,大大提高了仪表的功能与性能。其在电气阀门定位器中的应用使智能定位器的性能和功能有了一个大的飞跃。 二、智能电气阀门定位器与传统定位器的对比 2.1 传统电气阀门定位器的工作原理 电气阀门定位器经过几十年的发展,各公司产品虽不尽相同,但基本原理大致相似,下面画简图进行说明。其基本结构见图1: 反馈杆反馈阀门的开度位置发生变化,当输入信号产生的电磁力矩与定位器的反馈系统产生的力矩相等,定位器力平衡系统处于平衡状态,定位器处于稳定状态,此时输入信号与阀位成对应比例关系。当输入信号变化或介质流体作用力等发生变化时,力平衡系统的平衡状态被打破,磁电组件的作用力与因阀杆位置变化引起的反馈回路产生的作用力就处于不平衡状态,由于喷嘴和挡板作用,使定位器气源输出压力发生变化,执行机构气室压力的变化推动执行机构运动,使阀杆定位到新位置,重新与输入信号相对应,达到新的平衡状态。 在使用中改变定位器的反馈杆的结构(如凸轮曲线),可以改变调节阀的正、反作用,流量特性等,实现对调节阀性能的提升。 2.2 智能电气阀门定位器工作原理 虽然智能电气阀门定位器与传统定位器从控制规律上基本相同,都是将输入信号与位置反馈进行比较后对输出压力信号进行调节。但在执行元件上智能定位器和传统定位器完全不同,也就是工作方式上二者完全不同。智能定位器以微处理器为核心,利用了新型的压电阀代替传统定位器中的喷嘴、挡板调压系统来实现对输出压力的调节。 目前有很多厂家生产智能型电气阀门定位器,西门子公司的SIPA TT PS2系列智能电气阀门定位器比较典型,具有一定代表性,下面以就以SIPART PS2系列定位器为例,对智能定位器的工作原理进行说明,其基本结构如图2所示:

阀门定位器讲解

智能电气阀门定位器在实际中的应用 一、前言 电气阀门定位器是气动调节阀的关键附件之一,其作用是把调节装置输出的电信号变成驱动调节阀动作的气信号。它具有阀门定位功能,既克服阀杆摩擦力,又可以克服因介质压力变化而引起的不平衡力,从而能够使阀门快速的跟随,并对应于调节器输出的控制信号,实现调节阀快速定位,提升其调节品质。随着智能仪表技术的发展,微电子技术广泛应用在传统仪表中,大大提高了仪表的功能与性能。其在电气阀门定位器中的应用使智能定位器的性能和功能有了一个大的飞跃。 二、智能电气阀门定位器与传统定位器的对比 2.1 传统电气阀门定位器的工作原理 电气阀门定位器经过几十年的发展,各公司产品虽不尽相同,但基本原理大致相似,下面画简图进行说明。其基本结构见图1: 反馈杆反馈阀门的开度位置发生变化,当输入信号产生的电磁力矩与定位器的反馈系统产生的力矩相等,定位器力平衡系统处于平衡状态,定位器处于稳定状态,此时输入信号与阀位成对应比例关系。当输入信号变化或介质流体作用力等发生变化时,力平衡系统的平衡状态被打破,磁电组件的作用力与因阀杆位置变化引起的反馈回路产生的作用力就处于不平衡状态,由于喷嘴和挡板作用,使定位器气源输出压力发生变化,执行机构气室压力的变化推动执行机构运动,使阀杆定位到新位置,重新与输入信号相对应,达到新的平衡状态。在使用中改变定位器的反馈杆的结构(如凸轮曲线),可以改变调节阀的正、反作用,流量特性等,实现对调节阀性能的提升。 2.2 智能电气阀门定位器工作原理 虽然智能电气阀门定位器与传统定位器从控制规律上基本相同,都是将输入信号与位置反馈进行比较后对输出压力信号进行调节。但在执行元件上智能定位器和传统定位器完全不同,也就是工作方式上二者完全不同。智能定位器以微处理器为核心,利用了新型的压电阀代替传统定位器中的喷嘴、挡板调压系统来实现对输出压力的调节。目前有很多厂家生产智能型电气阀门定位器,西门子公司的SIPATT PS2系列智能电气阀门定位器比较典型,具有一定代表性,下面以就以SIPART PS2系列定位器为例,对智能定位器的工作原理进行说明,其基本结构如图2所示: 其具体工作原理如下: 由阀杆位置传感器拾取阀门的实际开度信号,通过A/D转换变为数字编码信号,与定位器的输入(设定)信号的数字编码在CPU 中进行对比,计算二者偏差值。如偏差值超出定位精度,则CPU输出指令使相应的开/关压电阀动作,即:当设定信号大于阀位反馈时,升压压电阀V一l打开,

费希尔阀门定位器接地电极说明书

安装时DVC6200的接地电极要留意 安装对于dvc6200来说异常重要,尽管只是一个接地电极的安装,就有许多细节需要注意, 所以用户安装前一定要了解所有的注意事项,确保安装正常进行。下面对现场可用的接地电 极许多细节来进行介绍。 1、条形或管装电极 dvc6200长度8英尺(2.44m),包含如下材料,dvc6200安装方式如下: ①电极的安装必须保证有8英尺(2.44m)的长度与土壤接触。必须埋在8英尺(2.44m)深的地下。 ②铁条或钢条电极直径为5/8英寸(15.87mm)。直径5/8英寸(15.87mm)的不锈钢条、或等效直径不小于1/2英寸(12.7mm)的有色金属条。 ③管或电线管电极的尺寸不应小于3/4英寸,若为铁质或钢质,外表面应该有镀层或其它防 腐金属涂层。 2、混凝土掩体的电极 dvc6200电极由厚度为2英寸(50.8mm)的混凝土掩体包裹,位于直接与大地接触的混凝土基 础或基座附近,其中包含1根20英尺(6.1m)以上且直径为1/2英寸(12.7mm)以上的全裸、镀 锌或其它导电性涂层的加强钢棒或钢条,或包含长度20英尺(6.1m)且型号不小于No.2 AWG(φ6.54mm)的裸露铜质导线。 3、dvc6200有效接地的建筑物金属结构。 4、dvc6200接地环 一种环绕建筑物或结构物的接地环,在地面以下深度2 1/2英尺(762mm)与大地接触,包含20英尺(6.1m)且型号不小于No.2 AWG的裸露铜质导线。若现场没有上述电极可供使用,必须 采用人工电极。 5、金属地下水管与地直接接触部分长度10英尺(3.05m)。 6、dvc6200板状电极dvc6200每个板状电极表面与外土壤的接触面积不得低于2平方 英尺(0.186平方米);铁板或钢板电极厚度为1/4英寸(6.35mm);有色金属电极厚度为0.06英 寸(1.52 mm)。 可靠性: 少连接无接触阀位反馈—高性能、少连接反馈系统消除了阀杆和DVC6200f 之间的物理接触。没有磨损部件,因此zui大限度地延长了循环使用寿命。耐受恶劣环境—经过现场考验的 DVC6200f 仪表采用全封装电子元件,抗振动、耐高温以及耐腐蚀性环境。防风雨接线端子 将现场接线连接和仪表的其他区域隔开。 性能: 准确而灵敏—两级定位器设计能够快速响应大的阶跃变化,并精确控制设定点的微小变化。 行程控制/压力反馈—阀位置反馈对数字阀控制器的运行至关重要。DVC6200f 可以检测阀位 反馈问题,并自动转换到 I/P 转换器模式,以保持阀运行 易于使用: 增强的安全性—DVC6200f 是一款 FOUNDATION 现场总线通信装置,可以访问回路中任何 位置的信息。这种灵活性可以降低暴露在危险环境中的风险,并能够方便地了解安装在难以 触及的位置的阀状况。缩短的调试时间—FOUNDATION 现场总线通信允许您使用各种工具

阀门定位器选型指南

阀门定位器选型指南 -------------------------------------------------------------------------------- 在众多的控制应用场合中,阀门定位器是调节阀最重要的附件之一。尤其是对于某个特定的应用场合,如果要选择一个最适用的(或者说最佳的)阀门定位器,那么就应注意考虑下列因素: 1)阀门定位器能否实现“分程(Split_ranging)”?实现“分程”是否容易、方便?具备“分程”功能就意味着阀门定位器只对输入信号的某个范围(如:4~12mA或0.02~0. 06MPaG)有响应。因此,如果能“分程”的话,就可以根据实际需要,只用一个输入信号实现先后控制两台或多台调节阀。 2)零点和量程的调校是否容易、方便?是不是不用打开盒盖就可以完成零点和量程的调校?但值得注意的是:有时候为了避免不正确的(或非法的)操作,这种随意就可进行调校的方式需要被禁止。 3)零点和量程的稳定性如何?如果零点和量程容易随着温度、振动、时间或输入压力的变化而产生漂移的话,那么阀门定位器就需要经常地被重新调校,以确保调节阀的行程动作准确无误。 4)阀门定位器的精度如何?在理想情况下,对应某一输入信号,调节阀的内件(Tri m Parts,包括阀芯、阀杆、阀座等)每次都应准确地定位在所要求的位置,而不管行程的方向或者调节阀的内件承受多大的负载。 5)阀门定位器对空气质量的要求如何?由于只有极少数供气装置能提供满足ISA 标准(有关仪表用空气质量的标准:ISA标准F7.3)所规定的空气,因此,对于气动(或电-气)阀门定位器,如果要经受得住现实环境的考验,就必须能承受一定数量的尘埃、水汽和油污。 6)零点和量程的标定两者是相互影响还是相互独立?如果相互影响,则零点和量程的调校就需要花费更多的时间,这是因为调校人员必须对这两个参数进行反复调整,以便逐步地达到准确的设定。 7)阀门定位器是否具备“旁路(Bypass)”,可允许输入信号直接作用于调节阀?这种“旁路”有时可简化或者省去执行机构装配设定(Actuator Settings)的校验,如:执行机构的“支座组件(Benchset)设定”和“弹簧座负载(Seat Load)设定”――这是因为在许多情况下,一些气动调节器的气动输出信号与执行机构的“支座组件设定”完全吻合匹配,用不着对其再进行设定(其实,在这种情况下,阀门定位器完全可以省去不用。当然,如果选用了,那么也可利用阀门定位器的“旁路”使气动调节器的气动输出信号直接作用于调节阀)。另外,具备“旁路”有时也可允许在线的对阀门定位器进行有限度的调校或维修维护(即利用阀门定位器的“旁路”使调节阀继续保持正常工作,无须强制调节阀离线)。 8)阀门定位器的作用是否快速?空气流量(Airflow)愈大(阀门定位器不断的比较输入信号和阀位,并根据它们之间的偏差,调节其本身的输出。如果阀门定位器对这种偏差响应快速,那么单位时间里空气的流动量就大),调节系统对设定点(Set

阀门定位器的工作原理与结构(很详细的介绍)

阀门定位器的工作原理与结构 阀门定位器是气动调节阀的关键附件之一,其作用是把调节装置输出的电信号变成驱动调节阀动作的气信号。它具有阀门定位功能,既克服阀杆摩擦力,又可以克服因介质压力变化而引起的不平衡力,从而能够使阀门快速的跟随,并对应于调节器输出的控制信号,实现调节阀快速定位,提升其调节品质。随着智能仪表技术的发展,微电子技术广泛应用在传统仪表中,大大提高了仪表的功能与性能。 阀门定位器(图1) 阀门定位器的原理:反馈杆反馈阀门的开度位置发生变化,当输入信号产生的电磁力矩与定位器的反馈系统产生的力矩相等,定位器力平衡系统处于平衡状态,定位器处于稳定状态,此时输入信号与阀位成对应比例关系。当输入信号变化或介质流体作用力等发生变化时,力平衡系统的平衡状态被打破,磁电组件的作用力与因阀杆位置变化引起的反馈回路产生的作用力就处于不平衡状态,由于喷嘴和挡板作用,使定位器气源输出压力发生变化,执行机构气室压力的变化推动执行机构运动,使阀杆定位到新位置,重新与输入信号相对应,达到新的平衡状态。在使用中改变定位器的反馈杆的结构(如凸轮曲线),可以改变调节阀的正、反作用,流量特性等,实现对调节阀性能的提升。 智能阀门定位器结构如下图所示,其中虚线内为定位器部分,右侧为气动执行机构。控制和驱动电路,以及位置反馈传感器的数据采集电路,均位于定位器内的电路板中。控制

电路主要完成控制信号和位置反馈信号的数据采集与处理工作,同时形成稳定输出电压。驱动电路用于PWM电流滤波后的功率放大。喷嘴挡板、喷嘴以及相应组件构成了I/P转换器,实现电气转换。调节喷嘴挡板和喷嘴的间距,通过气体放大器,完成对输出气体的调节。反馈杆和位置反馈传感器,完成气动执行机构位移的检测,并组成完整的闭环控制系统。 智能阀门定位器结构图(图2)

FISHER_DVC6010-new气动阀门定位器

DVC快速自动整定 “推荐DCS给定50%即12mA信号” 在对DVC定位器进行整定之前,我们首先得调整一下调整臂和反馈臂的位置。具体方法是:阀门处在相对自由的状态(定位器输出压力为0,如果有手轮的话,手轮的位置应该处在不影响阀门自由开关的位置),打开定位器反馈保护罩,用定位销(定位器里面有)将反馈臂定位在合适的位置(如果是气开门,将定位销插在A 的位置,反之则插在B的位置),松开连接臂和调整臂所连接的螺母,然后将调整臂和反馈臂的交点调整到阀门行程(阀门铭牌上的Travel值)对应的值,再拧紧连接臂和调整臂所连接的螺母,取下定位销! 将手操器和定位器的指令线正确连接上(连接在接线盒的LOOP上,注意正负),打开手操器,双击HART application,进入主画面,点击热键,选择Instrument Mode (仪表模式),点击OK,将光标移到Out Of Service(非工作模式)上,点击ENTER,再点击热键,返回主画面。选择Setup & Diag(设置和诊断),然后选择Calibrate (校验),再选择Auto Calib Travel(自动校验行程),选择manual,点击ENTER,稍等,然后将光标移到Digital(数字),点击ENTER,然后查看反馈臂和执行机构推杆是否成90o角,如果不是,通过选择large(10.0?), medium(1.0?), and small(0.1?) adjustments选择increase或者decrease使反馈臂和执行机构推杆成90o角,然后点击OK,稍等,然后会出现压力校验,Pressure calibration 选择Yes会再自动进行一次校验选择No 则完成校验.再三次点击OK,然后将光标移到In Service(工作模式)上,点击ENTER,再点击OK。此时改变指令信号,如果阀门动作正常,则校验完毕;如果改变指令信号,阀门不动作或只在指令为0%(4mA)和100%(20mA)时动 作,则需要更改Instrument Mode(仪表模式),具体方法是:点击热键,选择 Instrument Mode(仪表模式),点击OK,将光标移到In Service(工作模式)上,点击ENTER。 详情请参考FISHER公司的相关设备手册或煤制甲醇公司阀门定位器操作手册

几种常见阀门定位器的调校方法

几种常见阀门定位器的调校方法 阀门定位器概述 (1) 电-气阀门定位器VP200(横河)的调校说明 (2) 智能阀门定位器 AVP系列(山武)调校说明 (3) 智能阀门定位器 SIEMENS(西门子)调校说明 (7) 智能阀门定位器DVC系列(费希尔)调试说明 (27)

一、阀门定位器概述: 阀门定位器:是调节阀的主要附件,通常与气动调节阀配套使用,它接受调节器的输出信号,然后以它的输出信号去控制气动调节阀,当调节阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位状况通过电信号传给上位系统。一般可分为以下三种:气动阀门定位:此阀门定位器无电路部分,一般和电-气转换器配合使用,才能实现自动控制功能。比如Pignone(化肥装置尿素单元PV-1026)、PARCOL(化肥装置尿素单元PV-1026),由于其无法单独实现自动控制,气路繁琐,控制精度低等缺点,逐渐被淘汰。电-气阀门定位:由于其价格低廉,调校方便,输出稳定等特点,目前仍被广泛使用。比如VP200(合成氨装置甲醇洗单元和液氮洗单元)等。智能阀门定位:是目前使用最为广泛的阀门定位器,控制过程中利用智能阀门定位器可实现高品质调节,增加过程控制的精确性和稳定性。比如SIEMENS、DVC2000-6000系列、AVP100-300系列等。

二、电-气阀门定位器VP200(横河)的调校步骤: 1、检查气路、电路是否满足定位器工作要求; 2、给定12mA信号,将反馈杆调整至水平位置, 并紧固; 3、给定8mA信号,通过零位调节螺母将零位调节至对应值; 4、给定16mA信号,通过量程调节螺母将量程调节至对应值; 5、给定4mA信号,检查阀门全关位置,必要时进行微调; 6、给定20mA信号,检查阀门全开位置;必要时进行微调; 7、给定4mA(或20mA)、8mA(或16mA)、12mA、4mA(或 20mA)、16mA(或8mA)、20mA(或4mA)进行刻度验证,必要时进行微调。 说明:1、通过量程调节螺母可以改变定位器的作用方式。 2、取用8mA和12mA信号,分别调整零位和量程,是因为8mA和12mA均有上下刻度值,可以明显反应零位和量程的位置,而4mA向下下没有刻度(和20mA向上也没有刻度值),不宜采用4mA和20mA来调节零位和量程。 3、定位器调校时,必须保证阀门能够完全关闭,有时候虽然给定4mA(或20mA)信号,阀门仍然有开度。 4、气动阀门定位器和电-气阀门均属机械式阀门定位器,因此调校方法类似,不再详细介绍。

智能阀门定位器调试方法

数字式阀门控制器校准规程 1.目的:用于数字式阀门控制器检测/校准 2.范围:FieldVueDVC5000系列 3.技术参数和性能指标 3.1独立线性度:±0.5% 20mA DC 3.2模拟输入信号:4 ~ 3.3最小控制电流: 4.0mA 3.4最大电压:30V DC 3.5仪表电源:12~30V DC 4.校验基本条件 4.1环境温度:-40~80℃ 4.2输出压力:0.4~6.2bar 4.3气源压力:6.9 bar 5.校验所需设备: 6.工作原理: 当输入信号增大,去I/P转换器的驱动信号增大。使得I/P转换器的线圈和衔铁之间的磁吸引力增加,于是档板使喷嘴节流,即增大了喷嘴压力。喷嘴压力送去气动中继器子模块的输入模片。当喷嘴压力增大时,气动中继器的模片组件移动,使得阀芯去打开供气口和关闭排气口,以增加送去执行机构的输出压力,增大的输出压力使得执行机构阀杆向下移动。阀行程传感器通过反馈连杆感受阀杆的位置变化,阀行程传感器与印刷电路板组件子模块电信号相连。阀杆继续向下移动直至达到正确的阀杆位置。 4-20mA

7.调校DVC5000型:使用HART手操器连接到数字式阀门控制器时,回路必须串联大于 250Ω的电阻器。 7.1仪表模式:为了设置和校准仪表Instrument Mode (仪表模式)必须设成Out Of Service (不参与服务),并按ENTER(F4)。 7.2初始位置: 7.2.1根据制定的执行机构类型和尺寸自动选择适当的组态参数。从Online(在线菜单) →Main menu(主菜单)→Initial Set-up(初始化设置)→Auto Setup(自动设置)→Setup Wizard(设置诀窍),Out Of Service,如果本仪表之执行机构的制造厂名没未列入,则选Other(其它)→Enter. 7.2.1.1 执行机构类型:Single Acting(单作用)或Double Acting(双作用)→Enter. 7.2.1.2 Rotary(旋转)或Sliding Stem(滑杆)→Enter. 7.2.1.3 无气源时Close(阀关) Open(阀开). 7.2.1.4 7.2.1.5 Counter Clock Wise(逆时针)或Clock Wise((顺时针)。 7.2.1.6输入仪表气源压力。 7.2.1.7 整定参数值(灵敏度)。 7.2.1.8 确定工厂缺省数据是否用于初始位置。选择Yes,DVC5000系列工厂缺省值设定。 选择No,各设置参数保留它们原先的值。设置诀窍Setup Wizard 完成后,按OK回到自动 设置(Auto Setup)菜单。 7.3 自动校准行程: 7.3.1 Auto Calib Travel(自动校准行程)自动标定仪表行程。标定程序利用阀门与执行 机构的停止点作为0%与100%标定点。如果在完成自动设置和自动标定后,阀看起来有点不 稳或不灵敏,可以通过Auto Setup菜单选择Sta-bilize/Optimize来改善运行状况。详见 稳定/优化(Stabilize /Optimize)。 8.调校DVC6000型:使用HART手操器连接到数字式阀门控制器时,回路必须串联大于 250Ω的电阻器。 8.1仪表模式:为了设置和校准仪表Instrument Mode (仪表模式)必须设成Out Of Service (不参与服务),并按ENTER(F4)。 8.2自动设置: 8.2.1根据制定的执行机构类型和尺寸自动选择适当的组态参数。从Online (在线菜单) Setup&Diag(设置与诊断)Setup (基本设置)Auto Setup(自动设置)Setup Wizard(设置诀窍)。 8.2.1.1 压力单位。 8.2.1.2 Actuator Setup(执行机构设置)如果本仪表之执行机构的制造厂名没未列入,则选Other(其它)。同7.2.1.2相同。 7.2.1.3 Relay Adjust。

费希尔阀门定位器讲义

费希尔定位器讲义 一.费希尔定位器的分类介绍。 二.费希尔定位器的工作原理。 三.费希尔定位器的调试及整定。 四.4200反馈快速调整的方法。 费希尔国际有限公司始于1880年,发明人是william Fisher发明了第一台泵调节器。 分类“DVC5000。DVC6000。DVC2000 DVC2000----------直行程,角行程。 行程:最大2英寸,在大的行程可以通过增加气动放大器,改变双作用。没有连接杆和连接件减少了安装零件和安装的复杂程度。里面带非接触式阀位变送器和阀位开关,阀位变送器需要单独供电。

二. 费希尔定位器的工作原理。 Fisher DVC5000/6000系列智能定位器的结构原理图如下图所示 智能定位器结构原理图:

工作原理:控制器来的控制信号经端子盒进到印刷线路板子模块,在这里被微处理器读取后经数字算法处理后转换成模拟量后送给I/P转换器。当信号改变时I/P转换器的线圈和衔铁之间的磁吸引力改变,并因此改变了喷嘴挡板间的距离进而改变了喷嘴背压,该背压经放大器放大后送给执行机构并通过执行机构改变阀杆的位置。阀行程传感器通过反馈杆感受阀杆位置的变化,并将此信号反给印刷线路板组件参与计算。当阀杆位置达到正确位置,阀杆位置信号反到印刷线路板组建,经过处理后使I/P驱动信号稳定下来,则喷嘴背压稳定下来,则到执行机构的输出力也稳定下来阀杆位置不再变化。 单作用执行机构: 将单作用正作用式数字式阀门控制器(a型气动放大器)连接到单作用执行机构上时,必须把输出口B堵死,把输出口A连接到执行机构膜盖上。在输出口B处不需要压力表,在其相应位置上改装一个带过滤网的排空管塞。 将单作用反作用式数字式阀门控制器(B型气动放大器)连接到单作用执行机构上时,必须把输出口A堵死,把输出口B连接到执行机构膜盖上。在输出口A处不需要压力表,应改装一个堵头。 双作用执行机构: 当用在双作用执行机构上时,DVC6000系列数字式阀门控制器通常采用A型气动放大器,当无输入信号时,如果气动放大器已经

智能型电气阀门定位器

智能型电气阀门定位器 通过与常规定位器的比较 ,介绍了SIPART PS智能定位器的原理、性能、特点及其应用。 关键词:原理功能调校 l引言 随着计算机技术迅速发展,国外推出带微处理器的智能仪表,使差压变送器、压力变送器等现场变送器发生了极大变化。智能化仪表使用方便,精度高且可靠性高,现也有了智能化执行器。由于执行器发生故障时.对生产过程影响非常大,而且冗余化也很困难。因此,国外公司如德国西门子公司开发了智能化电气阀门定位器,这样为执行器的智能化打下了基础。德国西门子公司生产的智能化电气阀门定位器在控制精度、耐环境性、投运、维护及操作费用等方面都优于常规定位器,采用该产品可优化资源利用,减少能耗,节约资金。 下面以德国西门子公司SIPART PS产品为例,介绍智能化阀门定位器。 2常规定位器的问题 常规定位器是采用机械式力平衡原理,即喷咀一档板技术,如图1所示。该产品已使用多年,但存在以下几个问题。 a. 因采用机械力平衡式原理工作,可动件较多,容易受温度波动的影响。 b.耐环境性差。采用机械力平衡原理的定位器易受外界振动影响,外界振动传到力平衡机构,有时会使定位器难以工作。

c.装好的调节阀由于尺寸、衬垫摩擦等是多变的,若将各种调节阀也做相应改变,达到最佳控制状态,难以实现。 d.喷咀本身是一个潜在故障源,易被灰尘或污物颗粒堵住,使定位器不能正常工作。 e.能耗大。常规定位器由喷咀连续供给压缩空气,在执行器处于稳定状态也要供给压缩空气,工厂使用执行器较多,能耗较大。 f.常规定位器手动调整时不用专用设备(如减压阀),不中断控制回路是不可能的。 g.常规定位器零点和行程的调整分别用手动调整,须反复调整,很费时间。3智能定位器操作原理 德国西门子公司SIPART、PS新型智能定位器由微控制器( cPU )、A/D、D /A转换器、电磁阀和压电控制阀即双气动系统等部分组成。 智能电气阀门定位器的操作原理完全不同于过去的喷咀档板式定位器,给定值和.实际值的比较纯是电动信号,不再是力的平衡。用微控制器的控制程序取代了易于受振动等干扰的力平衡方式,可以消除力转换过程及机械传动所产生的问题。智能定位器如图2所示。 智能定位器和执行器组成一个反馈回路,阀位参数 Y为被控参数X,X和给定值W比较,则有一个系统编差,它使五接点开关确定动作方向,使调节阀动作士△Y。在系统高偏差区域(高速区)保持开关接通,行程移动。在系统中偏差区域( 短步区 )用最小长度脉冲地调节行程的移动,这些位置脉冲使执行器的气室有不同的压力,从而调节执行器行程。在系统低偏差区域没有位置脉冲输出(自适应死区)。

阀门定位器

气动调节阀阀门定位器 一、阀门定位器原理 阀门定位器是调节阀的主要附件,与气动调节阀配套使用,它接受调节器的输出信号,然后以它的输出信号去控制气动调节阀,当调节阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位状况通过电信号传给上位系统。阀门定位器按其结构形式和工作原理可以分成气动阀门定位器、电/气阀门定位器和智能阀门定位器。 二、定位器的基本功能: 1、比例动作和定位作用 比例动作:根据输入的信号,使阀门的阀位与输入信号相对应。 定位作用:当输入信号固定时,阀位不受工艺条件的变化而变化。 2、功率放大 针对气动输入信号而言,定位器可将输入的气信号;通过定位器中的气动功率放大器进行放大,使微小的信号就可以控制阀门动作。 3、提高阀门的控制精度

由于定位器是根据输入信号与阀门位置的偏差对输出信号进行调整的,一旦输入信号与阀门位置有偏差,定位器将自动调整输出信号以改变阀位,直到阀位与输入信号相对应为止,这样大大提高了阀门的控制精度。 4、克服摩擦力 由于定位器本身的定位闭环控制,当摩擦力变化时(指阀杆的填料、执行器的密封等部分的摩擦力);定位器可以根据由摩擦力造成的位置偏差,自动增加或减少输出到执行器的压力,以克服摩擦力对阀门开度造成的影响。 5、改变作用方式 通过定位器我们可以改变阀门的作用方式。 根据阀门的作用方式我们可设定定位器的正、反作用。 6、信号转换 我们可以通过定位器实现电/气转换 三、阀门调校: 1、一般调校法 1、零位调整,给定电流信号4mA,通过顺时针或反时针旋动调零 螺钉,使输出压力为0.2×100KPa左右或调节阀行程有微小

位移。 2、量程调节给定信号8、12、16、20mA,使阀杆行程应25%、 50%、75%、100%.若量程偏大或偏小,调整螺母,直至量程符合要求. 3、重复步骤1. 2,使量程零点达到规定值。 2、特殊调校法 通过调整反馈杠杆的有效长度及改变调零弹簧的弹性系数也可以调校阀门定位器。具体如下: 1、调整反馈杠杆法 1、给定信号4mA,通过调零螺钉,调节零点,使零点达到规 定值。 2、给定信号20mA,记录调节阀分别在25%、5o%、75%、100% 时的行程,调量程,直至达到规定值。 3、重复上述步骤1、2,若零点、量程无法校准,调整阀杆上的 销钉来改变反馈杆的有效长度。 4、重复上述步骤1、2、3,直到零点,量程达到规定值。 3、改变调零弹簧的弹性系数法 当弹簧工作在非线性区域时,定位器零点提高了,行程满度值也增加,当满度值大于额定行程时,就需要调量程机构,使调节阀的行程减小,这样阀门定位器的零位值也减小。

阀门定位器常见问题的6个原因分析

阀门定位器常见问题的6个原因分析 在调节阀的附属装置中,最主要、最实用的是阀门定位器。阀门定位器是调节阀的关键附件之一。它具有阀门定位功能,既克服阀杆摩擦力,又可以克服因介质压力变化而引起的不平衡力,从而能够使阀门快速的跟随,并对应于调节器输出的控制信号,实现调节阀快速定位,提升其调节品质。随着智能仪表技术的发展,智能技术、电子技术的广泛应用在传统仪表中,大大提高了仪表的功能与性能。 阀门定位器的原理:反馈杆反馈阀门的开度位置发生变化,当输入信号产生的电磁力矩与定位器的反馈系统产生的力矩相等,定位器力平衡系统处于平衡状态,定位器处于稳定状态,此时输入信号与阀位成对应比例关系。当输入信号变化或介质流体作用力等发生变化时,力平衡系统的平衡状态被打破,磁电组件的作用力与因阀杆位置变化引起的反馈回路产生的作用力就处于不平衡状态,由于喷嘴和挡板作用,使定位器气源输出压力发生变化,执行机构气室压力的变化推动执行机构运动,使阀杆定位到新位置,重新与输入信号相对应,达到新的平衡状态。在使用中改变定位器的反馈杆的结构(如凸轮曲线),可以改变调节阀的正、反作用,流量特性等,实现对调节阀性能的提升。 现场使用阀门定位器的种类非常繁多,有气动阀门定位器、电气阀门定位器、有配薄膜执行机构的阀门定位器、有配活塞执行机构的阀门定位器、有力平衡式阀门定位器、有位移平衡式阀门定位器,阀门定位器的广泛使用,在生产过程中,难免会出现各种故障,为保质、保量、安全地生产,就必须及时排除定位器可能产生地一切故障。要排除阀门定位器地的故障,必须正确判断阀门定位器的那一个环节、那一个元件发生的故障。通常有如下两种故障分析法:一是根据阀门定位器的传递函数,对阀门定位器进行逐个环节,逐个元件的分析,这种对现场检修不太适用,但对于疑难问题的分析,却非常有效;二是根据检修者对故障的现象进行综合分析和判断,此种方法最适于现场检修。下面将阀门定位器可能产生的常见故障的起因分析如下: 1.阀门定位器有信号输入,但无输出压力信号 (1)电/气定位器,衔铁与线圈架之间有异物。 (2)恒节流孔堵塞。 (3)喷嘴挡板配合不良或喷嘴挡板损坏。 (4)放大器中膜片(金属膜片或者橡胶膜片)损坏。 (5)气路连接有误(包括放大器)。 (6)电/气定位器输入信号线正负极接反。 (7)定位器的输入接线盒内的二极管开路或接线不良。 (8)气源压力的大小不合要求。

相关文档
最新文档