2021年高考物理专题汇编 专题4 电场和磁场 第1讲 电场(A)(含解析)
2021届高考物理专题卷:专题06(电场)答案与解析

2021届专题卷物理专题六答案与解析1.【命题立意】本题主要考查带电体的带电方式及原理、电荷守恒定律。
【思路点拨】静电场中物体带电源于电子的转移,可以从同种电荷相互排斥、异种电荷相互吸引的角度分析。
【答案】BCD 【解析】根据静电感应现象,带正电的导体C 放在枕形导体附近,在A 端出现了负电,在B 端出现了正电,这样的带电并不是导体中有新的电荷,只是电荷的重新分布,枕形导体上总的电荷量为0。
金箔上带电相斥而张开,选项A 错误;用手摸枕形导体后,B 端不是最远端了,人是导体,人的脚部连接的地球是最远端,这样B 端不再有电荷,金箔闭合,选项B 正确;用手触摸导体时,只有A 端带负电,将手和C 移走后,不再有静电感应,A 端所带负电便分布在枕形导体上,A 、B 端均带有负电,两对金箔均张开,选项C 正确;通过以上分析看出,选项D 也正确。
2.【命题立意】本题重在考查静电场几个公式的适用条件。
【思路点拨】定义式对任何情况都成立,但被定义的物理量与式中其它物理量不存在决定和被决定关系,决定式的物理量之间存在决定和被决定关系。
【答案】C 【解析】①221rqq k F =,②2r q k E =仅对真空中静止的点电荷成立,③是定义式,适用于一切情况;④U =Ed 对匀强电场成立,注意各自的适用条件。
3.【命题立意】本题以类平抛运动为载体,考查带电粒子在电场和重力场中的运动。
【思路点拨】根据运动的合成与分解规律,分别分析小球在重力方向和电场力方向的受力特点和运动特点,然后确定各量的大小关系。
【答案】AC 【解析】运动时间由竖直方向决定,根据221gt h =可知,两种情况下运动时间相等,C 正确,B 错;两种情况下重力做的正功相同,而存在电场时,电场力做正功,所以存在电场时落地速度大,D 错;无电场时,只有水平向右的水平位移v 0t ;存在电场时,既有向右的水平位移v 0t ,又有垂直纸面向里的水平位移,显然s 1>s 2,A 答案正确。
2021版高考物理新课标大二轮专题辅导与增分攻略1-4-1第一讲电场和磁场的基本性质

第一讲电场和磁场的基本性质[知识建构](注1)……(注4):详见答案部分[答案](1)电场力做功的计算方法①W AB=qU AB(普遍适用).②W=qEl cosθ(适用于匀强电场).③W AB=-ΔE p=E p A-E p B(从能量角度求解).④W电+W非电=ΔE k(由动能定理求解).(2)电势高低的判断方法热点考向一电场的性质及应用角度一电场力的性质【典例1】(2019·九江模拟)如图,A是带电量为+Q半径为R的球体且电荷均匀分布(均匀分布电荷的绝缘球体在空间产生对称的电场,场强大小只和到球心的距离有关),B为带电量为+q的带电体可看做点电荷.已检测到C点的场强为零,d点与C点到球心O的距离都为r,B到C点距离也为r,那么只把带+q的带电体移到e点.则d点场强大小为()A.k 2qr2B.kQ2r2C.kq2r2D.k2qr2[思路引领](1)均匀分布电荷的绝缘球体在空间产生对称的电场,场强大小只和到球心的距离有关⇒A在空间某点的场强可由点电荷的场强公式计算.(2)B为带电量为+q的带电体可看做点电荷⇒B在空间某点的场强可由点电荷的场强公式计算.(3)C点的场强为零,d点与C点到球心O的距离都为r,B到C点距离也为r⇒A的电荷量Q等于B的电荷量q.[解析]A是带电量为+Q半径为R的球体且电荷均匀分布,则A在C点产生的场强大小为E A=k Qr2,方向水平向右,B为带电量为+q的带电体可看做点电荷,则B在C点产生的场强大小为E B=k qr2,方向水平向左,因为C点的场强为零,所以有E A=E B,即Q=q,把带+q的带电体B移到e点,则A在d点产生的场强大小为E A′=k qr2,方向竖直向上,B在d点产生的场强大小为E B′=k qr2,方向水平向左,根据电场的叠加原理,将A、B在d点产生的场强进行矢量叠加即可得d点场强大小为k 2qr2,故A正确,B、C、D错误.[答案]A角度二电场能的性质【典例2】(2018·天津卷)如图所示,实线表示某电场的电场线(方向未标出),虚线是一带负电的粒子只在电场力作用下的运动轨迹,设M点和N点的电势分别为φM、φN,粒子在M和N时加速度大小分别为a M、a N,速度大小分别为v M、v N,电势能分别为E p M、E p N.下列判断正确的是()A.v M<v N,a M<a N B.v M<v N,φM<φNC.φM<φN,E p M<E p N D.a M<a N,E p M<E p N[思路引领](1)粒子虽然不知运动方向,但可以假设由M向N运动,然后根据粒子轨迹弯曲方向,判断电场力做功情况.(2)粒子带负电,可根据E p=qφ判断电势高低.[解析]由粒子轨迹弯曲方向及电场线分布情况可知,粒子所受电场力方向沿电场线切线方向反向,设粒子由M向N运动,则速度方向沿轨迹切线方向,电场力方向与粒子速度方向的夹角为钝角,电场力做负功,电势能增大,动能减小,所以v M>v N,E p M<E p N,A、B项错误;电场线的疏密程度表示电场强度大小,故粒子在M点所受电场力的大小小于在N点所受电场力的大小,由牛顿第二定律可知,a M<a N,D项正确;由于电场线方向如图所示,所以M点电势较N点的高,C项错误.[答案]D角度三与平行板电容器有关的电场问题【典例3】(2019·辽宁五校联考)如图所示,平行板电容器两极板带有等量异种电荷,与静电计相连,静电计金属外壳和电容器下极板都接地.在两极板间有一固定在A点的点电荷,以E表示两极板间的电场强度,E p表示点电荷在A点的电势能,θ表示静电计指针的偏角.若保持下极板不动,将上极板向下移动一小段距离至图中虚线位置,则()A .θ增大,E 增大B .θ增大,E p 不变C .θ减小,E p 增大D .θ减小,E 不变[思路引领] 电容器与电源断开,电荷量不变,上极板向下移动一小段距离,C 变化,从而引起两极板间的电势差发生变化.极板间距离的变化不影响场强E ,结合A 点的位置可判断E p 的变化情况.[解析] 若保持下极板不动,将上极板向下移动一小段距离,根据C =εr S4πkd 可知,C 变大;根据Q =CU 可知,在Q 一定的情况下,两极板间的电势差减小,则静电计指针偏角θ减小;根据E =U d ,Q =CU ,C =εr S 4πkd ,联立可得E =4πkQεr S ,可知E 不变;A 点离下极板的距离不变,E 不变,则A 点与下极板的电势差不变;又因为下极板接地,电势为0,A 点的电势不变,故E p 不变;由以上分析可知,选项D 正确.[答案] D1.电场性质的判断方法 (1)电场强度①根据电场线的疏密程度进行判断. ②根据等差等势面的疏密程度进行判断. ③根据E =k Qr 2结合矢量合成进行判断.(2)电势①由沿电场线方向电势逐渐降低进行判断. ②由φ=E pq 进行判断. (3)电势能①根据电场力做功判断. ②根据E p =qφ判断.2.平行板电容器动态问题的分析思路迁移一 库仑定律的应用及库仑力的合成1.(2018·全国卷Ⅰ)如右图所示,三个固定的带电小球a 、b 和c ,相互间的距离分别为ab =5 cm ,bc =3 cm ,ca =4 cm.小球c 所受库仑力的合力方向平行于a 、b 的连线.设小球a 、b 所带电荷量的比值的绝对值为k ,则( )A .a 、b 的电荷同号,k =169B .a 、b 的电荷异号,k =169C .a 、b 的电荷同号,k =6427D .a 、b 的电荷异号,k =6427[解析] 如果a 、b 带同种电荷,则a 、b 两小球对c 的作用力均为斥力或引力,此时c 在垂直于a 、b 连线的方向上的合力一定不为零,因此a 、b 不可能带同种电荷,A 、C 错误;若a 、b 带异种电荷,假设a 对c 的作用力为斥力,则b 对c 的作用力一定为引力,受力分析如图所示,由题意知c 所受库仑力的合力方向平行于a 、b 的连线,则F a 、F b 在垂直于a 、b 连线的方向上的合力为零,由几何关系可知F a F b =1tan α=43,又由库仑定律得F a F b =⎪⎪⎪⎪q a q b ·r 2bc r 2ac,联立解得k =⎪⎪⎪⎪q a q b =6427,B 错误,D 正确.[答案]D迁移二电场线、等势线(面)与粒子轨迹分析2.(2019·洛阳一模)如图所示虚线表示某电场的等差等势面,一带电粒子仅在电场力作用下由A运动到B的径迹如图中实线所示.粒子在A点的加速度为a A、动能为E k A、电势能为E p A;在B点的加速度为a B、动能为E k B、电势能为E p B.则下列结论正确的是()A.a A>a B,E k A>E k B B.a A<a B,E p A>E p BC.a A<a B,E p A<E p B D.a A>a B,E p A<E k B[解析]根据等电势差等势面稀疏处电场强度小,密处电场强度大,可知A处电场强度小于B处.由电场力公式和牛顿第二定律可得qE=ma,由此可知a A<a B.根据等势面分布和电场线垂直可知,电场线方向垂直等势面指向圆心.根据带电粒子仅在电场力作用下由A 运动到B的径迹可知,带电粒子所受电场力方向与电场线方向相反,带电粒子带负电荷.带电粒子仅在电场力作用下由A运动到B,克服电场力做功,电势能增加动能减小,E k A>E k B,E p A<E p B,所以选项C正确.[答案]C迁移三平行板电容器问题3.(2019·广东湛江模拟)如图所示,平行板a、b组成的电容器与电池E连接,平行板电容器P处固定放置一带负电的点电荷,平行板b接地.现将电容器的b板向下稍微移动,则()A.点电荷所受电场力增大B.点电荷在P处的电势能减少C.P点电势减小D.电容器的带电荷量增加[解析]b板下移后,由C=εr S4πkd知电容减小,电容器与电池连接,极板间电压不变,由Q=UC知,极板带电荷量减少,D错误;极板间电压不变,板间距离增大导致内部场强减小,点电荷受力减小,A错误;根据U=Ed,得U PA=Ed PA,d PA不变,场强E的减小导致P处与上极板间电势差减小,P处的电势升高,由于点电荷带负电,负电荷在电势高处电势能小,故点电荷在P处的电势能减少,B正确,C错误.[答案]B电容器与电源连接时电势和电势能的分析如图所示,平行板电容器经开关S保持与电源连接,a处固定一带电荷量很小的正点电荷,现将电容器N板向下移动一小段距离时,由于电压不变,根据E=Ud得场强减小,a点和上极板M的电势差U Ma=Ed Ma,则U Ma减小,又根据U Ma=φM-φa知,因φM不变,所以φa升高,正电荷的电势能增大.热点考向二磁场的性质、安培力角度一 磁场的叠加及安培力的计算问题 【典例1】 (多选)(2018·全国卷Ⅱ)如图所示,纸面内有两条互相垂直的长直绝缘导线L 1、L 2,L 1中的电流方向向左,L 2中的电流方向向上;L 1的正上方有a 、b 两点,它们相对于L 2对称.整个系统处于匀强外磁场中,外磁场的磁感应强度大小为B 0,方向垂直于纸面向外.已知a 、b 两点的磁感应强度大小分别为13B 0和12B 0,方向也垂直于纸面向外.则( )A .流经L 1的电流在b 点产生的磁感应强度大小为712B 0B .流经L 1的电流在a 点产生的磁感应强度大小为112B 0C .流经L 2的电流在b 点产生的磁感应强度大小为112B 0D .流经L 2的电流在a 点产生的磁感应强度大小为712B 0[思路引领] 电流L 1在a 、b 两点产生的磁场大小相等、方向相同;电流L 2在a 、b 两点产生的磁场大小相等、方向相反.[解析] 原磁场、电流的磁场方向如图所示,由题意知在b 点:12B 0=B 0-B 1+B 2在a 点:13B 0=B 0-B 1-B 2由上述两式解得B 1=712B 0,B 2=112B 0.故选项AC 正确.[答案] AC角度二 安培力作用下导体的平衡及运动【典例2】(2019·安徽皖西南名校联考)如图所示为一电流表的原理示意图.质量为m 的均质细金属棒MN的中点处通过一挂钩与一竖直悬挂的弹簧相连,绝缘弹簧劲度系数为k,在矩形区域abcd内有匀强磁场,磁感应强度大小为B,方向垂直纸面向外,与MN的右端N连接的一绝缘轻指针可指示标尺上的刻度,MN的长度大于ab.当MN中没有电流通过且处于平衡状态时,MN与矩形区域的cd边重合,当MN中有电流通过时,指针所指刻度可表示电流大小.(1)当电流表示数为零时,弹簧伸长多少?(重力加速度为g)(2)若要电流表正常工作,MN的哪一端应与电源正极相接?(3)若k=2.0 N/m,ab=0.20 m,cb=0.050 m,B=0.20 T,此电流表的量程是多少?(不计通电时电流产生的磁场的作用)(4)若将量程扩大2倍,磁感应强度应变为多大?[思路引领][解析](1)设电流表示数为零时,弹簧的伸长为Δx,则有:mg=kΔx①②由①式得:Δx=mgk故当电流表示数为零时,弹簧伸长mgk(2)为使电流表正常工作,作用于通有电流的金属棒MN的安培力必须向下,由左手定则可知金属棒中电流从M端流向N端,因此M端应接电源正极故若要电流表正常工作,MN的M端应接电源正极(3)设满量程时通过MN 的电流为I m ,则有: BI m ·ab +mg =k (bc +Δx )③联立①③并代入数据得:I m =2.5 A ④ 故此电流表的量程是0~2.5 A(4)设量程扩大后,磁感应强度变为B ′,则有: 2B ′I m ·ab +mg =k (bc +Δx )⑤ 由①⑤得B ′=k ·bc2I m ·ab代入数据得B ′=0.10 T故若将量程扩大2倍,磁感应强度应变为0.10 T [答案] (1)mgk (2)M 端 (3)0~2.5 A (4)0.10 T求解磁场中导体棒运动问题的思路迁移一磁场的叠加问题1.(2019·吉林实验中学月考)一对相同的载流圆线圈彼此平行且共轴,通以同方向等大电流,在两线圈圆心O1、O2连线上取A、B、C三点,使得AO1=O1B=BO2=O2C,A、B 两点的磁感应强度大小分别为B A和B B,若仅将线圈O2中电流反向(大小不变),则C点的磁感应强度大小变为B C,下列说法正确的是()A.B C=B B-B A,开始时A与C磁场同向,后来A与C磁场反向B.B C=B B-B A,开始时A与C磁场反向,后来A与C磁场同向C.B C=2B A-B B,开始时A与C磁场同向,后来A与C磁场反向D.B C=2B A-B B,开始时A与C磁场反向,后来A与C磁场同向[解析]设AO1=O1B=BO2=O2C=x,距离圆环x处,每个圆环单独产生的磁感应强度为B1,距离圆环3x处每个圆环单独产生的磁感应强度为B2.电流同向时,根据安培定则,两线圈在中轴线上的磁场方向向下,则A点的合磁感应强度B A=B1+B2,方向向下,B点的合磁感应强度B B=2B1,方向向下;O2中电流反向时,线圈O2在C点的磁场方向向上,线圈O1在C点的磁场方向向下,则B C=B1-B2,方向向上,线圈O2在A点的磁场方向向上,线圈O1在A点的磁场方向向下,合磁感应强度方向向下,联立得B C=B B-B A.由以上分析知,开始时A与C磁场同向,后来A与C磁场反向,故选项A正确,BCD错误.[答案]A迁移二安培力作用下导体的平衡问题2.(2019·豫南九校联考)如右图所示,水平导轨间距为L=0.5 m,导轨电阻忽略不计;导体棒ab的质量m=1 kg,电阻R0=0.9 Ω,与导轨接触良好;电源电动势E=10 V,内阻r=0.1 Ω,电阻R=4 Ω;外加匀强磁场的磁感应强度B=5 T,方向垂直于ab,与导轨平面成夹角α=53°;ab与导轨间的动摩擦因数为μ=0.5(设最大静摩擦力等于滑动摩擦力),定滑轮摩擦不计,线对ab的拉力为水平方向,重力加速度g=10 m/s2,ab处于静止状态.已知sin53°=0.8,cos53°=0.6.求:(1)通过ab的电流大小和方向;(2)ab受到的安培力大小;(3)重物重力G的取值范围.[解析](1)I=ER+R0+r=2 A,方向为a到b.(2)F=BIL=5 N.(3)受力如图f m=μ(mg-F cos53°)=3.5 N,当最大静摩擦力方向向右时F T=F sin53°-f m=0.5 N,当最大静摩擦力方向向左时F T=F sin53°+f m=7.5 N,所以0.5 N≤G≤7.5 N.[答案](1)2 A方向为a到b(2)5 N(3)0.5 N≤G≤7.5 N安培力作用下导体棒的平衡与运动问题与力学中的平衡与运动问题的处理方法相同,只是安培力会随着磁场B、电流I及导线长度L的变化而变化.高考热点题型突破——电场中的“两类”典型图像问题【典例】(多选)(2017·江苏卷)在x轴上有两个点电荷q1、q2,其静电场的电势φ在x 轴上分布如图所示.下列说法正确的有()A.q1和q2带有异种电荷B.x1处的电场强度为零C.负电荷从x1移到x2,电势能减小D.负电荷从x1移到x2,受到的电场力增大[审题指导]第一步读题干—提信息第二步审程序—顺思路[解析]由题图可知,空间的电势有正有负,无穷远处电势为零,且只有一个极值,可知,φ-x图像的切线的斜率的绝对则两个点电荷必定为异种电荷,A项正确;由E=ΔφΔx值表示电场强度大小,因此x1处的电场强度不为零,B项错误;负电荷从x1移到x2的过程中,电势升高,电场强度减小,由E p=qφ、F=qE可知,电势能减小,受到的电场力减小,C项正确,D项错误.[答案]AC(1)E-x图像特点①反映了电场强度随位移变化的规律.②E>0表示场强沿x轴正方向;E<0表示场强沿x轴负方向.③图线与x轴围成的“面积”表示电势差,“面积”大小表示电势差大小,两点的电势高低根据电场方向判定.(2)φ-x图像特点及应用①电场强度的大小等于φ-x图线的斜率大小,电场强度为零处,φ-x图线存在极值,其切线的斜率为零.②在φ-x图像中可以直接判断各点电势的大小,并可根据电势大小关系确定电场强度的方向.③在φ-x图像中分析电荷移动时电势能的变化,可用W AB=qU AB,进而分析W AB的正负,然后做出判断.1.(2019·湖北荆州第一次质检)静电场在x轴上的场强E随x的变化关系如右图所示,x 轴正方向为场强正方向,带正电的点电荷沿x轴运动,则点电荷()A.在x2和x4处电势能相等B.由x1运动到x3的过程中电势能增大C.由x1运动到x4的过程中电势能先减小后增大D.由x1运到到x4的过程中电场力先减小后增大[解析]x2~x4处场强方向沿x轴负方向,则从x2到x4处逆着电场线方向,电势升高,则正电荷在x4处电势能较大,故A错误;x1~x3处场强为x轴负方向,则从x1到x3处逆着电场线方向移动,电势升高,正电荷在x3处电势能较大,故B正确;由x1运动到x4的过程中,逆着电场线方向,电势升高,正电荷的电势能增大,故C错误;由x1运动到x4的过程中,电场强度的绝对值先增大后减小,故由F=qE知,电场力先增大后减小,故D错误.[答案]B2.(2019·河北定州期中)两电荷量分别为q1和q2的点电荷放在x轴上的O、M两点,两电荷连线上各点电势φ随x变化的关系如图所示,其中A、N两点的电势为零,ND段中C点电势最高,则下列选项说法错误的是()A.q1为正电荷,q2为负电荷B.q1的电荷量大于q2的电荷量C.N、C间场强方向沿x轴正方向D.将一负点电荷从N点移到D点,电场力先做正功后做负功[解析]由图知无穷远处的电势为0,A点的电势为0,由于沿着电场线电势降低,所以q1为正电荷,q2为负电荷,故A正确.A点的电势为零,又由于OA >AM,所以q1的电荷量大于q2的电荷量,故B正确.由图可知:从N到C,电势升高,根据沿着电场线电势降低可知,N、C间电场强度方向沿x轴负方向,故C错误.N→D段中,电势先升高后降低,所以场强方向先沿x轴负方向,后沿x轴正方向,将一负点电荷从N点移到D点,电场力先做正功后做负功,故D正确.[答案]C专题强化训练(十)一、选择题1.(2019·东北师大附中教学抽样检测)如右图所示,光滑绝缘水平面上两个相同的带电小圆环A、B,电荷量均为q,质量均为m,用一根光滑绝缘轻绳穿过两个圆环,并系于结点O.在O处施加一水平恒力F使A、B一起加速运动,轻绳恰好构成一个边长为l的等边三角形,则()A .小环A 的加速度大小为3kq 2ml 2B .小环A 的加速度大小为3kq 23ml 2C .恒力F 的大小为3kq 23l 2D .恒力F 的大小为3kq 2l2[解析] 设轻绳的拉力为T ,则对A :T +T cos60°=k q 2l 2;T cos30°=ma A ,联立解得:a A=3kq 23ml 2,选项B 正确,A 错误;恒力F 的大小为F =2ma =2kq 23l2,选项C 、D 错误. [答案] B2.(多选)(2019·武汉二中月考)如右图所示,a 、b 、c 、d 四个质量均为m 的带电小球恰好构成“三星拱月”之形,其中a 、b 、c 三个完全相同的带电小球在光滑绝缘水平面内的同一圆周上绕O 点做半径为R 的匀速圆周运动,三小球所在位置恰好将圆周等分.小球d 位于O 点正上方h 处,且在外力F 作用下恰处于静止状态,已知a 、b 、c 三小球的电荷量均为q ,d 球的电荷量为6q ,h =2R .重力加速度为g ,静电力常量为k .则( )A .小球a 一定带正电B .小球b 的周期为2πR q3mRkC .小球c 的加速度大小为3kq 23mR 2D .外力F 竖直向上,大小等于mg +26kq 2R 2[解析] a 、b 、c 三小球所带电荷量相同,要使它们做匀速圆周运动,则d 球与a 、b 、c 三小球一定带异种电荷,由于d 球的电性未知,所以a 球不一定带正电,故A 错误.设ad 连线与水平方向的夹角为α,则cos α=R h 2+R 2=33,sin α=h h 2+R 2=63;对b 球,根据牛顿第二定律和向心力公式得k 6q ·q h 2+R 2cos α-2k q 2(2R cos30°)2·cos30°=m 4π2T 2R =ma ,解得T =2πRq3mR k ,a =3kq 23mR 2,则小球c 的加速度大小为3kq 23mR 2,故B 、C 正确.对d 球,由平衡条件得F =3k 6q ·qh 2+R 2sin α+mg =mg +26kq 2R 2,故D 正确. [答案] BCD3.(多选)(2019·全国卷Ⅱ)静电场中,一带电粒子仅在电场力的作用下自M 点由静止开始运动,N 为粒子运动轨迹上的另外一点,则( )A .运动过程中,粒子的速度大小可能先增大后减小B .在M 、N 两点间,粒子的轨迹一定与某条电场线重合C .粒子在M 点的电势能不低于其在N 点的电势能D .粒子在N 点所受电场力的方向一定与粒子轨迹在该点的切线平行[解析] 在两个同种点电荷的电场中,一带同种电荷的粒子在两电荷的连线上自M 点由静止开始运动,粒子的速度先增大后减小,选项A 正确;带电粒子仅在电场力作用下运动,若运动到N 点的动能为零,则带电粒子在N 、M 两点的电势能相等;仅在电场力作用下运动,带电粒子的动能和电势能之和保持不变,若粒子运动到N 点时动能不为零,则粒子在N 点的电势能小于在M 点的电势能,即粒子在M 点的电势能不低于其在N 点的电势能,选项C 正确;粒子所受电场力与电场线共线与运动轨迹无关,D 错误.[答案] AC4.(多选)(2019·全国卷Ⅲ)如图,电荷量分别为q 和-q (q >0)的点电荷固定在正方体的两个顶点上,a 、b 是正方体的另外两个顶点.则( )A .a 点和b 点的电势相等B .a 点和b 点的电场强度大小相等C .a 点和b 点的电场强度方向相同D .将负电荷从a 点移到b 点,电势能增加[解析] a 、b 两点到两点电荷连线的距离相等,且关于两点电荷连线中点对称,可知a 、b 两点的电场强度大小相等,方向相同,选项B 、C 均正确.[答案] BC5.(2019·山东省济南市期末测试)两个点电荷位于x 轴上,在它们形成的电场中,若取无限远处的电势为零,则在x 轴正半轴上各点的电势如图中曲线所示,当x →0时,电势φ→∞,当x →∞时,电势φ→0.电势为零的点的横坐标为x 1,电势为最小值-φ0的点的横坐标为x 2,根据图线提供的信息,下列判断正确的是()A.这两个点电荷一定是同种电荷B.这两个点电荷一定是等量的异种电荷C.在x1处的电场强度为零D.在x2处的电场强度为零[解析]若这两个点电荷是同种电荷,则在x1处的电势不可能为零,因此这两个点电荷一定是异种电荷,选项A错误;当x→0时,电势φ→∞,可知在原点一定有正点电荷,负点电荷只能在x轴负半轴上,且负点电荷所带电荷量的绝对值一定大于正点电荷所带电荷量,可知这两个点电荷必定是不等量的异种电荷,选项B错误;根据电场强度与电势的关系可,故在x2处的电场强度为零,在x1处的电场强度不为零,选项D正确、C错误.知E=ΔφΔx[答案]D6.(2019·宝鸡高三一模)如右图所示,竖直放置的两个平行金属板间存在匀强电场,与两板上边缘等高处有两个质量相同的带电小球,小球P从紧靠左极板处由静止开始释放,小球Q从两板正中央由静止开始释放,两小球最终都能运动到右极板上的同一位置,则从开始释放到运动到右极板的过程中,它们的()A.电荷量之比q P∶q Q=2∶1B.电势能减少量之比ΔE p P∶ΔE p Q=2∶1C.运动时间t p>t QD.动能增加量之比ΔE k P∶ΔE k Q=4∶1[解析]小球在竖直方向上做自由落体运动,在水平方向上做匀加速直线运动,根据合运动与分运动的等时性,两小球下落的高度一样,即h =12gt 2,所以运动的时间相同,设为t ,C 错误;在水平方向上有d =12a P t 2=12 Eq P m t 2,12d =12a Q t 2=12 Eq Q mt 2,可得q P ∶q Q =2∶1,A 正确;电势能的减少量等于电场力所做的功,所以有ΔE p P =Uq P ,ΔE p Q =12Uq Q ,所以有ΔE p P ∶ΔE p Q =4∶1,B 错误;运动过程中重力和电场力做功,所以动能的增加量为ΔE k P =mgh +Uq P ,ΔE k Q =mgh +12Uq Q ,所以ΔE k P ∶ΔE k Q ≠4∶1,D 错误. [答案] A7.(2019·全国卷Ⅰ)如图,等边三角形线框LMN 由三根相同的导体棒连接而成,固定于匀强磁场中,线框平面与磁感应强度方向垂直,线框顶点M 、N 与直流电源两端相接.已知导体棒MN 受到的安培力大小为F ,则线框LMN 受到的安培力的大小为( )A .2FB .1.5FC .0.5FD .0[解析] 设三角形边长为l ,通过导体棒MN 的电流大小为I ,则根据并联电路的规律可知通过导体棒ML 和LN 的电流大小为I 2,如图所示,依题意有F =BlI ,则导体棒ML 和LN 所受安培力的合力为F 1=12BlI =12F ,方向与F 的方向相同,所以线框LMN 受到的安培力大小为1.5F ,选项B 正确.[答案] B8.(2017·全国卷Ⅲ)如图,在磁感应强度大小为B 0的匀强磁场中,两长直导线P 和Q 垂直于纸面固定放置,两者之间的距离为l .在两导线中均通有方向垂直于纸面向里的电流I 时,纸面内与两导线距离均为l 的a 点处的磁感应强度为零.如果让P 中的电流反向、其他条件不变,则a 点处磁感应强度的大小为( )A .0 B.33B 0 C.233B 0D .2B 0 [解析] 设导线P 在a 点处产生的磁感应强度为B ,由于a 点处的磁感应强度为零,故导线P 、Q 在a 点处产生的合磁感应强度与B 0等大反向.如图甲所示,由几何关系得,导线P 、Q 在a 点处产生的合磁感应强度B 0=2B cos30°,方向水平向右.若P 中的电流反向、其他条件不变,如图乙所示,由几何关系得,P 、Q 导线在a 点处的磁感应强度变为B ,方向竖直向上,则a 点处合磁感应强度的大小为B 20+⎝⎛⎭⎫B 032=233B 0,故选项C 正确.[答案] C9.(多选)(2019·南京金陵中学二模)间距为L =20 cm 的光滑平行导轨水平放置,导轨左端通过开关S 与内阻不计、电动势为E 的电源相连,右端与半径为L 的两段光滑圆弧导轨相接,一根质量m =60 g 、电阻R =1 Ω、长为L 的导体棒ab ,用长也为L 的绝缘细线悬挂,如图所示,系统空间有竖直方向的匀强磁场,磁感应强度大小为B =0.5 T ,当闭合开关S 后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成θ=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin53°=0.8,cos53°=0.6,g =10 m/s 2,则( )A .磁场方向一定竖直向下B .电源电动势E =3.0 VC .导体棒在摆动过程中所受安培力F =3 ND .导体棒在摆动过程中电源提供的电能为0.048 J[解析] 当开关S 闭合时,导体棒向右摆动,说明其所受安培力水平向右,由左手定则可知,磁场方向竖直向下,故A 正确;设电路中电流为I ,则根据动能定理得-mgL (1-cos53°)+FL sin53°=0,解得安培力F =0.3 N ,由F =BIL =BEL R,得E =3 V ,故B 正确,C 错误;导体棒在摆动过程中电源提供的电能一部分转化为导体棒的机械能E =mgL (1-cos53°)=0.06×10×0.2×0.4 J =0.048 J ,另一部分转化为焦耳热,故D 错误.[答案] AB二、非选择题10.(2019·石家庄高三质检二)如图所示,AB ⊥CD 且A 、B 、C 、D 位于一半径为r 的竖直圆上,在C 点有一固定点电荷,电荷量为+Q .现从A 点将一质量为m 、电荷量为-q 的小球由静止释放,小球沿光滑绝缘轨道ADB 运动到D 点时速度为gr ,g 为重力加速度,不考虑运动电荷对静电场的影响,求:(1)小球运动到D 点时对轨道的压力;(2)小球从A 点到D 点过程中电势能的改变量.[解析] (1)小球在D 点时有F N +k Qq (2r )2-mg =m v 2r。
2021年高考物理第1讲 电场的力的性质

静电场高考第一轮复习第九单元电场的力的性质1必备知识2关键能力第1讲1电荷及电荷守恒定律答案C1电荷及电荷守恒定律2库仑定律2库仑定律C答案3电场强度、点电荷的电场强度D答案3电场强度、点电荷的电场强度4电场线(1)定义:为了形象地描述电场中各点电场强度的强弱及方向,在电场中画出一些曲线,曲线上每一点的切线方向都跟该点的电场强度方向一致,曲线的疏密程度表示电场的强弱。
(2)4电场线(3)六种典型电场的电场线B答案4电场线C答案4电场线考点一库仑定律的综合应用考点一答案解析库仑定律的综合应用D考点一解析库仑定律的综合应用考点一库仑定律的综合应用答案解析D考点一解析库仑定律的综合应用考点一方法库仑定律的综合应用考点一答案解析ACD 库仑定律的综合应用考点一库仑定律的综合应用Array解析考点二电场强度的综合运用电场强度三个表达式的比较考点二答案解析电场强度的综合运用D考点二解析电场强度的综合运用考点二答案解析电场强度的综合运用考点二解析电场强度的综合运用考点二答案解析电场强度的综合运用考点二解析电场强度的综合运用考点二答案解析电场强度的综合运用考点二解析电场强度的综合运用考点二答案解析电场强度的综合运用考点二解析电场强度的综合运用考点二答案解析电场强度的综合运用考点二解析电场强度的综合运用谢谢观赏。
高中物理-专题四第1课时 电场和磁场基本问题

专题四电场和磁场第1课时电场和磁场基本问题1.电场强度的三个公式(1)E=Fq是电场强度的定义式,适用于任何电场。
电场中某点的场强是确定值,其大小和方向与试探电荷q无关,试探电荷q充当“测量工具”的作用。
(2)E=k Qr2是真空中点电荷所形成的电场场强的决定式,E由场源电荷Q和场源电荷到某点的距离r决定。
(3)E=Ud是场强与电势差的关系式,只适用于匀强电场。
注意:式中d为两点间沿电场方向的距离。
2.电场能的性质(1)电势与电势能:φ=E p q。
(2)电势差与电场力做功:U AB=W ABq=φA-φB。
(3)电场力做功与电势能的变化:W=-ΔE p。
3.等势面与电场线的关系(1)电场线总是与等势面垂直,且从电势高的等势面指向电势低的等势面。
(2)电场线越密的地方,等差等势面也越密。
(3)沿等势面移动电荷,电场力不做功,沿电场线移动电荷,电场力一定做功。
4.带电粒子在磁场中的受力情况(1)磁场只对运动的电荷有力的作用,对静止的电荷无力的作用。
(2)洛伦兹力的大小和方向:F洛=q v B sin θ。
注意:θ为v与B的夹角。
F的方向由左手定则判定,四指的指向应为正电荷运动的方向或负电荷运动方向的反方向。
5.洛伦兹力做功的特点由于洛伦兹力始终和速度方向垂直,所以洛伦兹力永不做功。
1.主要研究方法(1)理想化模型法。
如点电荷。
(2)比值定义法。
如电场强度、电势的定义方法,是定义物理量的一种重要方法。
(3)类比的方法。
如电场和重力场的类比;电场力做功与重力做功的类比;带电粒子在匀强电场中的运动和平抛运动的类比。
2.静电力做功的求解方法(1)由功的定义式W=Fl cos α来求。
(2)利用结论“电场力做功等于电荷电势能变化量的负值”来求,即W=-ΔE p。
(3)利用W AB=qU AB来求。
3.电场中的曲线运动的分析采用运动合成与分解的思想方法。
4.匀强磁场中的圆周运动解题关键找圆心:若已知进场点的速度和出场点,可以作进场点速度的垂线,依据是F洛⊥v,与进出场点连线的垂直平分线的交点即为圆心;若只知道进场位置,则要利用圆周运动的对称性定性画出轨迹,找圆心,利用平面几何知识求解问题。
2021年高考物理总复习 第八章 第1讲 磁场的描述及磁场对电流的作用 新人教版

2021年高考物理总复习 第八章 第1讲 磁场的描述及磁场对电流的作用新人教版1.关于磁感应强度B ,下列说法中正确的是( ).A .磁场中某点B 的大小,与放在该点的试探电流元的情况有关B .磁场中某点B 的方向,与放在该点的试探电流元所受磁场力方向一致C .在磁场中某点的试探电流元不受磁场力作用时,该点B 值大小为零D .在磁场中磁感线越密集的地方,磁感应强度越大解析 磁感应强度是磁场本身的属性,在磁场中某处为一恒量,其大小可由B =F IL计算,但与试探电流元的F 、I 、L 的情况无关;B 的方向规定为小磁针N 极所受磁场力的方向,与放在该处的电流元受力方向并不一致;当试探电流元的方向与磁场方向平行时,虽磁感应强度不为零,但电流元所受磁场力却为零;在磁场中磁感线越密集的地方,磁感应强度越大.答案 D2.如图4所示,正方形线圈abcd 位于纸面内,边长为L ,匝数为N ,过ab 中点和cd 中点的连线OO ′恰好位于垂直纸面向里的匀强磁场的右边界上,磁感应强度为B ,则穿过线圈的磁通量为( ).图4A.BL 22B.NBL 22 C .BL 2 D .NBL 2解析 穿过线圈的磁通量Φ=BS =12BL 2,故A 正确. 答案 A3.某同学在做“探究通电直导线产生的磁场”实验时,先在水平实验台上放置一枚小磁针,发现小磁针N极指北,然后他把一直导线沿南北方向置于小磁针正上方,并通入电流强度为I的恒定电流,发现小磁针的N极指向为北偏西60°,他通过查阅资料知当地的地磁场磁感应强度的水平分量为B,则通电导线产生的磁场在小磁针所在处的磁感应强度和通入的电流方向为( ).A.2B由南向北 B.3B由南向北C.2B由北向南 D.33B由北向南解析由题意可知,导线在小磁针处产生的磁场方向指向正西,由矢量合成可得,电流在小磁针处产生的磁感应强度为3B,由安培定则可知电流方向由南向北,故B选项正确.答案 B4.三根平行的长直通电导线,分别通过一个等腰直角三角形的三个顶点且与三角形所在平面垂直,如图所示.现在使每根通电导线在斜边中点O处所产生的磁感应强度大小均为B,则下列说法中正确的有( )图3A.O点处实际磁感应强度的大小为BB.O点处实际磁感应强度的大小为5BC.O点处实际磁感应强度的方向与斜边夹角为90°D.O点处实际磁感应强度的方向与斜边夹角为arctan 2解析先根据安培定则确定每根通电导线在O点所产生的磁感应强度的方向,再根据矢量合成法则求出结果.根据安培定则,I1与I3在O点处产生的磁感应强度B1、B3方向相同,I2在O点处产生的磁感应强度方向与B1、B3方向垂直,如图所示,故O点处实际磁感应强度大小为B0=B1+B32+B22=5B,A错误、B正确;由几何关系可知O点处实际磁感应强度方向与斜边夹角为arctan 2,C错误、D正确.答案 BD5.有两根长直导线a、b互相平行放置,如图6所示为垂直于导线的截面图.在图中所示的平面内,O点为两根导线连线的中点,M、N为两根导线附近的两点,它们在两导线连线的中垂线上,且与O点的距离相等.若两导线中通有大小相等、方向相同的恒定电流I,则关于线段MN上各点的磁感应强度的说法中正确的是( ).图6A.M点和N点的磁感应强度大小相等,方向相同B.M点和N点的磁感应强度大小相等,方向相反C.在线段MN上各点的磁感应强度都不可能为零D.在线段MN上只有一点的磁感应强度为零解析两根导线分别在M点和N点产生的磁感应强度大小相等,方向相反,所以M点、N点的磁感应强度大小相等,方向相反,选项B正确;线段MN中点O的磁感应强度为零,选项D正确.答案BD6.在匀强磁场中某处P放一个长度为L=20 cm,通电电流I=0.5 A的直导线,测得它受到的最大磁场力F=1.0 N,其方向竖直向上,现将该通电导线从磁场中撤走,则P处磁感应强度为( ).A.零B.10 T,方向竖直向上C.0.1 T,方向竖直向上D.10 T,方向肯定不是竖直向上解析由公式B=FIL可知,把数值代入可以得到B=10 T,公式中L是与B垂直的,所以P处磁感应强度的方向肯定不是竖直向上的.答案 D7.如图7所示,一段导线abcd位于磁感应强度大小为B的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直.线段ab、bc和cd的长度均为L,且∠abc=∠bcd=135°.流经导线的电流为I,方向如图中箭头所示.导线段abcd所受到的磁场的作用力的合力( )图7A.方向沿纸面向上,大小为(2+1)ILBB.方向沿纸面向上,大小为(2-1)ILBC.方向沿纸面向下,大小为(2+1)ILBD.方向沿纸面向下,大小为(2-1)ILB解析安培力的合力F=BIad=BI(ab·cos 45°+bc+cd·cos 45°)=(2+1)BIL,故A正确.答案 A8.如图8所示,蹄形磁铁用悬线悬于O点,在磁铁的正下方有一水平放置的长直导线,当导线中通以由左向右的电流时,蹄形磁铁的运动情况将是( ).图8A.静止不动B.向纸外平动C.N极向纸外、S极向纸内转动D.N极向纸内、S极向纸外转动解析画出导线所在位置的磁感线分布情况,如图所示,导线左边与右边的磁场方向不同,故把导线分为左右两部分.由左手定则可知左边的导线受到向纸内的作用力,右边的导线受到向纸外的作用力,所以导线左边向纸内转动,右边向纸外转动,若导线固定,蹄形磁铁可以自由转动,磁铁的转动方向与导线的转动方向相反,所以蹄形磁铁的N极向纸外转动,S极向纸内转动,C项正确.答案 C9.电磁炮是一种理想的兵器,它的主要原理如图9所示,利用这种装置可以把质量为m=2.0 g的弹体(包括金属杆EF的质量)加速到6 km/s,若这种装置的轨道宽为d=2 m,长L=100 m,电流I=10 A,轨道摩擦不计且金属杆EF与轨道始终接触良好,则下列有关轨道间所加匀强磁场的磁感应强度和磁场力的最大功率结果正确的是( ).图8A .B =18 T ,P m =1.08×108 WB .B =0.6 T ,P m =7.2×104 WC .B =0.6 T ,P m =3.6×106 WD .B =18 T ,P m =2.16×106 W解析 通电金属杆在磁场中受安培力的作用而对弹体加速,由功能关系得BIdL =12mv 2m ,代入数值解得B =18 T ;当速度最大时磁场力的功率也最大,即P m =BIdv m ,代入数值得P m =2.16×106 W ,故D 项正确.答案 D 图8--1-209.电磁轨道炮工作原理如图所示.待发射弹体可在两平行轨道之间自由移动,并与轨道保持良好接触.电流I 从一条轨道流入,通过导电弹体后从另一条轨道流回.轨道电流可形成在弹体处垂直于轨道面的磁场(可视为匀强磁场),磁感应强度的大小与I 成正比.通电的弹体在轨道上受到安培力的作用而高速射出.现欲使弹体的出射速度增加至原来的2倍,理论上可采用的方法是( )图10A .只将轨道长度L 变为原来的2倍B .只将电流I 增加至原来的2倍C .只将弹体质量减至原来的一半D .将弹体质量减至原来的一半,轨道长度L 变为原来的2倍,其他量不变解析:设轨道长度为L ,弹体质量为m ,电流为I ,轨道宽度为d ,发射速度为v ,此时B =kI ,根据动能定理,kI ·I ·d ·L =12mv 2.解得v =I2kdL m,由此可确定,B 、D 正确.答案:BD 11.如图1所示,质量为m 、长为L 的直导线用两绝缘细线悬挂于O 、O ′,并处于匀强磁场中.导线中通以沿x 轴正方向的电流I ,悬线与竖直方向的夹角为θ,且导线保持静止,则磁感应强度的方向和大小可能为( ).图11A .z 轴正向,mg IL tan θB .y 轴正向,mg ILC .z 轴负向,mg IL tan θD .沿悬线向上,mg IL sin θ解析 当匀强磁场的方向沿y 轴正方向时,由左手定则判断可知,安培力方向竖直向上,则BIL =mg ,解得B =mg IL ;当匀强磁场的方向沿z 轴负方向时,由左手定则判断可知,安培力沿水平方向,逆着电流方向看,受力如图所示,其中安培力F 安=BIL ,则BIL =mg tan θ,解得B =mgILtan θ.答案 BC12.如图2所示,在倾角为θ=30°的斜面上,固定一宽L =0.25 m 的平行金属导轨,在导轨上端接入电源和滑动变阻器R .电源电动势E =12 V ,内阻r =1 Ω,一质量m =20 g 的金属棒ab 与两导轨垂直并接触良好.整个装置处于磁感应强度B =0.80 T 、垂直于斜面向上的匀强磁场中(导轨与金属棒的电阻不计).金属导轨是光滑的,取g =10 m/s 2,要保持金属棒在导轨上静止,求:图12(1)金属棒所受到的安培力的大小.(2)通过金属棒的电流的大小.(3)滑动变阻器R 接入电路中的阻值.解析 (1)金属棒静止在金属导轨上受力平衡,如图所示F 安=mg sin 30°,代入数据得F 安=0.1 N.(2)由F 安=BIL 得I =F 安BL=0.5 A. (3)设滑动变阻器接入电路的阻值为R 0,根据闭合电路欧姆定律得:E =I (R 0+r )解得R 0=EI-r =23 Ω.答案 (1)0.1 N (2)0.5 A(3)23 Ω 28346 6EBA 溺h20840 5168 全o +25667 6443 摃20925 51BD 冽32449 7EC1 绁24943 616F 慯 \ #。
2021届高考物理新课标一轮复习专题精讲精练之电场和磁场中的曲线运动Word版含答案

电场和磁场中的曲线运动(限时:45分钟)1.一带电粒子仅在电场力作用下,从电场中的a点以初速度v0进入电场并沿虚线所示的轨迹运动到b点,如图1所示,可以推断该粒子()图1A.在a点的加速度比b点大B.在a点的电势能比b点小C.在a点的电势比b点小D.在a点的动能比b点小答案 D解析a点的电场线比b点电场线稀疏,故a点场强比b点场强小,粒子在a点的加速度比在b点时小,选项A错误;做曲线运动的物体受到的合力指向曲线的内侧,从a点到b点,电场力做正功,电势能减小,故粒子在a点的电势能比在b点时大,选项B错误;沿电场线方向电势降低,故a点电势高于b点电势,选项C错误;电场力做正功,依据动能定理可知,粒子在a点的动能比在b点时小,选项D正确.2.如图2所示,两个等量异种点电荷的连线和其中垂线上有a、b、c三点,下列说法正确的是()图2A.a点电势比b点电势高B.a、b两点的场强方向相同,b点场强比a点场强大C.b点电势比c点电势高,场强方向相同D.一个电子仅在电场力作用下不行能沿如图所示的曲线轨迹从a点运动到c点答案BD解析由等量异种点电荷电场分布的特点可知,等量异种点电荷的中垂面为等势面,因此a、b两点电势相等,A错误;在中垂面上场强方向都与中垂面垂直,且从b点向外越来越小,B正确;在两点电荷连线上,沿电场线方向电势越来越低,所以b点电势比c点电势低,C错误;电子受力应指向电场的反方向,依据力与速度的关系可推断D正确.3.如图3所示,光滑绝缘杆PQ放置在竖直平面内,PQ的外形与以初速度v0(v0=2gh)水平抛出的物体的运动轨迹相同,P端为抛出点,Q端为落地点,P点距地面的高度为h .现在将该轨道置于水平向右的匀强电场中,将一带正电小球套于其上,由静止开头从轨道P端滑下.已知重力加速度为g,电场力等于重力.当小球到达轨道Q端时()图3A.小球的速率为6ghB.小球的速率为2ghC.小球在水平方向的速度大小为2ghD.小球在水平方向的速度大小为2gh答案 A解析小球做平抛运动时,竖直方向上做自由落体运动,由运动学公式得竖直速度v y=2gh,水平位移x=2gh·t,竖直位移h=v y2·t=122gh·t,解得x=2h,小球运动到Q端时的合速度方向与水平方向的夹角为45°,当带电小球沿杆下滑时,对于全过程依据动能定理得mgh+qEx=12m v2,解得v=6gh,A正确,B错误;由于合速度的方向就是轨迹的切线方向,因此沿杆运动时合速度的方向与小球平抛时合速度的方向相同,小球沿杆运动到Q端时的速度与水平方向的夹角也为45°,将其分解,小球的水平方向的速度大小为v cos 45°=22×6gh=3gh,C、D错误.4.如图4,在x>0、y>0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy平面对里,大小为B,现有四个相同的带电粒子,由x轴上的P点以不同初速度平行于y轴射入此磁场,其出射方向如图所示,不计重力影响,则()。
2021届高三物理二轮复习 专题三 电场和磁场 第1讲 电场和磁场课件

第1讲 电场及带电粒子在电场中的运动
栏目导航
2年考情回顾 热点题型突破 热点题源预测 对点规范演练 逐题对点特训
2年考情回顾
设问 方式
①电场的基本性质
[例](2017·全国卷Ⅰ,20题) (2017·全国卷Ⅲ,21题) (2017·江苏卷, 8题) (2017·天津卷,7题) (2016·全国卷Ⅰ,20题) (2016·全国卷Ⅱ,15题)
解析 粒子受重力和电场力,开始时平衡, 有 mg=qd-U l, 当把金属板从电容器中快速抽出后,根据牛顿第二定律, 有 mg-qUd =ma,联立解得 a=dl g,故选 A.
解电容器问题的两个常用技巧 (1)在电荷量保持不变的情况下,有 E=Ud =CQd=4πεrkSQ,知电场强度与板间距离 无关. (2)对平行板电容器的有关物理量 Q、E、U、C 进行讨论时,关键在于弄清哪些 是变量,哪些是不变量,在变量中哪些是自变量,哪些是因变量,抓住 C=4πεrkSQ、Q =CU、E=Ud 进行判断即可.
答案 见解析
2.(2016·天津卷)如图所示,平行板电容器带有等量异种电荷,与静电计相 连,静电计金属外壳和电容器下极板都接地.在两极板间有一固定在P点的点电 荷,以E表示两板间的电场强度,Ep表示点电荷在P点的电势能,θ表示静电计指针 的偏角.若保持下极板不动,将上极板向下移动一小段距离至图中虚线位置,则
突破点拨 (1)匀强电场的方向平行于xOy平面,在平面xOy内如何根据三点电势能高低求 匀强电场大小,由于ac垂直于bc,所以可以通过这两个方向上电势变化和距离求出 匀速电场沿这两个方向的电场强度分量,再根据矢量合成求合场强. (2)根据Ep=qφ比较电子在a和b的电势能大小,要注意电子带负电.
电场与磁场专题(2024高考真题及解析)

电场与磁场专题1.(多选)[2024·安徽卷] 空间中存在竖直向下的匀强电场和垂直于纸面向里的匀强磁场,电场强度大小为E ,磁感应强度大小为B.一质量为m 的带电油滴a ,在纸面内做半径为R 的圆周运动,轨迹如图所示.当a 运动到最低点P 时,瞬间分成两个小油滴Ⅰ、Ⅰ,二者带电荷量、质量均相同.Ⅰ在P 点时与a 的速度方向相同,并做半径为3R 的圆周运动,轨迹如图所示.Ⅰ的轨迹未画出.已知重力加速度大小为g ,不计空气浮力与阻力以及Ⅰ、Ⅰ分开后的相互作用,则 ( )A .油滴a 带负电,所带电荷量的大小为mgE B .油滴a 做圆周运动的速度大小为gBREC .小油滴Ⅰ做圆周运动的速度大小为3gBRE ,周期为4πEgB D .小油滴Ⅰ沿顺时针方向做圆周运动1.ABD [解析] 油滴a 做圆周运动,故重力与电场力平衡,可知带负电,有mg =Eq ,解得q =mgE ,故A 正确;根据洛伦兹力提供向心力有Bqv =m v 2R ,得R =mvBq ,解得油滴a 做圆周运动的速度大小为v =gBR E ,故B 正确;设小油滴Ⅰ的速度大小为v 1,得3R =m 2v 1B q 2,解得v 1=3BqR m =3gBRE ,周期为T =2π·3R v 1=2πEgB ,故C 错误;带电油滴a 分离前后动量守恒,设分离后小油滴Ⅰ的速度为v 2,取油滴a分离前瞬间的速度方向为正方向,得mv =m 2v 1+m 2v 2,解得v 2=-gBRE,由于分离后的小油滴受到的电场力和重力仍然平衡,分离后小油滴Ⅰ的速度方向与正方向相反,根据左手定则可知小油滴Ⅰ沿顺时针方向做圆周运动,故D 正确.2.[2024·北京卷] 如图所示,两个等量异种点电荷分别位于M 、N 两点,P 、Q 是MN 连线上的两点,且MP=QN.下列说法正确的是()A.P点电场强度比Q点电场强度大B.P点电势与Q点电势相等C.若两点电荷的电荷量均变为原来的2倍,P点电场强度大小也变为原来的2倍D.若两点电荷的电荷量均变为原来的2倍,P、Q两点间电势差不变2.C[解析] 由等量异种点电荷的电场线分布特点知,P、Q两点电场强度相等,A错误;由沿电场线方向电势越来越低知,P点电势高于Q点电势,B错误;由电场叠加得P点电场强度E=k QMP2+k QNP2,若仅两点电荷的电荷量均变为原来的2倍,则P点电场强度大小也变为原来的2倍,同理Q点电场强度大小也变为原来的2倍,而P、Q间距不变,根据U=Ed定性分析可知P、Q两点间电势差变大,C正确,D错误.3.[2024·北京卷] 我国“天宫”空间站采用霍尔推进器控制姿态和修正轨道.图为某种霍尔推进器的放电室(两个半径接近的同轴圆筒间的区域)的示意图.放电室的左、右两端分别为阳极和阴极,间距为d.阴极发射电子,一部分电子进入放电室,另一部分未进入.稳定运行时,可视为放电室内有方向沿轴向向右的匀强电场和匀强磁场,电场强度和磁感应强度大小分别为E和B1;还有方向沿半径向外的径向磁场,大小处处相等.放电室内的大量电子可视为处于阳极附近,在垂直于轴线的平面绕轴线做半径为R的匀速圆周运动(如截面图所示),可与左端注入的氙原子碰撞并使其电离.每个氙离子的质量为M、电荷量为+e,初速度近似为零.氙离子经过电场加速,最终从放电室右端喷出,与阴极发射的未进入放电室的电子刚好完全中和.已知电子的质量为m、电荷量为-e;对于氙离子,仅考虑电场的作用.(1)求氙离子在放电室内运动的加速度大小a;(2)求径向磁场的磁感应强度大小B2;(3)设被电离的氙原子数和进入放电室的电子数之比为常数k,单位时间内阴极发射的电子总数为n,求此霍尔推进器获得的推力大小F.3.(1)eEM (2)mEB1eR(3)nk√2eEMd1+k[解析] (1)氙离子在放电室时只受电场力作用,由牛顿第二定律有eE=Ma解得a=eEM(2)电子处于阳极附近,在垂直于轴线的平面绕轴线做半径为R的匀速圆周运动,沿轴向向右的匀强磁场的洛伦兹力提供向心力,则有B1ev=m v 2R可得v=B1eRm轴线方向上所受电场力(水平向左)与径向磁场的洛伦兹力(水平向右)平衡,即Ee=evB2解得B2=mEB1eR(3)单位时间内阴极发射的电子总数为n,设单位时间内被电离的氙原子数为N,根据被电离的氙原子数和进入放电室的电子数之比为常数k,可知进入放电室的电子数为Nk又由于这些电离氙原子数与未进入放电室的电子刚好完全中和,说明未进入放电室的电子数也为N即有n=N+Nk则单位时间内被电离的氙离子数N=nk1+k氙离子经电场加速,有eEd=12M v12-0可得v1=√2eEdM设时间Δt内氙离子所受到的作用力为F',由动量定理有F'·Δt=N·Δt·Mv1解得F'=nk√2eEMd1+k由牛顿第三定律可知,霍尔推进器获得的推力大小F=F'则F=nk√2eEMd1+k4.[2024·福建卷] 以O点为圆心,半径为R的圆上八等分放置电荷,除G为-Q,其他为+Q,M、N为半径上的点,OM=ON,已知静电力常量为k,则O点场强大小为,M点电势(选填“大于”“等于”或“小于”)N点电势.将+q点电荷从M沿MN移动到N点,电场力(选填“做正功”“做负功”或“不做功”).4.2kQR2大于做正功[解析] 根据点电荷的场强特点可知,除了MN连线上的正负电荷外,其余的6个电荷形成的电场在O点处相互抵消,故O点场强大小为E O=kQR2+kQR2=2kQR2;根据对称性可知,若没有沿水平直径方向上的正电荷和负电荷,则M和N点的电势相等,由于M点靠近最左边的正电荷,N点靠近最右边的负电荷,故M点电势大于N点电势;将+q点电荷从M沿MN移动到N点,由于电势降低,故电场力做正功.5.[2024·甘肃卷] 一平行板电容器充放电电路如图所示.开关S接1,电源E给电容器C充电;开关S接2,电容器C对电阻R放电.下列说法正确的是()A.充电过程中,电容器两极板间电势差增加,充电电流增加B.充电过程中,电容器的上极板带正电荷、流过电阻R的电流由M点流向N点C.放电过程中,电容器两极板间电势差减小,放电电流减小D.放电过程中,电容器的上极板带负电荷,流过电阻R的电流由N点流向M点5.C[解析] 充电过程中,随着电容器带电荷量的增加,电容器两极板间电势差增加,充电电流在减小,故A错误;根据电路图可知,充电过程中,电容器的上极板带正电荷,流过电阻R的电流由N点流向M点,故B错误;放电过程中,随着电容器带电荷量的减小,电容器两极板间电势差减小,放电电流在减小,故C正确;根据电路图可知,放电过程中,电容器的上极板带正电荷,流过电阻R的电流由M点流向N点,故D错误.6.(多选)[2024·甘肃卷] 某带电体产生电场的等势面分布如图中实线所示,虚线是一带电粒子仅在此电场作用下的运动轨迹,M、N分别是运动轨迹与等势面b、a的交点,下列说法正确的是 ( )A .粒子带负电荷B .M 点的电场强度比N 点的小C .粒子在运动轨迹上存在动能最小的点D .粒子在M 点的电势能大于在N 点的电势能6.BCD [解析] 根据粒子所受电场力指向曲线轨迹的凹侧可知,带电粒子带正电荷,故A 错误;等差等势面越密集的地方场强越大,故M 点的电场强度比N 点的小,故B 正确;粒子带正电,因为M 点的电势大于N 点的电势,故粒子在M 点的电势能大于在N 点的电势能,故D 正确;由于带电粒子仅在电场作用下运动,电势能与动能总和不变,故可知当电势能最大时动能最小,故粒子在运动轨迹上到达最大电势处时动能最小,故C 正确.7.[2024·甘肃卷] 质谱仪是科学研究中的重要仪器,其原理如图所示.Ⅰ为粒子加速器,加速电压为U ;Ⅰ为速度选择器,匀强电场的电场强度大小为E 1,方向沿纸面向下,匀强磁场的磁感应强度大小为B 1,方向垂直纸面向里;Ⅰ为偏转分离器,匀强磁场的磁感应强度大小为B 2,方向垂直纸面向里.从S 点释放初速度为零的带电粒子(不计重力),加速后进入速度选择器做直线运动,再由O 点进入分离器做圆周运动,最后打到照相底片的P 点处,运动轨迹如图中虚线所示. (1)粒子带正电还是负电?求粒子的比荷. (2)求O 点到P 点的距离.(3)若速度选择器Ⅰ中匀强电场的电场强度大小变为E 2(E 2略大于E 1),方向不变,粒子恰好垂直打在速度选择器右挡板的O'点上.求粒子打在O'点的速度大小.7.(1)正电E 122UB 12(2)4UB 1E 1B 2 (3)2E 2-E1B 1[解析] (1)由于粒子在偏转分离器Ⅰ中向上偏转,根据左手定则可知粒子带正电;设粒子的质量为m ,电荷量为q ,粒子进入速度选择器Ⅰ时的速度为v 0,在速度选择器中粒子做匀速直线运动,由平衡条件有qv 0B 1=qE 1在粒子加速器Ⅰ中,由动能定理有 qU =12m v 02联立解得粒子的比荷为q m =E 122UB 12(2)在偏转分离器Ⅰ中,洛伦兹力提供向心力,有qv 0B 2=m v 02r可得O点到P点的距离为OP=2r=4UB1E1B2(3)粒子进入速度选择器Ⅰ瞬间,粒子受到向上的洛伦兹力F洛=qv0B1向下的电场力F=qE2由于E2>E1,且qv0B1=qE1所以通过配速法,如图所示其中满足qE2=q(v0+v1)B1则粒子在速度选择器中水平向右以速度v0+v1做匀速运动的同时,在竖直面内以速度v1做匀速圆周运动,当速度转向到水平向右时,满足垂直打在速度选择器右挡板的O'点的要求,故此时粒子打在O'点的速度大小为v'=v0+v1+v1=2E2-E1B18.(多选)[2024·广东卷] 污水中的污泥絮体经处理后带负电,可利用电泳技术对其进行沉淀去污,基本原理如图所示.涂有绝缘层的金属圆盘和金属棒分别接电源正、负极,金属圆盘置于容器底部,金属棒插入污水中,形成如图所示的电场分布,其中实线为电场线,虚线为等势面.M点和N点在同一电场线上,M点和P点在同一等势面上.下列说法正确的有()A.M点的电势比N点的低B.N点的电场强度比P点的大C.污泥絮体从M点移到N点,电场力对其做正功D.污泥絮体在N点的电势能比其在P点的大8.AC[解析] 电场线的疏密程度反映电场强度大小,电场线越密则电场强度越大,由于N点附近的电场线比P点附近的稀疏,故N点的电场强度比P点的小,B错误;沿电场线方向电势逐渐降低,故M点的电势比N点的低,污泥絮体带负电,故其受到的电场力方向与电场强度方向相反,若从M点移到N点,则电场力对其做正功,A、C正确;由于M点和P点在同一等势面上,故M点电势等于P点电势,则N点电势高于P点电势,污泥絮体带负电,即q<0,根据电势能E p=qφ可知,污泥絮体在N点的电势能比其在P点的小,D错误.9.[2024·广东卷] 如图甲所示,两块平行正对的金属板水平放置,板间加上如图乙所示幅值为U0、周期为t0的交变电压.金属板左侧存在一水平向右的恒定匀强电场,右侧分布着垂直纸面向外的匀强磁场,磁感应强度大小为B.一带电粒子在t=0时刻从左侧电场某处由静止释放,在t=t0时刻从下板左端边缘位置水平向右进入金属板间的电场内,在t=2t0时刻第一次离开金属板间的电场、水平向右进入磁场,并在t=3t0时刻从下板右端边缘位置再次水平进入金属板间的电场.已知金属板的板长是板间距离的π3倍,粒子质量为m.忽略粒子所受的重力和场的边缘效应.(1)判断带电粒子的电性并求其所带的电荷量q;(2)求金属板的板间距离D和带电粒子在t=t0时刻的速度大小v;(3)求从t=0时刻开始到带电粒子最终碰到上金属板的过程中,电场力对粒子做的功W.9.(1)带正电πmBt0(2)√3πU0t08B√π3U024Bt0(3)(π3+16π)mU048Bt0[解析] (1)由带电粒子在左侧电场中由静止释放后加速运动的方向可知粒子带正电(或由带电粒子在磁场中做圆周运动的方向结合左手定则可知粒子带正电).设粒子在磁场内做圆周运动的速度为v,半径为r,根据洛伦兹力提供向心力有qvB=m v 2r粒子在磁场中运动半个圆周所用的时间Δt=3t0-2t0粒子在磁场中做圆周运动的周期为T=2Δt又知T=2πrv联立解得q=πmBt0(2)设金属板间的电场强度为E,粒子在金属板间运动的加速度为a,则有E=U0Da=qEmt 0~2t 0内,粒子在金属板间的电场内做两个对称的类平抛运动,在垂直于金属板方向的位移等于在磁场中做圆周运动的直径,即y =2r 在垂直于金属板方向有y =2×12a (t 02)2在沿金属板方向有π3D =vt 0 联立解得D =√3πU 0t 08B ,v =√π3U 024Bt 0(3)由(1)(2)可知y =2D3由对称性可知,3t 0~4t 0内,粒子第二次进入金属板间的电场内,粒子在竖直方向的位移仍为y ,由于y <D ,故粒子不会碰到金属板.t =4t 0后,粒子进入左侧电场,先减速到速度为零,后反向加速,并在t =6t 0时刻第三次进入金属板间的电场内,此时粒子距上板的距离为h =D -y =D3,注意到h =y2,故粒子恰在加速阶段结束时碰到金属板.粒子第一次、第二次进出金属板间的电场过程中,电场力做功为0,粒子第三次进入金属板间的电场后,电场力做功为qEh ,设粒子在左侧电场中运动时电场力做功为W 左,根据动能定理有 W 左=12mv 2电场力对粒子做的总功为W =W 左+qEh联立解得W =(π3+16π)mU 048Bt 010.[2024·广西卷] xOy 坐标平面内一有界匀强磁场区域如图所示,磁感应强度大小为B ,方向垂直纸面向里.质量为m ,电荷量为+q 的粒子,以初速度v 从O 点沿x 轴正向开始运动,粒子过y 轴时速度与y 轴正向夹角为45°,交点为P .不计粒子重力,则P 点至O 点的距离为 ( )A .mv qBB .3mv2qBC .(1+√2)mvqB D .(1+√22)mvqB10.C [解析] 粒子运动轨迹如图所示,在磁场中,根据洛伦兹力提供向心力有qvB =m v 2r ,可得粒子做圆周运动的半径为r =mvqB ,根据几何关系可得P 点至O 点的距离为L PO =r +r sin45°=(1+√2)mvqB ,故选C .11.[2024·广西卷] 如图所示,将不计重力、电荷量为q 的带负电的小圆环套在半径为R 的光滑绝缘半圆弧上,半圆弧直径两端的M 点和N 点分别固定电荷量为27Q 和64Q 的负点电荷.将小圆环从靠近N 点处静止释放,小圆环先后经过图上P 1点和P 2点,己知sin θ=35,则小圆环从P 1点运动到P 2点的过程中 ( )A .静电力做正功B .静电力做负功C .静电力先做正功再做负功D .静电力先做负功再做正功11.A [解析] 沿电场线越靠近负电荷则电势越低,画出两个不等量负点电荷的电场线分布如图甲所示,半圆与电场线的交点中其电场强度沿半径方向时,该点对应的电势最高,设该点为P ,如图乙所示,设连线PM 与直径MN 的夹角为α,则P 点到M 点的距离d M =2R cos α,P 点到N 点的距离为d N =2R sin α,M 点处点电荷在P 点产生的电场强度为E M =k 27Q d M2,N点处点电荷在P点产生的电场强度为E N =k64Qd N 2,P 点的电场强度沿着圆半径方向,由电场叠加原理可知E NE M=tan α,联立解得α=53°,已知P 2点和N 点连线与直径MN 的夹角恰好为37°,则P 2点和M 点连线与直径MN 的夹角恰好为53°,故半圆上P 2点的电势最高,因此带负电的圆环从P 1点运动到P 2点的过程中,电势一直升高,静电力一直做正功,选项A 正确.12.(多选)[2024·海南卷] 真空中有两个点电荷,电荷量均为-q (q ≥0),固定于相距为2r 的P 1、P 2两点,O 是P 1P 2连线的中点,M 点在P 1P 2连线的中垂线上,距离O 点为r ,N 点在P 1P 2连线上,距离O 点为x (x ≪r ),已知静电力常量为k ,则下列说法正确的是 ( )A .P 1P 2中垂线上电场强度最大的点到O 点的距离为√33rB .P 1P 2中垂线上电场强度的最大值为4√3kq9r 2C .在M 点放入一电子,从静止释放,电子的加速度一直减小D .在N 点放入一电子,从静止释放,电子的运动可视为简谐运动12.BCD [解析] 设P 1处的点电荷在P 1P 2中垂线上某点A 处产生的场强与竖直方向的夹角为θ,则根据场强的叠加原理可知,A 点的合场强为E =k 2qr 2sin 2 θcos θ,根据均值不等式可知当cos θ=√33时E 有最大值,且最大值为E m =4√3kq9r 2,此时A 点到O 点的距离为y =√22r ,故A 错误,B 正确;在M 点放入一电子,从静止释放,由于r >y =√22r ,可知电子向上运动的过程中所受电场力一直减小,则电子的加速度一直减小,故C 正确;根据等量同种电荷的电场线分布可知,电子运动过程中,O 点为平衡位置,可知当发生的位移为x 时,粒子受到的电场力为F =keq ·4rx(r -x )2(r+x )2,由于x ≪r ,整理后有F =4keqr 3·x ,在N 点放入一电子,从静止释放,电子的运动可视为以O 点为平衡位置的简谐运动,故D 正确.13.[2024·海南卷] 如图,在xOy 坐标系中有三个区域,圆形区域Ⅰ分别与x 轴和y 轴相切于P 点和S 点.半圆形区域Ⅰ的半径是区域Ⅰ半径的2倍.区域Ⅰ、Ⅰ的圆心O 1、O 2连线与x 轴平行,半圆与圆相切于Q 点,QF 垂直于x 轴,半圆的直径MN 所在的直线右侧为区域Ⅰ.区域Ⅰ、Ⅰ分别有磁感应强度大小为B 、B 2的匀强磁场,磁场方向均垂直纸面向外.区域Ⅰ下方有一粒子源和加速电场组成的发射器,可将质量为m 、电荷量为q 的粒子由电场加速到v 0.改变发射器的位置,使带电粒子在OF 范围内都沿着y 轴正方向以相同的速度v 0沿纸面射入区域Ⅰ.已知某粒子从P 点射入区域Ⅰ,并从Q 点射入区域Ⅰ.(不计粒子的重力和粒子之间的影响) (1)求加速电场两板间的电压U 和区域Ⅰ的半径R.(2)在能射入区域Ⅰ的粒子中,某粒子在区域Ⅰ中运动的时间最短,求该粒子在区域Ⅰ和区域Ⅰ中运动的总时间t.(3)在区域Ⅰ加入匀强磁场和匀强电场,磁感应强度大小为B ,方向垂直纸面向里,电场强度的大小E =Bv 0,方向沿x 轴正方向.此后,粒子源中某粒子经区域Ⅰ、Ⅰ射入区域Ⅰ,进入区域Ⅰ时速度方向与y 轴负方向成74°角.当粒子动能最大时,求粒子的速度大小及所在的位置到y 轴的距离(sin37°=35,sin53°=45).13.(1)mv 022qmv 0qB (2)πmqB(3)2.6v 0172mv 025qB[解析] (1)根据动能定理得qU =12m v 02解得U =mv 022q粒子进入区域Ⅰ做匀速圆周运动,根据题意某粒子从P 点射入区域Ⅰ,并从Q 点射入区域Ⅰ,故可知此时粒子的运动轨迹半径与区域Ⅰ的半径R 相等,粒子在磁场中做匀速圆周运动,由洛伦兹力提供向心力qBv 0=m v 02R 解得R =mv0qB(2)带电粒子在OF 范围内都沿着y 轴正方向以相同的速度v 0沿纸面射入区域Ⅰ,由(1)可得,粒子在区域Ⅰ中做匀速圆周运动,轨迹半径为R ,因为在区域Ⅰ中的磁场半径和轨迹半径相等,所以粒子射入点、区域Ⅰ圆心O 1、粒子出射点、轨迹圆心O'四点构成一个菱形,由几何关系可得,区域Ⅰ圆心O 1和粒子出射点连线平行于粒子射入点与轨迹圆心O'连线,则区域Ⅰ圆心O 1和粒子出射点连线水平,根据磁聚焦原理可知粒子都从Q 点射出,粒子射入区域Ⅰ,仍做匀速圆周运动,由洛伦兹力提供向心力q B2v 0=m v 02R '解得R'=2R如图甲所示,要使粒子在区域Ⅰ中运动的时间最短,轨迹所对应的圆心角最小,可知在区域Ⅰ中运动的圆弧所对的弦长最短,即此时最短弦长为区域Ⅰ的磁场圆半径2R ,根据几何知识可得此时在区域Ⅰ和区域Ⅰ中运动的轨迹所对应的圆心角都为60°,粒子在两区域磁场中运动周期分别为 T 1=2πR v 0=2πmqBT 2=2π·2R v 0=4πmqB 故可得该粒子在区域Ⅰ和区域Ⅰ中运动的总时间为 t =60°360°T 1+60°360°T 2=πmqB甲(3)如图乙所示,将速度v 0分解为沿y 轴正方向的速度v 0及速度v',因为E =Bv 0,可得qE =qBv 0,故可知沿y 轴正方向的速度v 0产生的洛伦兹力与电场力平衡,粒子同时受到另一方向的洛伦兹力qBv',故粒子沿y 轴正方向做旋进运动,根据几何关系可知 v'=2v 0sin 53°=1.6v 0故当v'方向为竖直向上时粒子速度最大,最大速度为 v m =v 0+1.6v 0=2.6v 0根据几何关系可知此时所在的位置到y 轴的距离为 L =R'+R'sin 53°+2R +2R =6.88R =172mv 025qB乙14.[2024·河北卷] 我国古人最早发现了尖端放电现象,并将其用于生产生活,如许多古塔的顶端采用“伞状”金属饰物在雷雨天时保护古塔.雷雨中某时刻,一古塔顶端附近等势线分布如图所示,相邻等势线电势差相等,则a 、b 、c 、d 四点中电场强度最大的是 ( )A .a 点B .b 点C .c 点D .d 点14.C [解析] 在静电场中,等差等势线的疏密程度反映电场强度的大小,等差势线越密,则电场强度越大.由题图可知,c 点等差等势线最密集,故c 点电场强度最大,C 正确.15.[2024·河北卷] 如图所示,真空中有两个电荷量均为q (q >0)的点电荷,分别固定在正三角形ABC 的顶点B 、C.M 为三角形ABC 的中心,沿AM 的中垂线对称放置一根与三角形共面的均匀带电细杆,电荷量为q2.已知正三角形ABC 的边长为a ,M 点的电场强度为0,静电力常量为k.顶点A 处的电场强度大小为( )A .2√3kq a 2B .kq a 2(6+√3)C .kq a 2(3√3+1)D .kqa2(3+√3)15.D [解析] 如图所示,B 、C 两处点电荷在M 处产生的电场强度大小E 1=E 2=kq(√33a )2=3kqa 2,由于M 点的电场强度为0,故带电细杆在M 点产生的电场强度大小E 3=E 1cos 60°+E 2cos 60°=3kq a 2,B 、C 两处点电荷在A 处产生的电场强度大小E 4=E 5=kqq 2,合场强E 合'=E 4cos 30°+E 5cos 30°=√3kqa 2,方向向上,由于M 点与A 点关于带电细杆对称,故细杆在A 处产生的电场强度大小E 6=E 3=3kqa 2,方向向上,因此A 点的电场强度大小E =E 合'+E 6=kqa 2(√3+3),D 正确.16.(多选)[2024·河北卷] 如图所示,真空区域有同心正方形ABCD 和abcd ,其各对应边平行,ABCD 的边长一定,abcd 的边长可调,两正方形之间充满恒定匀强磁场,方向垂直于正方形所在平面.A处有一个粒子源,可逐个发射速度不等、比荷相等的粒子,粒子沿AD方向进入磁场.调整abcd的边长,可使速度大小合适的粒子经ad边穿过无磁场区后由BC边射出.对满足前述条件的粒子,下列说法正确的是()A.若粒子穿过ad边时速度方向与ad边夹角为45°,则粒子必垂直BC射出B.若粒子穿过ad边时速度方向与ad边夹角为60°,则粒子必垂直BC射出C.若粒子经cd边垂直BC射出,则粒子穿过ad边时速度方向与ad边夹角必为45°D.若粒子经bc边垂直BC射出,则粒子穿过ad边时速度方向与ad边夹角必为60°16.ACD[解析] 若粒子穿过ad边时速度方向与ad边夹角为45°,则粒子必经过cd边,作出粒子运动轨迹图,如图甲所示,由对称性可知,粒子从C点垂直于BC射出,A、C正确;若粒子穿过ad边时速度方向与ad边夹角为60°,则粒子可能从cd边再次进磁场,作出粒子运动轨迹如图乙所示,此时粒子不能垂直BC射出,粒子也可能经bc边再次进入磁场,作出粒子运动轨迹如图丙所示,此时粒子垂直BC边射出,B错误,D正确.17.[2024·河北卷] 如图所示,竖直向上的匀强电场中,用长为L的绝缘细线系住一带电小球,在竖直平面内绕O点做圆周运动.图中A、B为圆周上的两点,A点为最低点,B点与O点等高.当小球运动到A 点时,细线对小球的拉力恰好为0,已知小球的电荷量为q (q >0),质量为m ,A 、B 两点间的电势差为U ,重力加速度大小为g ,求: (1)电场强度E 的大小.(2)小球在A 、B 两点的速度大小.17.(1)U L(2)√Uq -mgLm√3(Uq -mgL )m[解析] (1)A 、B 两点沿电场线方向的距离为L ,在匀强电场中,由电场强度与电势差的关系可知E =U L(2)当小球运动到A 点时,细线对小球的拉力为0,由牛顿第二定律得Eq -mg =mv A 2L解得v A =√Uq -mgLm小球由A 点运动到B 点,由动能定理得 Uq -mgL =12m v B 2-12m v A 2 解得v B =√3(Uq -mgL )m18.[2024·湖北卷] 如图所示,在以O 点为圆心、半径为R 的圆形区域内有垂直于纸面向里的匀强磁场,磁感应强度大小为B.圆形区域外有大小相等、方向相反、范围足够大的匀强磁场.一质量为m 、电荷量为q (q >0)的带电粒子沿直径AC 方向从A 点射入圆形区域.不计重力,下列说法正确的是 ( )A .粒子的运动轨迹可能经过O 点B .粒子射出圆形区域时的速度方向不一定沿该区域的半径方向C .粒子连续两次由A 点沿AC 方向射入圆形区域的最小时间间隔为7πm3qBD.若粒子从A点射入到从C点射出圆形区域用时最短,粒子运动的速度大小为√3qBR3m18.D[解析] 根据磁场圆和轨迹圆相交形成的圆形具有对称性可知,在圆形匀强磁场区域内,沿着径向射入的粒子总是沿径向射出,所以粒子的运动轨迹不可能经过O点,故A、B错误;粒子连续两次由A点沿AC方向射入圆形区域的时间间隔最短对应的轨迹如图甲所示,则最小时间间隔为Δt=2T=4πmqB,故C错误;粒子从A点射入到从C点射出圆形区域用时最短对应的轨迹如图乙所示,设粒子在磁场中运动的半径为r,根据几何关系可知r=√33R,根据洛伦兹力提供向心力有qvB=m v 2r ,解得v=√3qBR3m,故D正确.19.(多选)[2024·湖北卷] 关于电荷和静电场,下列说法正确的是()A.一个与外界没有电荷交换的系统,电荷的代数和保持不变B.电场线与等势面垂直,且由电势低的等势面指向电势高的等势面C.点电荷仅在电场力作用下从静止释放,该点电荷的电势能将减小D.点电荷仅在电场力作用下从静止释放,将从高电势的地方向低电势的地方运动19.AC[解析] 根据电荷守恒定律可知,一个与外界没有电荷交换的系统,电荷的代数和保持不变,故A正确;根据电场线和等势面的关系可知,电场线与等势面垂直,且由电势高的等势面指向电势低的等势面,故B错误;点电荷仅在电场力作用下从静止释放,则电场力做正功,该点电荷的电势能将减小,根据φ=E pq可知,正电荷将从电势高的地方向电势低的地方运动,负电荷将从电势低的地方向电势高的地方运动,故C正确,D错误.20.[2024·湖南卷] 真空中有电荷量为+4q和-q的两个点电荷,分别固定在x轴上-1和0处.设无限远处电势为0,x正半轴上各点电势φ随x变化的图像正确的是()。
2021年高考物理专题复习 磁场专题(一)

2021年高考物理专题复习磁场专题(一)一、回顾旧知回顾上节课恒定电流相关知识。
二、新课讲解(一)考点1、电流的磁场2、磁感应强度、磁感线、地磁场3、磁性材料、分子电流假说4、磁场对通电直导线的作用、安培力、左手定则5、磁场对运动电荷的作用、洛伦兹力,带电粒子在匀强磁场中的运动6、质谱仪、回旋加速器(二)重难点1、安培力的应用和带电粒子在磁场中的运动2、带电粒子在复合场中的运动及应用,比如霍尔效应、质谱仪、回旋加速器等(三)易混点1、磁场与电场的对比;2、对较为复杂的空间方位关系,立体图和平面图的转化。
三、知识点精讲(一)磁场及特性和电场一样,磁场是一种以特殊形态——场的形态——存在着的物质;和电场不一样,电场是存在于电荷或带电体周围的物质,而磁场的场源则可以是如下三种特殊物体之一:①磁体,②电流,③运动电荷,此三种磁场的场源都可以归结为同一种类型——运动电荷。
作为一种特殊形态的物质,磁场应具备各种特性,物理学最为关心的是所谓的力的特性,即:磁场能对处在磁场中的磁极、电流及运动电荷施加力的作用。
为了量化磁场的力特性,我们引入磁感强度的概念,其定义方式为:取检验电流,长为l,电流强度为I,并将其垂直于磁场放置,若所受到的磁场力大小为F,则电流所在处的磁感强度为B=F/(I l)。
而对B的形象描绘是用磁感线:疏密反映B的大小,切线方向描绘了B的方向。
(二)磁场的作用规律1、磁场对磁极的作用N(S)极处在磁场中,所受到的磁场力方向与磁极所在处的磁场方向相同(反);同一磁极所在处磁感强度越大,所受磁场力越大;不同磁极处在磁场中同一处时,所受磁场力一般不同。
2、磁场对电流的作用电流强度为I、长度为l的电流处在磁感强度为B的匀强磁场中时,所受到的作用称为安培力,其大小FB 的取值范围为 0≤FB≤I l B当电流与磁场方向平行时,安培力取值最小,为零;当电流与磁场方向垂直时,安培力取值最大,为I l B。
如果电流与磁场方向夹角为θ,可采用正交分解的方式来处理安培力大小的计算问题,而安培力的方向则是用所谓的“左手定则”来判断的。
2021年高考物理模拟试题专题汇编 专题4 电场和磁场 第2讲 磁场(B)(含解析)

2021年高考物理模拟试题专题汇编专题4 电场和磁场第2讲磁场(B)(含解析)一.选择题1.(xx・丰台区二练・17). 设想地磁场是由地球内部的环形电流形成的,那么这一环形电流的方向应该是()北极南极I II I北极北极北极南极南极南极A.由东向西 B.由西向东 C.由南向北 D.由北向南2.(xx・宁德市普高质检18).如图为某种电磁泵模型,泵体是长为L1,宽与高均为L2的长方体。
泵体处在方向垂直向外、磁感应强度为B的匀强磁场中,泵体的上下表面接电压为U的电源(内阻不计),理想电流表示数为I,若电磁泵和水面高度差为h,液体的电阻率为ρ,在t时间内抽取液体的质量为m,不计液体在流动中和管壁之间的阻力,取重力加速度为g。
则()A.泵体上表面应接电源负极B.电磁泵对液体产生的推力大小为BIL1C.电源提供的电功率为D .质量为m 的液体离开泵时的动能为3.(xx ・张掖三诊・17).如图所示,两根光滑金属导轨平行放置,导轨所在平面与水平面间的夹角为θ。
质量为m 、长为L 的金属杆ab 垂直导轨放置,整个装置处于垂直ab 方向的匀强磁场中。
当金属杆ab 中通有从a 到b 的恒定电流I 时,金属杆ab 保持静止。
则磁感应强度的方向和大小可能为( )A .竖直向上,B .平行导轨向上,C .水平向右,D .水平向左,4.(xx ・西安交大附中三模・17).中国科学家发现了量子反常霍尔效应,杨振宁称这一发现是诺贝尔奖级的成果.如图所示, 厚度为h,宽度为d的金属导体,当磁场方向与电流方向垂直时,在导体上下表面会产生电势差,这种现象称为霍尔效应.下列说法正确的是( ) A .上表面的电势高于下表面电势 B .仅增大h时,上下表面的电势差增大 C .仅增大d时,上下表面的电势差减小 D .仅增大电流I时,上下表面的电势差减小5. (xx ・景德镇三检・19).如图,在x > 0、y > 0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于oxy 平面向里,大小为B 。
2021届高考一轮人教物理:电场和磁场含答案

2021届高考一轮人教物理:电场和磁场含答案一轮复习:电场和磁场1、如图所示:它是早期发明的一种电流计,它是根据奥斯特实验现象中小磁针的偏转来计量电流的,缺点是精确度不高、易受外界干扰.接通电流前,位于环形导线中央的小磁针仅在地磁场的作用下处于静止状态,调整电流计的方位,使环形导线与小磁针共面.当给环形导线通以恒定电流I后,小磁针偏转α角;当给环形导线通以恒定电流kI时,小磁针偏转β角.若已知环形电流圆心处的磁感应强度与通电电流成正比,则关于这种电流计,下列说法正确的是( )A.该电流计的测量结果与地磁场的竖直分量有关B.该电流计在地球上不同位置使用时,所标刻度均相同C.小磁针偏转角满足关系式sin β=ksin αD.小磁针偏转角满足关系式tan β=ktan α2、(多选)如图甲,质量为m、电荷量为-e的粒子初速度为零,经加速电压U1加速后,在水平方向沿O1O2垂直进入偏转电场。
已知形成偏转电场的平行板电容器的板长为L,两极板间距为d,O1O2为两极板的中线,P是足够大的荧光屏,且屏与极板右边缘的距离为L,不考虑电场边缘效应,不计粒子重力。
则下列说法正确的是( )A.粒子进入偏转电场的速度大小v=2eU1 mB.若偏转电场两板间加恒定电压U0,粒子经过偏转电场后正好打中屏上的A点,A点与极板M在同一水平线上,则所加电压U0=dU1 3L2C.若偏转电场两板间的电压按如图乙作周期性变化,要使粒子经加速电场后在t=0时刻进入偏转电场后水平击中A点,则偏转电场周期T应该满足的条件为T=Lnm2eU1(n=1,2,3…)D.若偏转电场两板间的电压按如图乙做周期性变化,要使粒子经加速电场后在t=0时刻进入偏转电场后水平击中A点,则偏转电场周期U0应该满足的条件为U0=4nU1d2L2(n=1,2,3…)3、如图所示,在水平连线MN和PQ间有竖直向上的匀强电场,在MN上方有水平向里的匀强磁场。
两个质量和带电量均相等的带正电的粒子A、B,分别以水平初速度v0、2v0从PQ连线上O点先后进入电场,带电粒子A、B第一次在磁场中的运动时间分别为t A和t B,前两次穿越连线MN时两点间的距离分别为d A和d B,粒子重力不计,则( )A.t A一定小于t B,d A一定等于d BB.t A一定小于t B,d A可能小于d BC.t A可能等于t B,d A一定等于d BD.t A可能等于t B,d A可能小于d B4、从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用。
(浙江选考)2021高考物理二轮复习专题三电场和磁场第1讲电场和磁场性质的理解学案【可修改文字】

可编辑修改精选全文完整版第1讲电场和磁场性质的理解[历次选考考情分析]磁场中受到的力 运动电荷在磁场中受到的力 cc232223232322带电粒子在匀强磁场中的运动d232223232322考点一 电场根本性质的理解1.电场强度、电势、电势能的判断方法 (1)电场强度①根据电场线的疏密程度进展判断; ②根据E =Fq进展判断. (2)电势①沿电场线方向电势逐渐降低; ②假设q 和W ab ,由U ab =W abq判定. (3)电势能①电场力做正功,电势能减小;电场力做负功,电势能增大; ②正电荷在电势高的地方电势能大,负电荷在电势高的地方电势能小. 2.带电粒子在电场中运动轨迹问题的分析方法 (1)某点速度方向即为该点轨迹的切线方向;(2)从轨迹的弯曲方向判断受力方向(轨迹向合外力方向弯曲),从而分析电场方向或电荷的正负;(3)结合轨迹、速度方向与电场力的方向,确定电场力做功的正负,从而确定电势能、电势和电势差的变化等.1.[库仑定律](2021·浙江4月选考·6)真空中两个完全一样、带等量同种电荷的金属小球A 和B (可视为点电荷),分别固定在两处,它们之间的静电力为F .用一个不带电的同样金属球C 先后与A 、B 球接触,然后移开球C ,此时A 、B 球间的静电力为( )A.F 8B.F 4C.3F 8D.F 2答案 C解析 设A 、B 两金属小球开场带电荷量均为Q ,距离为r ,F =k Q 2r 2,用一个不带电的金属球C 先后与A 、B 接触,与A 接触完后,A 、C 带电荷量均为Q2,再与B 接触后,B 、C 带电荷量均为34Q ,F ′=k Q 2·34Q r 2=38F ,因此选C. 2.[电容器](2021·温州市六校期末)目前,指纹锁已普遍用于智能机、门卡等,其中有一类指纹锁的主要元件为电容式传感器,其原理是手指贴上传感器时,皮肤外表会和传感器上许许多多一样面积的小极板一一匹配成平行板电容器,每个小电容器的电容值仅取决于传感器上的极板到对应指纹外表的距离.在此过程中外接电源将为所有电容器充到一个预先设计好的电压值,然后开场用标准电流放电,再采集各电容器放电的相关信息与原储存的指纹信息进展匹配,如图1所示.以下说法正确的选项是( )图1A .湿的手不会影响指纹解锁B .极板与指纹嵴(凸起局部)构成的电容器电容小C .极板与指纹沟(凹的局部)构成的电容器充上的电荷较多D .极板与指纹沟(凹的局部)构成的电容器放电时间较短 答案 D3.[电场强度和电势差]如图2所示,在xOy 平面内有一个以O 为圆心、半径R =0.1 m 的圆,P 为圆周上的一点,O 、P 两点连线与x 轴正方向的夹角为θ.假设空间存在沿y 轴负方向的匀强电场,场强大小E =100 V/m ,那么O 、P 两点的电势差可表示为( )图2A.U OP=-10sin θ (V)B.U OP=10sin θ (V)C.U OP=-10cos θ (V)D.U OP=10cos θ (V)答案 A解析由题图可知匀强电场的方向是沿y轴负方向的.沿着电场线的方向电势是降低的,所以P点的电势高于O点的电势,O、P两点的电势差U OP为负值.根据电势差与场强的关系U OP =-Ed=-E·R sin θ=-10sin θ (V),所以A正确.4.[电场强度、电势、电势能](2021·嘉兴市期末)一对等量异种点电荷电场的电场线(实线)和等势线(虚线)分布如图3所示,那么以下说法正确的选项是( )图3A.A点场强E A大于B点场强E BB.A点电势φA高于B点电势φBC.某一点电荷在A点时的电势能E p A一定大于在B点时的电势能E p BD.将某一点电荷从A点移至B点,路径不同,电场力做功也不同答案 A5.[电场线和运动轨迹]如图4所示,实线为三条未知方向的电场线,从电场中的M点以一样的速度飞出a、b两个带电粒子,a、b的运动轨迹如图中的虚线所示(a、b只受电场力作用),那么( )图4A.a一定带正电,b一定带负电B.电场力对a做正功,a的电势能减小,电场力对b做负功,b的电势能增大C.a的速度将减小,b的动能将增大D.a的加速度减小,b的加速度将增大答案 D解析 电场线的方向未知,所以粒子带电性质不确定;从题图中轨迹变化来看电场力都做正功,动能都增大,两带电粒子电势能都减小,所以选项A 、B 、C 错误;电场线密的地方电场强度大,电场线疏的地方电场强度小,所以a 受力减小,加速度减小,b 受力增大,加速度增大,所以选项D 正确.考点二 磁场及其对电流的作用1.求解有关磁感应强度的关键 (1)磁感应强度是由磁场本身决定的; (2)B =FIL只适用于通电导线垂直于磁场;(3)合磁感应强度等于各磁场的磁感应强度的矢量和(满足平行四边形定那么). 2.求解安培力作用下导体棒平衡问题的思路 (1)选取通电导体棒为对象;(2)受力分析,画受力分析图,用左手定那么判断安培力的方向; (3)根据力的平衡条件列方程.例1 (2021·浙江4月选考·12)在城市建立施工中,经常需要确定地下金属管线的位置,如图5所示.有一种探测的方法是,首先给金属长直管通上电流,再用可以测量磁场强弱、方向的仪器进展以下操作:①用测量仪在金属管线附近的水平地面上找到磁场最强的某点,记为a ;②在a 点附近的地面上,找到与a 点磁感应强度一样的假设干点,将这些点连成直线EF ;③在地面上过a 点垂直于EF 的直线上,找到磁场方向与地面夹角为45°的b 、c 两点,测得b 、c 两点距离为L .由此可确定金属管线( )图5A .平行于EF ,深度为L 2B .平行于EF ,深度为LC .垂直于EF ,深度为L2D .垂直于EF ,深度为L答案 A解析 画出垂直于金属管线方向的截面,可知磁场最强的点a 即为地面距离管线最近的点,作出b 、c 两点的位置,由题意可知EF 过a 点垂直于纸面,所以金属管线与EF 平行,根据几何关系得深度为L2.6.(2021·浙江4月选考·7)处于磁场B中的矩形金属线框可绕轴OO′转动,当线框中通过电流I时,如图6所示,此时线框左右两边受安培力F的方向正确的选项是( )图6答案 D解析利用左手定那么,四指指向电流方向,磁感线穿过掌心,大拇指所指的方向就是受力方向,因此选D.7.(2021·牌头中学期中)在磁场中的同一位置放置一根短直导线,导线的方向与磁场方向垂直.先后在导线中通以不同的电流,导线受到的磁场力也不同,以下表示导线受到的磁场力F与其电流I的关系图象(a、b各代表一组F、I的数据)正确的选项是( )答案 C解析 在匀强磁场中,当电流方向与磁场垂直时所受安培力为:F =BIL ,由于磁感应强度B 和导线长度L 不变,因此F 与I 的关系图象为过原点的直线,故C 正确.8.(2021·台州市外国语学校期末)如图7所示,两平行光滑金属导轨固定在绝缘斜面上,导轨间距为L ,劲度系数为k 的轻质弹簧上端固定,下端与导体棒ab 相连,弹簧与导轨平面平行并与ab 垂直,棒垂直跨接在两导轨上,空间存在垂直导轨平面斜向上的匀强磁场,磁感应强度为B .当棒通以方向由a 到b 、大小为I 的电流时,棒处于平衡状态,平衡时弹簧伸长量为x 1;保持电流大小不变,使棒中电流反向,那么棒平衡时以下说法正确的选项是( )图7A .弹簧伸长,伸长量为2ILBk+x 1B .弹簧伸长,伸长量为ILBk +x 1 C .弹簧压缩,压缩量为2ILBk-x 1 D .弹簧压缩,压缩量为ILBk-x 1 答案 A解析 当棒通以方向由a 到b 、大小为I 的电流时,由左手定那么可知,棒受到的安培力沿导轨斜向上,大小为BIL ,设导轨与水平面的夹角为θ,那么由平衡条件得:mg sin θ=BIL +kx 1当保持电流大小不变,使棒中电流反向,由左手定那么知,受到的安培力沿导轨斜向下,大小还是BIL此时有mg sin θ+BIL =kx 得x =2BIL k+x 1弹力沿着斜面向上,那么弹簧是伸长的,应选A.考点三 带电粒子在电场中的运动1.直线运动的两种解题思路(1)应用牛顿运动定律处理带电粒子的直线运动带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与速度方向在一条直线上,带电粒子做匀变速直线运动.根据带电粒子的受力情况,用牛顿运动定律和运动学公式确定带电粒子的速度、位移、时间等.(2)用动能定理(或动量定理)处理带电粒子在电场中的直线运动要注意受力分析、过程分析,另外,电场力做功与重力做功均与经过的路径无关,只与初、末位置有关.2.偏转问题的解题思路(1)条件分析:不计重力,且带电粒子的初速度v0与电场方向垂直,那么带电粒子将在电场中只受电场力作用而做类平抛运动.(2)运动分析:一般用分解的思想来处理,即将带电粒子的运动分解为沿电场力方向上的匀加速直线运动和垂直电场力方向上的匀速直线运动.例2(2021·浙江4月选考·11)一带电粒子仅在电场力作用下从A点开场以-v0做直线运动,其v-t图象如图8所示.粒子在t0时刻运动到B点,3t0时刻运动到C点,以下判断正确的选项是( )图8A.A、B、C三点的电势关系为φB>φA>φCB.A、B、C三点的场强大小关系为E C>E B>E AC.粒子从A点经B点运动到C点,电势能先增加后减少D.粒子从A点经B点运动到C点,电场力先做正功后做负功答案 C解析由题图v-t图象知道带电粒子在0~t0时间内做减速运动,电场力做负功,电势能增大;在t0~3t0时间内做反方向加速运动,电场力做正功,电势能减小,所以C正确,D错误;因为不知道带电粒子电性,此题中无法判断电势的上下,所以A错误;图象中斜率表示带电粒子的加速度,Eq=ma,可知A、B、C三点中E B最大,B错误.例3如图9甲为一对长度为L的平行金属板,在两板之间加上图乙所示的电压.现沿两板的中轴线从左端向右端连续不断射入初速度为v0的一样带电粒子(重力不计),且所有粒子均能从平行金属板的右端飞出,假设粒子在两板之间的运动时间均为T,那么粒子最大偏转位移与最小偏转位移的大小之比是( )图9A .1∶1 B.2∶1 C.3∶1 D.4∶1 答案 C解析 粒子在两板之间的运动时间均为T ,在t =nT 时刻进入的粒子的侧移量最大,考虑竖直分运动,在前半个周期是匀加速,后半个周期是匀速,设加速度为a ,那么偏转位移为:y max =12a ·(T 2)2+a ·T 2·T 2=38aT 2,在t =(n +12)T 时刻进入的粒子,考虑竖直分运动,在前半个周期是静止,后半个周期是匀加速,侧移量最小,为:y min =12a ·(T 2)2=18aT 2,故y max ∶y min=3∶1,故A 、B 、D 错误,C 正确.9.如图10所示是真空中A 、B 两板间的匀强电场,一电子由A 板无初速度释放后运动到B 板,设电子在前一半时间内和后一半时间内的位移分别为x 1和x 2,那么x 1与x 2之比为( )图10A .1∶1B .1∶2C .1∶3D .1∶4答案 C解析 无初速度释放后,电子在电场中做初速度为零的匀加速直线运动,根据初速度为零的匀变速直线运动规律,电子在前一半时间内和后一半时间内的位移之比是1∶3,选项C 正确. 10.a 、b 两离子从平行板电容器两板间Pa 、b 的偏转时间一样,那么a 、b 一定一样的物理量是( )图11A .比荷B .入射速度C .入射动能D .电荷量 答案 A解析 a 、b 两离子竖直方向分位移相等,故:y =12·qE m·t 2,由于y 、E 、t 均相等,故比荷qm相等,故A 正确; 水平方向位移关系是x a >x b ,水平分运动是匀速直线运动,时间相等,故v a >v b ,故B 错误;a 、b 两离子初速度不同,质量关系未知,无法确定初动能大小关系,故C 错误; a 、b 两离子比荷相等,质量关系未知,无法确定电荷量大小关系,故D 错误.考点四 磁场对运动电荷的作用1.带电粒子在磁场中做匀速圆周运动解题“三步法〞 (1)画轨迹:即确定圆心,画出运动轨迹.(2)找联系:轨道半径与磁感应强度、运动速度的联系,偏转角度与圆心角、运动时间的联系,在磁场中的运动时间与周期的联系.(3)用规律:即牛顿运动定律和圆周运动的规律,特别是周期公式、半径公式. 2.半径确实定方法一:由物理方程求.由于Bqv =mv 2R ,所以半径R =mv qB;方法二:由几何关系求.一般由数学知识(勾股定理、三角函数等)通过计算来确定. 3.时间确实定方法一:由圆心角求:t =θ2π·T ;方法二:由弧长求:t =sv.例4 如图12所示,长方形abcd 区域内有垂直于纸面向里的匀强磁场,同一带电粒子,以速率v 1沿ab 射入磁场区域,垂直于dc 边离开磁场区域,运动时间为t 1;以速率v 2沿ab 射入磁场区域,从bc 边离开磁场区域时与bc 边夹角为150°,运动时间为t 2.不计粒子重力.那么t 1∶t 2是( )图12A .2∶ 3 B.3∶2 C.3∶2 D.2∶3 答案 C解析 根据题意作出粒子运动轨迹如下图:由几何知识可知:α=90°,β=60°,粒子在磁场中做圆周运动的周期:T =2πm qB ,粒子在磁场中的运动时间:t =θ2πT ,粒子在磁场中的运动时间之比:t 1t 2=αβ=90°60°=32,故C 正确.11.(多项选择)如图13所示,在垂直纸面向里的匀强磁场的边界上,速度一样的两带电粒子A 、B 从O 点射入磁场中,速度与磁场边界的夹角为θ(θ=60°),A 粒子带负电,B 粒子带正电,且A 、B 粒子的质量之比为1∶4,带电荷量之比为1∶2,不计粒子重力,以下说法中正确的选项是( )图13A .A 、B 粒子的轨道半径之比为2∶1B .A 、B 粒子回到边界时,速度大小、方向都一样C .A 、B 粒子回到边界时的位置离O 点的距离之比为2∶1D .A 、B 粒子在磁场中运动的时间一样 答案 BD解析 由洛伦兹力提供向心力qBv =m v 2r 得到r =mv Bq ,所以r A r B =m A m B ×q B q A =12,所以选项A 错误.据左手定那么,A 、B 粒子的电性相反,偏转方向相反,由于洛伦兹力不做功,所以速度大小不变,根据粒子做圆周运动的对称性,A 、B 的方向都是与边界成60°角斜向右下,所以B 选项正确.由几何关系能求得粒子回到边界时到出发点的距离d =2r sin θ,所以d A d B =r A r B =12,选项C 错误.由运动学公式,粒子运动的时间为t =θ2π×2πr v =θr v ,所以t A t B =θA θB ×r A r B =240°120°×12=11,所以选项D 正确. 12.如图14,半径为R 的半圆形区域内有垂直于纸面向外的匀强磁场.一质量为m 、带电荷量为+q 且不计重力的粒子,以速度v 沿与半径PO 夹角θ=30°的方向从P 点垂直磁场射入,最后粒子垂直于MN 射出,那么磁感应强度的大小为( )图14A.mv qRB.mv 2qRC.mv 3qRD.mv4qR 答案 B解析 粒子在磁场中做匀速圆周运动,由几何关系,知圆心角为30°,粒子运动的轨迹的半径为:r =2R ①根据洛伦兹力提供向心力,有:qvB =m v 2r 得半径为:r =mv qB②联立①②得:B =mv2qR,故B 正确.专题强化练1.(2021·浙江4月选考·7)关于电容器,以下说法正确的选项是( )A.在充电过程中电流恒定B.在放电过程中电容减小C.能储存电荷,但不能储存电能D.两个彼此绝缘又靠近的导体可视为电容器答案 D解析由电容器的充、放电曲线可知,充电过程中,电流不断减小,A错误;电容是电容器储存电荷的本领,不随充、放电过程变化,B错误;电容器中的电场具有电场能,所以C错误;两个彼此绝缘又靠近的导体是可以储存电荷的,可视为电容器,D正确.2.中国宋代科学家沈括在公元1086年写的?梦溪笔谈?中最早记载了:“方家(术士)以磁石磨针锋,那么能指南,然常微偏东,不全南也.〞进一步研究说明,地球周围地磁场的磁感线分布示意如图1所示.结合上述材料,以下说法正确的选项是( )图1A.地球内部也存在磁场,地磁南极在地理南极附近B.结合地球自转方向,可以判断出地球是带正电的C.地球外表任意位置的磁场方向都与地面平行D.因地磁场影响,在进展奥斯特实验时,通电导线南北放置时实验现象最明显答案 D3.如图2所示,一导线绕制的线圈中放一枚小磁针,当线圈中通以电流时,小磁针将会发生偏转,那么以下判断正确的选项是( )图2A.为使实验现象明显,线圈平面应南北放置B.为使实验现象明显,线圈平面应东西放置C.假设线圈平面南北放置,通电后再次稳定时,小磁针转过180°角D.假设线圈平面东西放置,通电后再次稳定时,小磁针转过90°角答案 A4.(2021·名校协作体)如图3所示,在粗糙绝缘的水平地面上放置一带正电的物体甲,现将另一个也带正电的物体乙沿着以甲为圆心的竖直平面内的圆弧由M点移动到N点,假设此过程中甲始终保持静止,甲、乙两物体可视为质点,那么以下说法正确的选项是( )图3A.甲对地面的压力先增大后减小B.甲受到地面的摩擦力大小不变C.甲受到地面的摩擦力先增大后减小D.乙的电势能先增大后减小答案 A5.(2021·温州市十五校联合体期末)两个点电荷a、b周围的电场线分布情况如图4所示,虚线为带电粒子c穿越该电场时的运动轨迹,该粒子在电场中运动时只受电场力作用,由图可判断( )图4A.a、b带等量异号电荷B.a、b带同号电荷,a的电荷量大于b的电荷量C.粒子c带正电,在电场中运动时动能先减小后增大D.粒子c带负电,在电场中运动时动能先增大后减小答案 D6.(2021·杭州市五校联考)两个带等量正电的点电荷,固定在图5中P、Q两点,MN为PQ 连线的中垂线,交PQ于O点,A为MN上的一点.一带负电的试探电荷q,从A点由静止释放,只在静电力作用下运动,取无限远处的电势为零,那么( )图5A.q由A向O的运动是匀加速直线运动B.q由A向O运动的过程电势能逐渐减小C.q运动到O点时的动能最小D.q运动到O点时电势能为零答案 B7.(2021·湖州、衢州、丽水高三期末)如图6(a)所示为两个带电物体,甲固定在绝缘水平面上,乙从甲右侧某处静止释放后的v-t图象如图(b)所示,那么( )图6A.两个物体带同种电荷B.两个物体带异种电荷C.两个物体带电荷量一定相等D.两个物体带电荷量一定不等答案 B8.(2021·诸暨中学段考)如图7所示,a、b、c、d为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小一样的电流,方向如下图.一带正电粒子从正方形中心O点沿垂直纸面向内运动,它所受洛伦兹力的方向( )图7A.向上 B.向下 C.向左 D.向右答案 A解析此带电粒子在磁场中受洛伦兹力,磁场为4根长直导线在O点产生的合磁场,根据安培定那么,a在O点产生的磁场方向水平向左,b在O点产生的磁场方向竖直向上,c在O点产生的磁场方向水平向左,d在O点产生的磁场方向竖直向下,所以合磁场方向水平向左.根据左手定那么,此带正电粒子在合磁场中所受洛伦兹力方向向上.9.(2021·新力量联盟期末)教师在课堂上做了一个演示实验:装置如图8所示,在容器的中心放一个圆柱形电极B,沿容器边缘内壁放一个圆环形电极A,把A和B分别与直流电源的两极相连,然后在容器内放入导电液体,将该容器放在磁场中,液体就会旋转起来.关于这种现象以下说法正确的选项是( )图8A.液体旋转是因为电磁感应现象B.液体旋转是因为受到安培力作用C.仅将电流方向改为反向,液体旋转方向不变D.仅将磁场方向改为反向,液体旋转方向不变答案 B10.(2021·新高考联盟联考)高大建筑上都有一竖立的避雷针,用以把聚集在云层中的电荷导入大地.在赤道某地两建筑上空,有一团带负电的乌云经过其正上方时,发生放电现象,如图9所示,那么此过程中地磁场对避雷针的作用力的方向是( )图9A.向东 B.向南 C.向西 D.向北答案 C11.如图10所示,竖直放置的两平行金属板间有匀强电场,在两极板间同一等高线上有两质量相等的带电小球a、b(均可以看成质点).将小球a、b分别从紧靠左极板和两极板正中央的位置由静止释放,它们沿图中虚线运动,都能打在右极板上的同一点.那么从释放小球到刚要打到右极板的运动(过程)中,以下说法正确的选项是( )图10A .它们的运动时间t a >t bB .它们的电荷量之比q a ∶q b =1∶2C .它们的电势能减少量之比ΔE a ∶ΔE b =4∶1D .它们的动能增加量之比ΔE k1∶ΔE k2=4∶1 答案 C解析 小球运动过程只受重力和电场力作用,故粒子竖直方向做加速度a =g 的匀加速运动,水平方向做加速度a ′=qE m的匀加速运动;由两小球竖直位移一样可得运动时间一样,即t a =t b ,所以,q a q b =a a ′ab ′=s a 水平s b 水平=2∶1,故A 、B 错误;由电势能减少量等于电场力做的功可得:ΔE a ∶ΔE b =q a Es a 水平∶q b Es b 水平=4∶1,故C 正确;由动能定理可知:小球动能增加量等于重力势能和电势能减小量之和;又有两小球重力势能减小量相等,由C 项可知:动能增加量之比不可能为4∶1,故D 错误.12.(2021·台州中学统练)如图11所示,绝缘水平面上有A 、B 、C 、D 四点,依次相距L ,假设把带电金属小球甲(半径远小于L )放在B 点,测得D 点处的电场强度大小为E ;现将不带电的一样金属小球乙与甲充分接触后,再把两球分置于A 、C 两点,此时D 点处的电场强度大小为( )图11A.49EB.59E C .E D.209E 答案 D解析 根据点电荷电场强度公式E =kQ r 2,那么B 点电荷在D 的电场强度为E B =kQ (2L )2=kQ4L 2=E ;当将不带电的一样金属小球乙与甲充分接触后,再把两球分置于A 、C 两点,那么两球的带电荷量均为Q2,那么A 处的小球在D 处的电场强度E A =k ·Q2(3L )2=kQ 18L2,而C 处的小球在D 处的电场强度E C=kQ2L2;由于两球在D处的电场强度方向一样,因此它们在D点处的电场强度大小为E合=kQ18L2+kQ2L2=5kQ9L2=209E,故D正确.13.如图12所示,匀强电场中有M、N、P、Q四点,它们分别位于矩形的四个顶点上.电子分别由M点运动到N点和Q点的过程中,电场力所做的正功一样,N、P、Q中有两点电势是18 V、10 V.那么( )图12A.不可能求出M点电势B.N点电势是18 VC.P点电势是10 VD.Q点电势是10 V答案 D解析电子分别由M点运动到N点和Q点过程中,电场力所做的正功一样,说明N、Q两点电势相等,且高于M点的电势,故四点的电势关系是φM<φN=φQ<φP,所以φP=18 V,φN=φQ=10 V,B、C错误,D正确;由于QM平行且与PN长度一样,所以U QM=U PN=8 V,可得φM =2 V,A错误.14.(2021·台州市高三期末)如图13所示,三根长为L的平行长直导线的横截面在空间构成等边三角形,电流的方向垂直纸面向里.电流大小均为I,其中A、B电流在C处产生的磁感应强度的大小均为B0,导线C位于水平面处于静止状态,那么导线C受到的静摩擦力是( )图13A.3B0IL,水平向左B.32B0IL,水平向右C.32B0IL,水平向左 D.3B0IL,水平向右答案 D15.如图14所示,以O为圆心的圆形区域内,存在方向垂直纸面向外的匀强磁场,磁场边界上的A点有一粒子发射源,沿半径AO方向发射出速率不同的同种粒子(重力不计),垂直进入磁场,以下说法正确的选项是( )图14A .速率越大的粒子在磁场中运动的时间越长B .速率越小的粒子在磁场中运动的时间越长C .速率越大的粒子在磁场中运动的角速度越大D .速率越小的粒子在磁场中运动的角速度越大 答案 B解析 粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,那么有Bqv =m v 2R,解得粒子做圆周运动的半径R =mv Bq,设磁场圆形区域半径为r ,如下图,粒子在磁场中运动的偏转角为2θ,由几何关系得:tan θ=rR,所以v 越大,那么R 大,那么tan θ越小,故θ也越小,而周期T =2πm Bq,即不同速率的粒子在磁场中做圆周运动的周期一样.那么粒子在磁场中运动的偏转角越大,运动时间越长,所以速率越大的粒子在磁场中运动的偏转角越小,运动的时间越短,故A 错误,B 正确;粒子在磁场中运动的角速度ω=v R =Bqm,所以不同速率粒子在磁场中运动的角速度相等,故C 、D 错误.16.(2021·诸暨中学段考)如图15所示,在水平地面上方有一沿水平方向且垂直纸面向里的匀强磁场.现将一带电小球以一定初速度v 0竖直上抛,小球能上升的最大高度为h ,设重力加速度为g ,不计空气阻力,那么以下判断正确的选项是( )图15A .h 一定大于v 022gB .h 一定等于v 022gC .h 一定小于v 022gD .h 可能等于v 022g答案 C解析 如果没有磁场,小球将做竖直上抛运动,上升的最大高度:h =v 022g,当加上磁场后,小球在运动过程中,除受重力外,还要受到洛伦兹力作用,小球在向上运动的同时会发生偏转,小球到达最高点时速度不为零,动能不为零,因此小球上升最大高度小于v 022g,故C 正确.17.(2021·牌头中学期中)电磁炮是一种理想兵器,它的主要原理如图16所示,1982年澳大利亚国立大学成功研制出能把2.2 g 的弹体(包括金属杆MN 的质量)加速到10 km/s 的电磁炮.假设轨道宽2 m ,长100 m ,通过金属杆的电流恒为10 A ,不计轨道摩擦,那么( )图16A .垂直轨道平面的匀强磁场的磁感应强度大小为5.5 TB .垂直轨道平面的匀强磁场的磁感应强度大小为5.5×104T C .该电磁炮工作时磁场力的最大功率为1.1×104kW D .该电磁炮装置中对磁场方向和电流方向的关系没有要求 答案 C解析 由运动学公式2ax =v 2-v 02可得弹体的加速度为a =v 2-v 022x =(10×103)22×100m/s 2=5×105m/s 2;弹体所受安培力为F =BIL ,由牛顿第二定律可得:BIL =ma ,解得:B =maIL=2.2×10-3×5×10510×2 T =55 T ,选项A 、B 错误;速度最大时磁场力的功率最大:P m =BIL ·v m=55×10×2×104W =1.1×104kW ,选项C 正确;电磁炮装置中必须使得磁场方向和电流方向决定的安培力方向与炮弹沿导轨的加速度方向一致,选项D 错误.。
2021年高考物理磁场及其对电流的作用考点全攻关答案详解教师版(19页)

2021年高考物理磁场及其对电流的作用考点全攻关磁场及其对电流的作用(解析版)双基过关:一、磁场、磁感应强度1.磁场的基本性质磁场对处于其中的磁体、电流和运动电荷有力的作用.2.磁感应强度(1)物理意义:描述磁场的强弱和方向.(2)定义式:B=FIL(通电导线垂直于磁场).(3)方向:小磁针静止时N极的指向.(4)单位:特斯拉,符号为T.3.匀强磁场(1)定义:磁感应强度的大小处处相等、方向处处相同的磁场称为匀强磁场.(2)特点:磁感线是疏密程度相同、方向相同的平行直线.4.地磁场(1)地磁的N极在地理南极附近,S极在地理北极附近,磁感线分布如图所示.(2)在赤道平面上,距离地球表面高度相等的各点,磁感应强度相等,且方向水平向北.5.磁场的叠加磁感应强度是矢量,计算时与力的计算方法相同,利用平行四边形定则或正交分解法进行合成与分解.自测1(多选) 如图所示是我国最早期的指南仪器——司南,静止时它的长柄指向南方,是由于地球表面有地磁场.下列与地磁场有关的说法,正确的是()A.地磁场是一种物质,客观上存在B.地球表面上任意位置的地磁场方向都与地面平行C.通电导线在地磁场中可能不受安培力作用D.运动电荷在地磁场中受到的洛伦兹力可以对运动电荷做正功【答案】AC【解析】地磁场是客观存在的一种物质,磁感线是人们为了研究方便而假想出来的,故A正确;磁感线是闭合的曲线,不是地球表面任意位置的地磁场方向都与地面平行,故B错误;当通电导线与地磁场平行放置时,导线不受安培力,故C正确;由于洛伦兹力始终与速度方向垂直,所以运动电荷在地磁场中受到的洛伦兹力不做功,故D错误.二、磁感线和电流周围的磁场1.磁感线的特点(1)磁感线上某点的切线方向就是该点的磁场方向.(2)磁感线的疏密程度定性地表示磁场的强弱,在磁感线较密的地方磁场较强;在磁感线较疏的地方磁场较弱.①磁感线是闭合曲线,没有起点和终点,在磁体外部,从N极指向S极;在磁体内部,由S 极指向N极.①同一磁场的磁感线不中断、不相交、不相切.①磁感线是假想的曲线,客观上并不存在.2.几种常见的磁场(1)条形磁铁和蹄形磁铁的磁场如图所示(2)电流的磁场自测2如图所示,甲、乙是直线电流的磁场,丙、丁是环形电流的磁场,戊、己是通电螺线管的磁场,试在各图中补画出电流方向或磁感线方向.图4【答案】三、安培力的大小和方向1.大小若I①B,F=0;若I①B,F=BIL.2.方向可以用左手定则来判定:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向.安培力方向总垂直于B、I所决定的平面,即一定垂直于B和I,但B 与I不一定垂直.3.两平行通电导线间的作用同向电流相互吸引,反向电流相互排斥.自测3以下说法中正确的是()A.通电直导线在磁场中受到的安培力方向与磁场方向平行B.安培力的方向可以用右手定则来判定C.磁感线可以形象地描述各点的磁场强弱和方向,磁感线上每一点的切线方向都和小磁针在该点静止时N极所指的方向一致D.放置在磁场中1 m长的导线,通过1 A的电流,该处磁感应强度是1 T,则导线受到的安培力为1 N【答案】C题热点一:安培力和磁场的叠加1.安培定则的应用在运用安培定则判定直线电流和环形电流的磁场时应分清“因”和“果”.2.磁场叠加问题的解题思路(1)确定磁场场源,如通电导线.(2)定位空间中需求解磁场的点,利用安培定则判定各个场源在这一点上产生的磁场的大小和方向.如图5所示为M 、N 在c 点产生的磁场B M 、B N . (3)应用平行四边形定则进行合成,如图中的合磁场B . 题型1 安培力的大小和方向例1 如图,等边三角形线框LMN 由三根相同的导体棒连接而成,固定于匀强磁场中,线框平面与磁感应强度方向垂直,线框顶点M 、N 与直流电源两端相接.已知导体棒MN 受到的安培力大小为F ,则线框LMN 受到的安培力的大小为( )A .2FB .1.5FC .0.5FD .0 【答案】B【解析】设三角形边长为l ,通过导体棒MN 的电流大小为I ,则根据并联电路的规律可知通过导体棒ML 和LN 的电流大小为I2,如图所示,依题意有F =BlI ,则导体棒ML 和LN 所受安培力的合力为F 1=12BlI =12F ,方向与F 的方向相同,所以线框LMN 受到的安培力大小为F +F 1=1.5F ,选项B 正确.变式1如图所示,三根相互平行的固定长直导线L 1、L 2和L 3两两等距,通过L 1、L 2中的电流相同,L 1、L 2中的电流方向垂直纸面向里,L 3中的电流方向垂直纸面向外,在三根导线与纸面的交点所构成的等边三角形的中心上放有一电流方向垂直纸面向外的通电长直导线,则该导线受到的安培力的方向为( )A .指向L 1B .指向L 2C .指向L 3D .背离L 3 【答案】C【解析】因同向电流之间相互吸引,异向电流之间相互排斥,可知L3对等边三角形的中心上的导线是吸引力,方向指向L3;而导线L1和L2对等边三角形的中心上的导线都是斥力,因大小相等且互成120°角,则其合力方向指向L3,则三条导线对等边三角形的中心上的导线的安培力的合力方向指向L3,故选C.题型2磁场的叠加例2有两条长直导线垂直水平纸面放置,交纸面于a、b两点,通有大小相等的恒定电流,方向如图.a、b的连线水平,c是ab的中点,d点与c点关于b点对称.已知c点的磁感应强度为B1,d点的磁感应强度为B2,则关于a处导线在d点产生磁场的磁感应强度的大小及方向,下列说法中正确的是()A.B1+B2,方向竖直向下B.B1-B2,方向竖直向上C.B12+B2,方向竖直向上 D.B12-B2,方向竖直向下【答案】D【解析】根据安培定则,a、b导线在c点的磁场方向都向下,因a、b导线通有大小相等的恒定电流,故b导线在c点的磁场为B12,由于b距离c点和d点一样,所以b导线在d点的磁场大小为B12,方向向上;根据安培定则,a导线在d点的磁场方向向下,则其大小为B12-B2.变式2如图所示,在磁感应强度大小为B 0的匀强磁场中,两长直导线P和Q垂直于纸面固定放置,两者之间的距离为l.在两导线中均通有方向垂直于纸面向里且大小相等的电流时,纸面内与两导线距离为l的a点处的磁感应强度为零.若仅让P中的电流反向,则a点处磁感应强度的大小为()A.2B0 B.233B0 C.33B0D.B0【答案】B【解析】在两导线中均通有方向垂直于纸面向里的电流I时,纸面内与两导线距离为l的a点处的磁感应强度为0,由此可知,外加的磁场方向与PQ平行,且由Q指向P,即B1=B0;依据几何关系有:B P cos 30°=12B0,解得通电导线P或Q在a处的磁场大小均为B P=33B0;当P中的电流反向,其他条件不变,再依据几何关系及三角知识,则有:B2=B P=33B0,方向垂直于PQ向上,由矢量的合成法则,那么a点处磁感应强度的大小为B=B02+33B02=233B0,故B正确,A、C、D错误.命题热点二:安培力作用下导体运动情况的判断1.问题特点安培力作用下导体的运动问题与力学中的运动问题一样,同样遵从力学基本规律,只是研究对象所受的力中多分析安培力而已.2.规律分析判定通电导体在安培力作用下的运动方向或运动趋势,首先必须弄清楚导体所在位置的磁感线分布情况,再弄清楚导体中电流的方向,然后利用左手定则准确判定导体的受力情况,进而确定导体的运动方向或运动趋势.3.判定方法电流元法分割为电流元――→左手定则安培力方向→整段导体所受合力方向→运动方向特殊位置法在特殊位置→安培力方向→运动方向等效法环形电流小磁针条形磁铁通电螺线管多个环形电流结论法同向电流互相吸引,异向电流互相排斥;两不平行的直线电流例3 如图所示,把一重力不计的通电直导线水平放在蹄形磁铁两极的正上方,导线可以自由转动,当导线通入图示方向电流I 时,导线的运动情况是(从上往下看)( )A .顺时针方向转动,同时下降B .顺时针方向转动,同时上升C .逆时针方向转动,同时下降D .逆时针方向转动,同时上升 【答案】A【解析】如图甲所示,把直线电流等效为无数小段,中间的点为O 点,选择在O 点左侧S 极右上方的一小段为研究对象,该处的磁场方向指向左下方,由左手定则判断,该小段受到的安培力的方向垂直纸面向里,在O 点左侧的各段电流元都受到垂直纸面向里的安培力,把各段电流元受到的力合成,则O 点左侧导线受到垂直纸面向里的安培力;同理判断出O 点右侧的导线受到垂直纸面向外的安培力.因此,由上向下看,导线沿顺时针方向转动.分析导线转过90°时的情形:如图乙所示,导线中的电流垂直纸面向外,由左手定则可知,导线受到向下的安培力.由以上分析可知,导线在顺时针转动的同时向下运动.选项A 正确. 变式3 如图所示为研究平行通电直导线之间相互作用的实验装置.接通电路后发现两根导线均发生形变,此时通过导线M 和N 的电流大小分别为I 1和I 2,已知I 1>I 2,方向均向上.若用F 1和F 2分别表示导线M 与N 受到的磁场力,则下列说法正确的是( )A.两根导线相互排斥B.为判断F1的方向,需要知道I1和I2的合磁场方向C.两个力的大小关系为F1>F2 D.仅增大电流I2,F1、F2会同时增大【答案】D【解析】同向电流相互吸引,故A错误;为判断F1的方向,需要知道I2在I1处产生的磁场方向,故B错误;F1和F2是作用力和反作用力,大小相等,方向相反,故C错误;增大电流I2,F1、F2同时增大,故D正确.变式4将一个质量很小的金属圆环用细线吊起来,在其附近放一块条形磁铁,磁铁的轴线与圆环在同一个平面内,且通过圆环中心,如图所示,当圆环中通以顺时针方向的电流时,从上往下看()A.圆环顺时针转动,靠近磁铁B.圆环顺时针转动,远离磁铁C.圆环逆时针转动,靠近磁铁D.圆环逆时针转动,远离磁铁【答案】C【解析】该通电圆环相当于一个垂直于纸面的小磁针,N极在内,S极在外,根据同极相斥、异极相吸,C正确.命题热点三:安培力作用下的平衡问题通电导体棒在磁场中的平衡问题是一种常见的力电综合模型,该模型一般由倾斜导轨、导体棒、电源和电阻等组成.这类题目的难点是题图具有立体性,各力的方向不易确定.因此解题时一定要先把立体图转化为平面图,通过受力分析建立各力的平衡关系,如图所示.例4如图所示,金属杆MN用两根绝缘细线悬于天花板的O、O′点,杆中通有垂直于纸面向里的恒定电流,空间有竖直向上的匀强磁场,杆静止时处于水平,悬线与竖直方向的夹角为θ,若将磁场在竖直面内沿逆时针方向缓慢转过90°,在转动过程中通过改变磁场磁感应强度大小来保持悬线与竖直方向的夹角不变,则在转动过程中,磁场的磁感应强度大小的变化情况是()A.一直减小B.一直增大C.先减小后增大D.先增大后减小【答案】C【解析】磁场在转动的过程中,杆处于平衡状态,杆所受重力的大小和方向不变,悬线的拉力方向不变,由图解法结合左手定则可知,在磁场沿逆时针方向缓慢转动的过程中,安培力先减小后增大,由F=BIL可知,磁场的磁感应强度先减小后增大,故选C.变式5(多选)光滑斜面上放置一个通电导体棒,施加磁场后导体棒静止在斜面上,则以下四种情况中可能的是()【答案】BC【解析】A图,由左手定则可知,导体棒受到竖直向下的安培力作用,导体棒所受合力不可能为0,选项A错误;B图中的导体棒受到的安培力水平向右,导体棒所受合力可能为0,选项B正确;C图中的导体棒受到的安培力方向沿斜面向上,导体棒所受合力可能为0,选项C正确;D图中的导体棒受到的安培力方向沿斜面向下,导体棒受到的合力不可能为0,选项D错误.变式6如图所示,三根长为L的直线电流在空间构成等边三角形,电流的方向垂直纸面向里.电流大小均为I,其中A、B电流在C处产生的磁感应强度的大小均为B0,导线C位于水平面且处于静止状态,则导线C受到的静摩擦力是()A.32B0IL,水平向左 B.32B0IL,水平向右C.3B0IL,水平向左D.3B0IL,水平向右【答案】D【解析】根据安培定则,知A、B电流在C处的磁场方向分别垂直于AC、BC斜向下,如图所示,可知θ=30°,则有:B C=3B0,方向竖直向下;再由左手定则可知,安培力方向水平向左,大小为F安=3B0IL;由于导线C位于水平面且处于静止状态,所以导线C受到的静摩擦力大小为3B0IL,方向水平向右.课时精练:一、双基巩固练:1.中国宋代科学家沈括在《梦溪笔谈》中最早记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也.”进一步研究表明,地球周围地磁场的磁感线分布如图1.结合上述材料,下列说法不正确...的是()图1A.地理南、北极与地磁场的北、南极不重合B.地球内部也存在磁场,地磁南极在地理北极附近C.地球表面任意位置的地磁场方向都与地面平行D.地磁场对射向地球赤道的带电宇宙射线粒子有力的作用【答案】C【解析】地球为一巨大的磁体,地磁场的南、北极在地理上的北极和南极附近,并不重合,故A、B正确;地球内部也存在磁场,只有赤道附近上空磁场的方向才与地面平行,故C错误;射向地球赤道的带电宇宙射线粒子的速度方向与地磁场方向不平行,一定受到地磁场力的作用,故D正确.2.磁场中某区域的磁感线如图2所示,则()图2A.a、b两处的磁感应强度的大小不等,B a>B bB.a、b两处的磁感应强度的大小不等,B a<B bC.同一通电导线放在a处受力一定比放在b处受力大D.同一通电导线放在a处受力一定比放在b处受力小【答案】A【解析】磁感线的疏密程度表示磁感应强度的大小,由a、b两处磁感线的疏密程度可判断出B a>B b,所以A正确,B错误;安培力的大小跟该处的磁感应强度的大小B、电流大小I、导线长度L和导线放置的方向与磁感应强度的方向的夹角有关,故C、D错误.3.一段导线abcde位于磁感应强度大小为B的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直.线段ab、bc、cd和de的长度均为L,且①abc=①cde=120°,流经导线的电流为I,方向如图3中箭头所示.导线段abcde所受到的磁场的作用力的合力大小为()图3A.2BIL B.3BIL C.(3+2)BIL D.4BIL【答案】B【解析】因为①abc=①cde=120°,根据几何关系可知①bcd=60°,故b与d之间的直线距离也为L,则导线abcde有效长度为3L,故所受安培力的大小为:F=3BIL,故A、C、D错误,B 正确.4.L2是竖直固定的长直导线,L1、L3是水平固定且关于L2对称的长直导线,三根导线均通以大小相同、方向如图4所示的恒定电流,则导线L2所受的磁场力情况是()图4A.大小为零B.大小不为零,方向水平向左C.大小不为零,方向水平向右D.大小不为零,方向竖直向下【答案】A【解析】由右手螺旋定则可知,L1与L3在L2所在直线上产生的合磁场方向竖直向下,即L2处的磁场方向与电流方向平行,所以L2所受磁场力为零.5. 如图5,光滑斜面上放置一根通有恒定电流的导体棒,空间有垂直斜面向上的匀强磁场B,导体棒处于静止状态.现将匀强磁场的方向沿图示方向缓慢旋转到水平方向,为了使导体棒始终保持静止状态,匀强磁场的磁感应强度应同步()图5A.增大B.减小C.先增大,后减小D.先减小,后增大【答案】A【解析】对导体棒进行受力分析如图:磁场方向缓慢旋转到水平方向,则安培力方向缓慢从图示位置转到竖直向上,因为初始时刻安=BIL,所培力沿斜面向上,与支持力方向垂直,最小,所以安培力一直变大,而安培力:F安以磁场一直增大,B、C、D错误,A正确.6.(多选)如图6,三根相互平行的固定长直导线L1、L2和L3两两等距,均通有电流I,L1中电流方向与L2中的相同,与L3中的相反.下列说法正确的是()图6A.L1所受磁场作用力的方向与L2、L3所在平面垂直B.L3所受磁场作用力的方向与L1、L2所在平面垂直C.L1、L2和L3单位长度所受的磁场作用力大小之比为1①1①3D.L1、L2和L3单位长度所受的磁场作用力大小之比为3①3①1【答案】BC【解析】同向电流相互吸引,反向电流相互排斥.对L1受力分析,如图甲所示,可知L1所受磁场作用力的方向与L2、L3所在的平面平行,故A错误;对L3受力分析,如图乙所示,可知L3所受磁场作用力的方向与L1、L2所在的平面垂直,故B正确;设三根导线间两两之间的相互作用力的大小为F,则L1、L2受到的磁场作用力的合力大小均等于F,L3受到的磁场作用力的合力大小为3F,即L1、L2、L3单位长度所受的磁场作用力大小之比为1①1①3,故C正确,D错误.7. (多选)如图7,纸面内有两条互相垂直的长直绝缘导线L 1、L 2,L 1中的电流方向向左,L 2中的电流方向向上;L 1的正上方有a 、b 两点,它们相对于L 2对称.整个系统处于匀强外磁场中,外磁场的磁感应强度大小为B 0,方向垂直于纸面向外.已知a 、b 两点的磁感应强度大小分别为13B 0和12B 0,方向也垂直于纸面向外.则( )图7A .流经L 1的电流在b 点产生的磁感应强度大小为712B 0B .流经L 1的电流在a 点产生的磁感应强度大小为112B 0C .流经L 2的电流在b 点产生的磁感应强度大小为112B 0D .流经L 2的电流在a 点产生的磁感应强度大小为712B 0【答案】AC【解析】原磁场、电流的磁场方向如图所示,由题意知在b 点:12B 0=B 0-B 1+B 2 在a 点:13B 0=B 0-B 1-B 2由上述两式解得B 1=712B 0,B 2=112B 0,A 、C 项正确.8.如图8所示,AC 是四分之一圆弧,O 为圆心,D 为圆弧中点,A 、D 、C 处各有一垂直纸面的通电直导线,电流大小相等,方向垂直纸面向里,整个空间还存在一个磁感应强度大小为B 的匀强磁场,O 处的磁感应强度恰好为零.如果将D 处电流反向,其他条件都不变,则O处的磁感应强度大小为()图8A.2(2-1)B B.2(2+1)B C.2B D.0【答案】A【解析】A、D、C处的通电直导线在O处的磁感应强度的方向如图所示,大小相等,设为B0,则A、D、C处的通电直导线在O处的合磁感应强度大小为B=(2+1)B0,即B0=B2+1.如果将D处电流反向,其他条件都不变,则O处的磁感应强度大小为B′=B+B0-2B0=2(2-1)B,故B、C、D错误,A正确.二、综合提升练9. (多选)如图9所示,台秤上放一光滑平板,其左边固定一挡板,一轻质弹簧将挡板和一条形磁铁连接起来,此时台秤读数为F1,现在磁铁上方中心偏左位置固定一导体棒,当导体棒中通以方向如图所示的电流后,台秤读数为F2,则以下说法正确的是()图9A.弹簧长度将变长B.弹簧长度将变短C.F1>F2 D.F1<F2【答案】BC【解析】如图甲所示,导体棒处的磁场方向指向右上方,根据左手定则可知,导体棒受到的安培力方向垂直于磁场方向指向右下方,根据牛顿第三定律,对条形磁铁受力分析,如图乙所示,所以台秤对条形磁铁的支持力减小,即台秤示数F1>F2,在水平方向上,由于F′有水平向左的分力,条形磁铁压缩弹簧,所以弹簧长度变短.10. 如图10所示,一根长为L的金属细杆通有电流I时,水平静止在倾角为θ的光滑绝缘固定斜面上.斜面处在方向竖直向上、磁感应强度大小为B的匀强磁场中.若电流和磁场的方向均不变,电流大小变为0.5I,磁感应强度大小变为4B,重力加速度为g.则此时金属细杆()图10A.电流流向垂直纸面向外B.受到的安培力大小为2BIL sin θC.对斜面压力大小变为原来的2倍D.将沿斜面加速向上运动,加速度大小为g sin θ【答案】D11.如图11所示,长为L、质量为m的导体棒ab,置于倾角为θ的光滑斜面上.导体棒与斜面的水平底边始终平行.已知导体棒通以从b向a的电流,电流为I,重力加速度为g.图11(1)若匀强磁场方向竖直向上,为使导体棒静止在斜面上,求磁感应强度B的大小;(2)若匀强磁场的大小、方向都可以改变,要使导体棒能静止在斜面上,求磁感应强度的最小值和对应的方向.【答案】(1)mgIL tan θ(2)mgIL sin θ方向垂直斜面向上【解析】(1)匀强磁场方向竖直向上时,导体棒受力如图甲所示,由平衡条件得:mg sin θ=F 安cos θ,F 安=BIL ,解得B =mg IL tan θ.(2)如图乙所示,当安培力平行斜面向上,即安培力和重力沿斜面的分力平衡时,安培力最小,有mg sin θ=F 安′,F 安′=B min IL ,解得B min =mg IL sin θ,由左手定则可知磁感应强度的方向垂直斜面向上.12.如图12所示,在倾角为θ=37°的斜面上,固定一宽为L =1.0 m 的平行金属导轨.现在导轨上垂直导轨放置一质量m =0.4 kg 、电阻R 0=2.0 Ω、长为1.0 m 的金属棒ab ,它与导轨间的动摩擦因数为μ=0.5.整个装置处于方向竖直向上、磁感应强度大小为B =2 T 的匀强磁场中.导轨所接电源的电动势为E =12 V ,内阻r =1.0 Ω,若最大静摩擦力等于滑动摩擦力,滑动变阻器的阻值符合要求,其他电阻不计,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.现要保持金属棒在导轨上静止不动,求:图12(1)金属棒所受安培力的取值范围;(2)滑动变阻器接入电路中的阻值范围.【答案】(1)811 N≤F ≤8 N (2)0≤R ≤30 Ω【解析】(1)当金属棒刚好达到向上运动的临界状态时,金属棒受到的摩擦力为最大静摩擦力,方向平行斜面向下,对金属棒受力分析,如图甲所示,此时金属棒所受安培力最大,设为F 1,则有垂直斜面方向:F N=F1sin θ+mg cos θ沿斜面方向:F1cos θ=mg sin θ+F fmax又F fmax=μF N以上三式联立并代入数据可得F1=8 N当金属棒刚好达到向下运动的临界状态时,金属棒受到的摩擦力为最大静摩擦力,方向平行斜面向上,其受力分析如图乙所示,此时金属棒所受安培力最小,设为F2,则有F N′=F2sin θ+mg cos θ,F2cos θ+F fmax′=mg sin θ,F fmax′=μF N′以上三式联立并代入数据可得F2=811N所以金属棒受到的安培力的取值范围为811N≤F≤8 N(2)因磁场与金属棒垂直,所以金属棒受到的安培力为F=BIL,因此有I=FBL,由安培力的取值范围可知电流的取值范围为411A≤I≤4 A设电流为I1=411A时滑动变阻器接入电路中的阻值为R1,由闭合电路欧姆定律,有E-I1r=I1(R0+R1),代入数据可得R1=30 Ω设电流为I2=4 A时滑动变阻器接入电路中的阻值为R2,由闭合电路欧姆定律,有E-I2r=I2(R0+R2),代入数据可得R2=0所以滑动变阻器接入电路中的阻值范围为0≤R≤30 Ω.。
2021年高考物理第1讲 磁场 磁场力(精练案)

第1讲磁场磁场力(链接《配餐》P92)1.(安培定则)(2019年山西大同阶段检测)如图所示,圆环上带有大量的负电荷,当圆环沿顺时针方向转动时,a、b、c三枚小磁针都要发生转动,以下说法正确的是()。
A.a、b、c的N极都向纸里转B.b的N极向纸外转,而a、c的N极向纸里转C.b、c的N极都向纸里转,而a的N极向纸外转D.b的N极向纸里转,而a、c的N极向纸外转【解析】圆环带负电,顺时针转动时产生逆时针方向的电流,根据安培定则可知环内磁场方向向外,环外磁场方向向内,B项正确。
【答案】B2.(安培力的平衡)(2020年广西贵港月考)质量为m、长为L的直导体棒放置于四分之一光滑圆弧轨道上,整个装置处于竖直向上、磁感应强度为B的匀强磁场中,直导体棒中通有恒定电流,平衡时导体棒与圆弧圆心的连线与竖直方向成60°角,其截面图如图所示,重力加速度为g。
关于导体棒中的电流,下列分析正确的是()。
A.导体棒中电流垂直于纸面向外,大小为3mgB.导体棒中电流垂直于纸面向外,大小为3mg3C.导体棒中电流垂直于纸面向里,大小为3mgD.导体棒中电流垂直于纸面向里,大小为3mg【解析】导体棒受到竖直向下的重力和指向圆心的弹力,要使导体棒平衡,应使其受水平向右的安培力,重力和安培力的合力大小与弹力大小相等,方向相反,由平衡条件有tan60°= =3,解得导体棒中电流项正确。
【答案】C3.(磁场叠加)(2019年湖北黄石第1次模拟考试)如图所示,AC是四分之一圆弧,O为圆心,D为弧AC中点,A、D、C处各有一垂直纸面的通电直导线,电流大小相等,A、C两处电流垂直纸面向里,D处电流垂直纸面向外,整个空间再加一个磁感应强度大小为B的匀强磁场,O处的磁感应强度刚好为零,如果将D处电流反向,其他条件都不变,则O处的磁感应强度大小为()。
A.3+22BB.22+1BC.2BD.0【解析】设A、D、C处的电流在O点产生的磁场的磁感应强度大小均为B0,则对O点的磁场关系满足 02+ 02=B+B0,即B=2-1B0,B的方向与AO成45°角斜向左上方;如果将D处电流反向,则O处磁场的大小为2B0=22+1B,B项正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高考物理专题汇编专题4 电场和磁场第1讲电场(A)(含解析)一.选择题1.(xx・张掖三诊・14).下列说法正确的是()A.电荷的周围既有电场也有磁场,反映了电和磁是密不可分的B.由电场强度的定义式可知E的方向决定于q的正负C.法拉第首先总结出磁场对电流作用力的规律D.“电生磁”和“磁生电”都是在变化、运动的过程中才能出现的效应2.(xx・衡水高三调・14).下列说法不正确的是 ( )A.法拉第最先引入“场”的概念,并最早发现了电流的磁效应现象B.互感现象是变压器工作的基础C.在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看做匀速直线运动,然后把各小段的位移相加,这应用了“微元法”D.电场强度和磁感应强度定义物理量的方法是比值定义法3.(xx・西安交大附中三模・14).由于万有引力定律和库仑定律都满足平方反比定律,因此引力场和电场之间有许多相似的性质,在处理有关问题时可以将它们进行类比.例如电场中反映各点电场强弱的物理量是电场强度,其定义式为.在引力场中可以有一个类似的物理量用来反映各点引力场的强弱.设地球质量为,半径为R,地球表面处重力加速度为,引力常量为G.如果一个质量为的物体位于距地心2R处的某点,则下列表达式中能反映该点引力场强弱的是()A. B. C. D.4.(xx・江山市模拟・)4.(6分)物理关系式不仅反映了物理量之间的关系,也确定了单位间的关系.如关系式U=IR既反映了电压、电流和电阻之间的关系,也确定了V(伏)与A(安)和Ω(欧)的乘积等效,即V与A•Ω等效.现有物理量单位:m(米)、s(秒)、N(牛)、J(焦)、W(瓦)、C(库)、F(法)、A(安)、Ω(欧)和T(特),由他们组合成的单位都与电压单位V(伏)等效的是()A. J/C和T•A•m B. C./F和W•Ω C. W/A和C•T•m/sD. T•m2/s和N/C5.(xx・马鞍山三模・19). 对于真空中电量为Q的静止点电荷而言,当选取离点电荷无穷远处的电势为零时,离点电荷距离为r处电势为(k Array为静电力常量)。
如图所示,一质量为m、电量为q可视为点电荷的带正电小球用绝缘丝线悬挂在天花板上,在小球正下方的绝缘底座上固定一半径为R的金属球,金属球接地,两球球心间距离为d。
由于静电感应,金属球上分布的感应电荷的电量为q′。
则下列说法正确的是()A.金属球上的感应电荷电量B .金属球上的感应电荷电量C .绝缘丝线中对小球的拉力大小为D .绝缘丝线中对小球的拉力大小6.(xx ・衡水高三调・17).如图所示,真空中等量同种正点电荷放置在M 、N 两点,在MN 的连线上有对称点a 、c ,MN 连线的中垂线上有对称点b 、d ,则下列说法正确的是 ( )A .正电荷+q 在c 点电势能大于在a 点电势能B .正电荷+q 在c 点电势能小于在a 点电势能C .在MN 连线的中垂线上,O 点电势最高D .负电荷-q 从d 点静止释放,在它从d 点运动到b 点的过程中,加速度先减小再增大7.(xx ・景德镇三检・20).如图所示为点电荷a 、b 所形成的电场线分布,有一粒子(不计重力)由A 进入电场,A 、B 是轨迹上的两点,以下说法正确的是( )A .该粒子带正电B .a 、b 为异种电荷C .该粒子在A 点加速度较B 点大D .该粒子在A 点电势能较B 点大8.(xx ・大庆三检・20).如图所示,正四面体所有棱长都相等长度为a ,A 、B 、C 、D 是其四个顶点,现在B 、D 两点分别固定电量均为q 的正负点电荷,静电力常量为k ,下列说法正确的是 ()A .C 点的场强大小为B .A 、C 两点的场强方向相同C .A 、C 两点电势相同D .将一正电荷从A 点沿直线移动到C 点,电场力先做正功后做负功9. (xx ・东城区二练・16).在匀强电场中将一个带电粒子由静止释放。
若带电粒子仅在电场力作用下运动,则A .带电粒子所受电场力越来越大B .带电粒子的运动速度越来越大C .带电粒子的加速度越来越大D .带电粒子的电势能越来越大10.(xx ・肇庆三测・20).x 轴上O 点右侧各点的电场方向与x 轴方向一致,O 点左侧各点的电场方向与x 轴方向相反,若规定向右的方向为正方向,x 轴上各点的电场强度E 随x 变化的图象如下图所示, 该图象关于O 点对称,x 1和-x 1为x 轴上的两点.下列说法正确的是( ) A B••A .O 点的电势最低B .x 1和-x 1两点的电势相等C .电子在x 1处的电势能大于在-x 1处的电势能D .电子从x 1处由静止释放后,若向O 点运动,则到达O 点时速度最大 11.(xx ・北京西城区二模16).如图所示,虚线为电场中的三个等势面,相邻等势面之间的电势差相等。
一个带正电的点电荷在A 点的电势能大于其在B 点的电势能,则下列说法正确的是( )A .A 点的电势比B 点的高B .无法比较A 、B 两点的电势高低C .A 点的电场强度比B 点的大D .无法比较A 、B 两点的场强大小12.(xx ・永州三模・17).带电质点P 1固定在光滑的水平绝缘桌面上,另有一个带电质点P 2在桌面上运动,某一时刻质点P 2的速度沿垂直于P 1P 2的连线方向,如图所示,关于质点P 2以后的运动情况,下列说法正确的是( )A .若P 1、P 2带异种电荷,可能做加速度变大,速度变小的曲线运动B .若P 1、P 2带异种电荷,速度大小和加速度大小可能都不变C .若P 1、P 2带同种电荷,可能做速度变小的曲线运动D .若P 1、P 2带同种电荷,可能做加速度变大的曲线运动13.(xx ・绵阳三诊・6).电荷量q=1×10-4C 的带正电的小物块静止在绝缘水平面上,所在空间存在沿水平方向的电场,其电场强度E 的大小与时间t 的关系如图1所示,物块速度v 的大小与时间t 的关系如图2所示。
重力加速度g=10m/s 2。
则( )A. 物块在4 s 内位移是8 mB. 物块的质量是1kgC. 物块与水平面间动摩擦因数是0.4D. 物块在4 s 内电势能减少了14J14.(xx ・济南二模・19).如图所示,在匀强电场中有六个点A 、B 、C 、D 、E 、F ,正好构成一正六边形,六边形边长为0.1 m ,所在平面与电场方向平行。
点B 、C 、E 的电势分别为-20 V 、20 V 和60 V 。
一带电粒子从A 点以某一速度沿AB 方向射出后,经过1x10-6s 到达D点。
不P 2 P 1图2 图1计重力。
则下列判断正确的是()A.粒子带正电B.粒子在A点射出时的速度为5×l05m/sC.粒子在A点的电势能大于在D点的电势能D.该粒子的比荷(电荷量与质量比值)为7.5×108C/kg15.(xx・聊城二模・18).如图所示,光滑绝缘细管与水平面成30°角,在管的右上方P点固定一个点电荷+Q,P点与细管在同一竖直平面内,管的顶端A与P点连线水平,图中PB 垂直AC,B是AC的中点。
带电荷量为-q的小球(小球直径略小于细管的内径)从管中A处由静止开始沿管向下运动,它在A处时的加速度为a,不考虑小球电荷量对+Q形成的电场的影响。
则在电场中()A.A点的电势高于B点的电势B.B点的电场强度大小是A点的4倍C.小球运动到C处的加速度为D.小球从A到C的过程中电势能先减小后增大16.(xx・南平综测・l7).如图所示:长为L、倾角为的光滑绝缘斜面处于电场中,一带电量为+q、质量为m的小球以初速度从斜面底端A点开始沿斜面上滑,当到达斜面顶端B点时,速度仍为,则A.小球在B点的电势能一定大于在A点的电势能B.A、B两点间的电压一定等于C.若电场是匀强电场,则该电场的电场强度最大值一定为D.若该电场是由放置在C点的点电荷Q产生,则为45°17.(xx・西安交大附中三模・18). 如图所示,无限大均匀带正电薄板竖直放置,其周围空间的电场可认为是匀强电场。
光滑绝缘细管垂直于板穿过中间小孔,一个视为质点的带负电小球在细管内运动。
以小孔为原点建立x轴,规定x轴正方向为加速度a、速度v的正方向,下图分别表示x轴上各点的电势φ,小球的加速度a、速度v和动能E k随x的变化图象,其中正确的是()18.(xx ・宝鸡三检・19)、如图所示,一带电粒子在匀强电场中从点抛出,运动到点时速度方向竖直向下,且在点的速度为粒子在电场中运动的最小速度,已知电场方向和粒子运动轨迹在同一竖直平面内,粒子的重力和空气阻力与电场力相比可忽略不计,则( )A .电场方向一定水平向右B .电场中点的电势一定大于点的电势C .从 到的过程中,粒子的电势能一定增加D .从到的过程中,粒子的电势能与机械能之和一定不变19.(xx ・潍坊二模・18).如图甲所示,一绝缘的竖直圆环上均匀分布着正电荷.一光滑细杆从圆心垂直圆环平面穿过圆环,杆上套有带正电的小球,现使小球从a 点由静止释放,并开始计时,后经过b 、c 两点, 运动过程中的v-t 图如图乙所示.下列说法正确的是( )A .带电圆环在圆心处产生的场强为零B .a 点场强大于b 点场强C .电势差D .小球由b 到c 的过程中平均速度小于0.55 m /s二.非选择题20.(xx ・龙岩综测・21).(19分)如图所示,ABCD 竖直放置的光滑绝缘细管道,其中AB 部分是半径为R 的圆弧形管道,BCD 部分是固定的水平管道,两部分管道恰好相切于B 。
水平面内的M 、N 、B 三点连线构成边长为L 等边三角形,MN 连线过C 点且垂直于BCD 。
两个带等量异种电荷的点电荷分别固定在M 、N 两点,电荷量分别为和。
现把质量为、电荷量为的小球(小球直径略小于管道内径,小球可视为点电荷),由管道的A 处静止释放,已知静电力常量为,重力加速度为。
求: x E E O O x φO x v O xE k O x a(1)小球运动到B处时受到电场力的大小;(2)小球运动到C处时的速度大小;(3)小球运动到圆弧最低点B处时,小球对管道压力的大小。
21.(xx・北京朝阳二练・24).(20分)(1)如图甲所示,M、N是真空中两个电荷量均为+Q的固定点电荷,M、N间的距离为a;沿MN连线的中垂线建立坐标轴,P是x轴上的点,°。
已知静电力常量为k。
a.求P点场强的大小和方向;b.在图乙中定性画出场强E随x变化的图像(取向右为场强E的正方向)。
(2)如图丙所示,一个半径为R、电荷量为+Q的均匀带电圆环固定在真空中,环心为O,MN是其中轴线。
现让一电荷量为−q、质量为m的带电粒子从MN上的P点由静止释放,P、O间的距离为d。