概率论期末考试复习题与答案
概率论复习题及答案解析
概率论复习题及答案解析1. 什么是概率论中的随机事件?解析:随机事件是指在一定条件下,可能发生也可能不发生的事件。
它具有不确定性,但可以通过概率来描述其发生的可能性大小。
2. 如何计算两个独立事件同时发生的概率?解析:如果事件A和事件B是独立的,那么它们同时发生的概率等于各自发生概率的乘积,即P(A∩B) = P(A) × P(B)。
3. 什么是条件概率?解析:条件概率是指在某个事件B发生的条件下,另一个事件A发生的概率,记作P(A|B)。
它表示为P(A∩B) / P(B),前提是P(B) ≠ 0。
4. 什么是贝叶斯定理?解析:贝叶斯定理是一种用于根据条件概率和先验概率来计算后验概率的方法。
公式为P(A|B) = P(B|A) × P(A) / P(B)。
5. 什么是大数定律?解析:大数定律表明,随着试验次数的增加,事件发生的频率趋近于其概率。
即在大量重复试验中,一个随机事件的相对频率会稳定在其概率附近。
6. 什么是中心极限定理?解析:中心极限定理指出,大量相互独立且同分布的随机变量之和,其分布趋近于正态分布,无论这些变量本身是否服从正态分布。
7. 如何计算二项分布的概率?解析:二项分布的概率可以通过公式P(X=k) = C(n, k) × p^k ×(1-p)^(n-k)计算,其中n是试验次数,k是成功次数,p是单次试验成功的概率,C(n, k)是组合数,表示从n个不同元素中取k个元素的组合方式数。
8. 什么是泊松分布?解析:泊松分布是一种描述在固定时间或空间内,某事件发生次数的概率分布。
其概率质量函数为P(X=k) = (λ^k × e^(-λ)) / k!,其中λ是单位时间或空间内事件发生的平均次数,k是事件发生的次数。
9. 什么是正态分布?解析:正态分布是一种连续概率分布,其概率密度函数为f(x) = (1 / (σ√(2π))) × e^(-(x-μ)^2 / (2σ^2)),其中μ是分布的均值,σ是标准差。
概率论期末试题及答案
概率论期末试题及答案一、选择题(每题2分,共20分)1. 随机事件A的概率为P(A),则其对立事件的概率为:A. P(A) + 1B. 1 - P(A)C. P(A) - 1D. P(A) / 22. 某校有男女生比例为3:2,随机抽取1名学生,该学生是男生的概率为:A. 1/5B. 3/5C. 2/5D. 5/73. 抛一枚均匀硬币两次,至少出现一次正面的概率是:A. 1/2B. 1/4C. 3/4D. 5/84. 设随机变量X服从二项分布B(n, p),若n=15,p=0.4,则P(X=7)是:A. C^7_15 * 0.4^7 * 0.6^8B. C^7_15 * 0.6^7 * 0.4^8C. C^7_15 * 0.4^15D. C^8_15 * 0.4^7 * 0.6^85. 若随机变量Y服从泊松分布,λ=2,则P(Y=1)是:A. e^(-2) * 2B. e^(-2) * 2^2C. e^(-2) * 2^1D. e^(-2) * 2^06. 设随机变量Z服从标准正态分布,则P(Z ≤ 0)是:A. 0.5B. 0.25C. 0.75D. 0.337. 若两个事件A和B相互独立,P(A)=0.6,P(B)=0.7,则P(A∩B)是:A. 0.42B. 0.35C. 0.6D. 0.78. 随机变量X服从均匀分布U(0, 4),则E(X)是:A. 2B. 4C. 0D. 19. 设随机变量X和Y的协方差Cov(X, Y)=-2,则X和Y:A. 正相关B. 负相关C. 独立D. 不相关10. 若随机变量X服从指数分布,λ=0.5,则P(X > 1)是:A. e^(-0.5)B. e^(-1)C. 1 - e^(-0.5)D. 2 - e^(-1)二、填空题(每题3分,共30分)11. 若随机变量X服从参数为θ的概率分布,且P(X=θ)=0.3,P(X=2θ)=0.4,则P(X=3θ)=________。
概率论期末复习题及答案
概率论期末复习题及答案1. 随机事件的概率定义是什么?答:随机事件的概率是指该事件发生的可能性大小,用0到1之间的实数表示,其中0表示事件不可能发生,1表示事件必然发生。
2. 请解释条件概率的概念。
答:条件概率是指在已知某个事件A已经发生的条件下,另一个事件B 发生的概率,记作P(B|A),其计算公式为P(B|A) = P(A∩B) / P(A),其中P(A∩B)表示事件A和B同时发生的概率。
3. 什么是独立事件?答:如果两个事件A和B满足P(A∩B) = P(A) * P(B),则称事件A和B为独立事件,即一个事件的发生不影响另一个事件的发生概率。
4. 请列举至少三种随机变量的类型。
答:随机变量的类型包括离散型随机变量、连续型随机变量和混合型随机变量。
5. 描述期望值的定义。
答:随机变量X的期望值E(X)是所有可能取值乘以其对应概率的总和,即E(X) = ∑[xi * P(X = xi)],其中xi是随机变量X的可能取值,P(X = xi)是X取xi值的概率。
6. 什么是方差,它如何衡量随机变量的离散程度?答:方差是衡量随机变量X与其期望值E(X)之间差异的平方的期望值,记作Var(X) = E[(X - E(X))^2],它反映了随机变量取值的离散程度,方差越大,随机变量的取值越分散。
7. 请解释大数定律和中心极限定理。
答:大数定律指出,随着试验次数的增加,样本均值会趋近于总体均值;中心极限定理则表明,当样本量足够大时,样本均值的分布将趋近于正态分布,无论总体分布如何。
8. 如何计算二项分布的概率?答:二项分布的概率可以通过公式P(X = k) = C(n, k) * p^k * (1-p)^(n-k)计算,其中n是试验次数,k是成功次数,p是单次试验成功的概率,C(n, k)是组合数,表示从n个不同元素中取k个元素的组合方式数量。
9. 正态分布的特点是什么?答:正态分布是一种连续型概率分布,其特点是对称性,均值、中位数和众数重合,且以均值为中心,数据分布呈现钟形曲线。
概率论复习题和答案
概率论复习题和答案1. 什么是概率论中的随机事件?答:随机事件是指在一定条件下可能发生也可能不发生的事件。
2. 请解释概率论中的样本空间。
答:样本空间是指随机试验所有可能结果的集合。
3. 什么是条件概率?答:条件概率是指在某个事件A发生的条件下,另一个事件B发生的概率,记作P(B|A)。
4. 请解释独立事件的概念。
答:独立事件是指两个事件A和B的发生互不影响,即P(A∩B) =P(A)P(B)。
5. 什么是贝叶斯定理?答:贝叶斯定理是一种用于根据条件概率计算事件概率的方法,公式为P(A|B) = P(B|A)P(A) / P(B)。
6. 请解释随机变量的概念。
答:随机变量是指随机试验结果的数值表示,可以是离散的也可以是连续的。
7. 什么是期望值?答:期望值是指随机变量的平均值,记作E(X),是随机变量取值的概率加权平均。
8. 请解释方差和标准差。
答:方差是衡量随机变量取值与其期望值之间差异的度量,记作Var(X);标准差是方差的平方根,记作SD(X)。
9. 什么是大数定律?答:大数定律是指随着试验次数的增加,样本均值会趋近于总体均值。
10. 请解释中心极限定理。
答:中心极限定理是指在一定条件下,大量独立随机变量的和或平均值的分布会趋近于正态分布,无论这些变量的原始分布如何。
11. 什么是二项分布?答:二项分布是指在固定次数的独立伯努利试验中,成功次数的概率分布。
12. 请解释泊松分布。
答:泊松分布是一种描述在固定时间或空间内,发生一定数量事件的概率分布。
13. 什么是正态分布?答:正态分布是一种连续概率分布,其概率密度函数呈钟形曲线,也称为高斯分布。
14. 请解释均匀分布。
答:均匀分布是指在某个区间内,每个点发生的概率相等的概率分布。
15. 什么是指数分布?答:指数分布是一种描述事件发生时间间隔的概率分布,常用于描述无记忆性的随机过程。
概率论与数理统计期末考试试题及参考答案
概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
概率论期末考试和答案
概率论期末考试和答案一、选择题(每题3分,共30分)1. 随机变量X服从二项分布B(3,0.5),则P(X=2)为()。
A. 0.375B. 0.5C. 0.25D. 0.125答案:A2. 已知随机变量X服从标准正态分布,P(X<0)=0.5,则P(X>1)为()。
A. 0.1587B. 0.8413C. 0.1587D. 0.8413答案:A3. 若随机变量X服从泊松分布,其参数λ=2,则E(X)为()。
A. 2B. 4C. 0D. 1答案:A4. 已知随机变量X和Y相互独立,且P(X=1)=0.5,P(Y=1)=0.3,则P(X=1且Y=1)为()。
A. 0.15B. 0.5C. 0.3D. 0.75答案:A5. 已知随机变量X服从正态分布N(2,4),则P(X<0)为()。
A. 0.0228B. 0.9772C. 0.5D. 0.1587答案:A6. 若随机变量X和Y相互独立,且P(X>1)=0.7,P(Y<2)=0.4,则P(X>1且Y<2)为()。
A. 0.28B. 0.56C. 0.7D. 0.4答案:A7. 已知随机变量X服从均匀分布U(0,4),则E(X)为()。
A. 2C. 0D. 1答案:A8. 若随机变量X服从指数分布,其参数λ=0.5,则P(X>3)为()。
A. 0.125B. 0.25C. 0.5D. 0.75答案:A9. 已知随机变量X服从正态分布N(0,1),则P(-1<X<1)为()。
A. 0.6827B. 0.8413C. 0.9772答案:A10. 若随机变量X和Y相互独立,且P(X=0)=0.4,P(Y=1)=0.6,则P(X=0且Y=1)为()。
A. 0.24B. 0.4C. 0.6D. 0.16答案:A二、填空题(每题4分,共20分)1. 已知随机变量X服从二项分布B(5,0.4),则P(X=3)=_________。
概率论期末复习题库答案
概率论期末复习题库答案1. 随机事件A和B的概率分别为P(A)=0.6和P(B)=0.7,且P(A∩B)=0.4,求P(A∪B)。
答案:根据概率的加法公式,P(A∪B) = P(A) + P(B) - P(A∩B),所以P(A∪B) = 0.6 + 0.7 - 0.4 = 0.9。
2. 已知随机变量X服从二项分布B(3, 0.5),求X的期望值E(X)。
答案:对于二项分布B(n, p),期望值E(X) = np,所以E(X) = 3 * 0.5 = 1.5。
3. 若随机变量X服从正态分布N(μ, σ^2),其中μ=2,σ^2=4,求P(X>3)。
答案:由于X服从正态分布N(2, 4),标准差σ=2,将X=3标准化得到Z=(3-2)/2=0.5,查标准正态分布表得P(Z>0.5) = 1 - P(Z≤0.5) ≈ 0.3085。
4. 一个袋子里有5个红球和3个蓝球,随机抽取2个球,求至少抽到一个红球的概率。
答案:首先计算抽到两个蓝球的概率P(蓝蓝) = (3/8) * (2/7) =6/56,然后用1减去这个概率得到至少抽到一个红球的概率P(至少一个红) = 1 - P(蓝蓝) = 1 - 6/56 = 50/56。
5. 抛一枚硬币3次,求恰好出现2次正面的概率。
答案:这是一个二项分布问题,其中n=3,p=0.5,求k=2的概率。
使用二项分布公式P(X=k) = C(n, k) * p^k * (1-p)^(n-k),得到P(X=2) = C(3, 2) * (0.5)^2 * (0.5)^1 = 3 * 0.25 * 0.5 = 0.375。
6. 随机变量X和Y独立,X服从均匀分布U(0, 2),Y服从指数分布Exp(1),求E(XY)。
答案:对于独立的随机变量X和Y,E(XY) = E(X) * E(Y)。
X的期望值E(X) = (0+2)/2 = 1,Y的期望值E(Y) = 1/1 = 1,所以E(XY) = 1 * 1 = 1。
概率论期末复习题库答案
概率论期末复习题库答案一、选择题1. 某随机事件的概率为0.6,那么它的对立事件的概率为:A. 0.4B. 0.5C. 0.6D. 无法确定答案:A2. 假设事件A和事件B是互斥的,且P(A) = 0.3,P(B) = 0.2,那么P(A∪B)等于:A. 0.5B. 0.4C. 0.3D. 0.2答案:B3. 如果一个骰子连续投掷两次,求至少出现一次6的概率:A. 1/6B. 5/6C. 2/3D. 1/3答案:B二、填空题1. 随机变量X服从标准正态分布,那么P(X ≤ 0) = _______。
答案:0.52. 如果随机变量X的期望值为2,方差为4,那么P(X = 4) =_______。
答案:无法直接给出,需要更多信息3. 事件A发生的概率为0.3,事件B发生的概率为0.4,且P(A∩B) = 0.1,那么事件A和B是________。
答案:既不互斥也不独立三、简答题1. 什么是条件概率?请给出条件概率的公式。
答案:条件概率是指在已知一个事件已经发生的条件下,另一个事件发生的概率。
条件概率的公式为:\[ P(A|B) = \frac{P(A \cap B)}{P(B)} \]其中,\( P(A|B) \) 是在事件B发生的条件下事件A发生的条件概率,\( P(A \cap B) \) 是事件A和事件B同时发生的概率,\( P(B) \) 是事件B发生的概率。
2. 什么是大数定律?请简要说明其含义。
答案:大数定律是概率论中的一个基本概念,它描述了随机事件在大量重复试验中表现出的稳定性。
具体来说,大数定律指出,随着试验次数的增加,随机事件的相对频率会越来越接近其真实概率。
四、计算题1. 假设有一个装有红球和蓝球的袋子,其中红球有5个,蓝球有3个。
如果从袋子中随机抽取一个球,求抽到红球的概率。
答案:抽到红球的概率 \( P(\text{红球}) \) 可以通过以下公式计算:\[ P(\text{红球}) = \frac{\text{红球的数量}}{\text{总球数}} = \frac{5}{5+3} = \frac{5}{8} \]2. 假设随机变量X服从参数为λ的泊松分布,求X=2的概率。
概率论期末试题及答案
概率论期末试题及答案在概率论的学习过程中,期末试题是评估学生对该学科知识理解和应用的重要方式。
本文将给出一份概率论的期末试题及答案,以供参考。
试题将按照适当的格式整理,确保排版整洁美观,语句通顺,全文表达流畅,同时符合阅读体验的要求。
试题一:概率基础1. 已知事件A发生的概率为0.4,事件B发生的概率为0.6,求事件A和事件B同时发生的概率。
2. 一桶中装有6个红色球和4个蓝色球,从中随机抽取2个球,求这2个球颜色相同的概率。
3. 掷一颗骰子,点数为1至6的概率各为1/6。
连续投掷两次,求两次投掷结果和为7的概率。
试题二:概率分布1. 某商品的销售量服从正态分布N(150, 25),计算销售量在120至180之间的概率。
2. 某批产品的质量服从均匀分布U(60, 80),求产品质量小于75的概率。
3. 甲、乙两个小组分别进行同一项任务,甲组平均完成时间为4小时,标准差为0.5小时;乙组平均完成时间为3.8小时,标准差为0.3小时。
求完成时间小于4.2小时的概率。
试题三:条件概率1. 假设事件A和事件B是相互独立的,已知P(A)=0.3,P(B)=0.4,求P(A|B)和P(B|A)。
2. 某城市的天气预报根据历史数据和气象模型给出,根据预报可以推测出降雨的概率。
已知天气预报准确率为80%,预报为有降雨的概率为30%,求实际发生降雨的概率。
3. 从一批产品中随机抽取一件进行检验,已知该批产品中次品率为5%,已检一件产品为次品,求该件产品来自次品批次的概率。
试题四:随机变量1. 设随机变量X服从指数分布Exp(λ),已知λ=0.1,求P(X≥2)。
2. 设随机变量X服从均匀分布U(20, 40),求X的期望值E(X)和方差Var(X)。
3. 设随机变量X服从正态分布N(60, 16),求P(X>70)和P(50≤X≤80)。
试题五:大数定律和中心极限定理1. 设随机变量X服从参数为p的二项分布B(n,p),当n=200,p=0.4时,根据大数定律,计算X的期望值E(X)和方差Var(X)。
概率论期末试题答案
概率论期末试题答案一、选择题1. 概率论中的“概率”是指:A. 事件发生的可能性B. 事件发生的频率C. 事件发生的必然性D. 不确定性的度量答案:A2. 若事件A和B相互独立,则以下哪项正确?A. P(A ∪ B) = P(A) + P(B)B. P(A ∩ B) = P(A) + P(B)C. P(A ∩ B) = P(A) × P(B)D. P(A | B) = P(A)答案:C3. 标准正态分布的数学期望和方差分别是:A. 0和1B. 1和0C. 1和1D. 0和0答案:A4. 若随机变量X服从参数为λ的指数分布,其概率密度函数为:A. f(x) = λe^(-λx), x ≥ 0B. f(x) = λe^(-x/λ), x ≥ 0C. f(x) = 1/λe^(-x/λ), x ≥ 0D. f(x) = 1/λe^(-λx), x ≥ 0答案:B5. 以下哪个不是中心极限定理的内容?A. 独立同分布的随机变量之和趋于正态分布B. 独立同分布的随机变量之差的平方和趋于卡方分布C. 独立同分布的随机变量之和的均值趋于正态分布D. 独立同分布的随机变量之和的标准差趋于正态分布答案:D二、填空题1. 事件A和B相互独立,则P(A ∩ B) = _______ 。
答案:P(A) × P(B)2. 若随机变量X服从均匀分布U(a,b),则其概率密度函数为f(x) =_______ 。
答案:1/(b-a), a ≤ x ≤ b3. 二项分布的期望值E(X)和方差Var(X)分别为np和np(1-p),其中n表示试验次数,p表示每次试验成功的概率。
若n=10, p=0.5,则E(X) = _______ ,Var(X) = _______ 。
答案:5;2.54. 设随机变量X服从正态分布N(μ,σ^2),则其概率密度函数为f(x) = _______ 。
答案:(1/(σ√(2π))) * e^(-(x-μ)^2 / (2σ^2))5. 条件概率P(A|B)是指在事件B已经发生的条件下,事件A发生的概率,其计算公式为P(A|B) = _______ 。
概率论期末试题及解析答案
概率论期末试题及解析答案1. 简答题(每题10分)1.1 什么是概率?概率是描述随机事件发生可能性的数值。
它可以用来衡量某一事件在多次重复试验中出现的频率。
1.2 什么是样本空间?样本空间是指一个随机试验中所有可能结果的集合。
1.3 什么是事件?事件是样本空间中包含的一组可能结果的子集。
1.4 什么是互斥事件?互斥事件是指两个事件不能同时发生。
1.5 什么是独立事件?独立事件是指两个事件的发生与不发生互不影响。
2. 计算题(每题20分)2.1 设一枚硬币抛掷3次,计算至少出现两次正面的概率。
解析:样本空间:{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}至少出现两次正面的事件:{HHH, HHT, HTH, THH}概率 = 事件发生的次数 / 样本空间的次数 = 4 / 8 = 1/22.2 设A、B两个事件相互独立,且P(A) = 0.4,P(B) = 0.6,计算P(A∪B)。
解析:由于A、B事件相互独立,所以P(A∩B) = P(A) * P(B) = 0.4 * 0.6 = 0.24P(A∪B) = P(A) + P(B) - P(A∩B) = 0.4 + 0.6 - 0.24 = 0.763. 应用题(每题30分)3.1 甲乙两个备胎分别拥有10个和15个备用轮胎,轮胎坏掉时甲用2个备用轮胎的概率为0.2,乙用3个备用轮胎的概率为0.15。
现在从甲、乙两个备胎中随机挑选一个备用轮胎,请计算此备用轮胎坏掉的概率。
解析:设事件A为甲备胎的备用轮胎坏掉,事件B为乙备胎的备用轮胎坏掉。
P(A) = 0.2 * 10 / (0.2 * 10 + 0.15 * 15) = 0.2 * 10 / (2 + 2.25) ≈ 0.6667 P(B) = 0.15 * 15 / (0.2 * 10 + 0.15 * 15) = 0.15 * 15 / (2 + 2.25) ≈0.3333由于只能选择甲或乙中的一个备用轮胎,所以备用轮胎坏掉的概率为P(A) + P(B) ≈ 13.2 水果篮子中有5个橙子、3个苹果和2个香蕉,现从篮子中随机挑选两个水果,请计算挑选出的两个水果中至少有一个是橙子的概率。
概率论期末试卷(含答案)
概率论期末试卷一、填空题1. 设 A , B 是两个事件,且 P (A ) = P (B ) = 0.4, P (A|B̅) = 0.5 ,则 P (B − A ) + P (A − B ) = 。
2. 设随机变量 X ~ B (1, 0.5) ,Y ~ E (1) ,且 X ,Y 相互独立, Z = X +Y ,则 P {Z > 0} = 。
3. 设随机变量 X 和Y 独立同分布, P {X =k }=k+13,k =0.1 则P {X = Y }= 。
4. 设随机变量 X ~ N (1, 4) ,则 E [(X + 3)2]= 。
5. 设随机变量 X ~ P (5) ,由切比雪夫不等式得 P {1 < X < 9} ≥ 。
二、选择题1. 设(X 1,X 2,X 3)是取自总体 X ~ E (1θ)的简单随机样本,以下θ 的点估计中,方差最小的无偏估计是( )A.12X 1+ 13X 2+ 16X 3 A.15X 1+ 25X 2+ 25X 3 A.12X 1+ 12X 2+ 14X 3A.12X 1+ 14X 2+ 14X 32.设随机变量 X 的分布律为P {X =i }=k2i ,i =1,2,…,则X 取奇数的概率为( )A.23B.34C.12D.143.设随机变量 X 和Y 相互独立,下列结论错误的是( )A.若 X ~ B (1, p ),Y ~ B (1,q ) ,则 X +Y ~ B (1, p + q )B.若 X ~ P (λ1),Y ~ P (λ2) ,则 X +Y ~ P (λ1+λ2)C.若 X ~ N (μ1,σ12),Y ~ N (μ2,σ22) ,则 X +Y ~ N (μ1+μ2,σ12+σ22)D.若 X ~ χ 2(m ),Y ~ χ 2(n ) ,则 X +Y ~ χ 2(m + n )4.设 (X 1,X 2,…,X n ) 为来自正态总体 N (μ,σ2) 的简单随机样本.如果μ已知,则σ2的置信度为1−α的置信区间为( )A.((n−1)S 2χα22(n),(n−1)S 2χ1−α22(n)) B.((n−1)S 2χα22(n−1),(n−1)S 2χ1−α22(n−1))C.(∑(X i −μ)2n i=1χα22(n),∑(X i−μ)2n i=1χ1−α22(n))D.(∑(X i −μ)2n i=1χα22(n−1),∑(X i−μ)2n i=1χ1−α22(n−1))5. 在假设检验中,下列说法正确的是( ).A.一定会犯第一类错误B.一定会犯第二类错误C.可能同时犯两类错误D.不可能同时犯两类错误三、设有两个盒子内装有同型号的电子元件.已知甲盒中有 5 个正品和 3 个次品;乙盒中有 4 个正品和 3 个次品.现从甲盒中任取 3 个元件放入乙盒中,然后再从乙盒中任取一个元件.(1)求从乙盒中所取出的一个元件是正品的概率;(2)已知从乙盒中所取出的元件是正品,求最先从甲盒中取出的 3 个元件都是正品的概率。
概率论期末试题答案
概率论期末试题答案1. (a) 解:根据题意,已知事件A和事件B相互独立,可以得到以下关系式:P(A | B) = P(A) (由事件A和事件B相互独立可得)P(B | A) = P(B) (由事件A和事件B相互独立可得)又根据贝叶斯定理,可以得到以下关系式:P(A | B) = P(B | A) * P(A) / P(B)将以上两个关系式结合在一起,即可得到答案:P(A) = P(B | A) * P(A) / P(B)(b) 解:根据题意,已知事件A和事件B相互依赖,可以得到以下关系式:P(A | B) ≠ P(A) (由事件A和事件B相互依赖可得)P(B | A) ≠ P(B) (由事件A和事件B相互依赖可得)又根据贝叶斯定理,可以得到以下关系式:P(A | B) = P(B | A) * P(A) / P(B)将以上两个关系式结合在一起,即可得到答案:P(A) ≠ P(B | A) * P(A) / P(B)2. 此题为条件概率的计算。
根据题意,已知P(A) = 0.4,P(B) = 0.6,P(A | B) = 0.5,求P(A ∪ B)。
解:根据概率公式,可以得知:P(A ∪ B) = P(A) + P(B) - P(A | B)将已知的数值代入上述公式,即可求解:P(A ∪ B) = 0.4 + 0.6 - 0.5 = 0.5所以,P(A ∪ B) = 0.5。
3. 解:根据题意,已知事件A和事件B相互独立,且P(A) = 0.2,P(B) = 0.3,求P(A' ∪ B')。
首先,我们可以得到以下关系式:P(A' ∪ B') = 1 - P((A' ∪ B')') (根据全概率公式)= 1 - P((A ∩ B)') (德摩根定律)= 1 - (1 - P(A ∩ B)) (补集的概率为1减去该集合的概率)= P(A ∩ B)由于事件A和事件B相互独立,可以得到以下关系式:P(A ∩ B) = P(A) * P(B)将已知的数值代入上述关系式,即可求解:P(A' ∪ B') = P(A ∩ B) = P(A) * P(B) = 0.2 * 0.3 = 0.06所以,P(A' ∪ B') = 0.06。
概率论与数理统计期末考试试卷答案
概率论与数理统计期末考试试卷答案一、选择题(每题5分,共25分)1. 下列事件中,不可能事件是()A. 抛掷一枚硬币,正面朝上B. 抛掷一枚硬币,正面和反面同时朝上C. 抛掷一枚骰子,出现7点D. 抛掷一枚骰子,出现1点答案:C2. 设A、B为两个事件,若P(A-B)=0,则下列选项正确的是()A. P(A) = P(B)B. P(A) ≤ P(B)C. P(A) ≥ P(B)D. P(A) = 0答案:B3. 设随机变量X服从二项分布B(n, p),则下列结论正确的是()A. 当n增加时,X的期望值增加B. 当p增加时,X的期望值增加C. 当n增加时,X的方差增加D. 当p增加时,X的方差减少答案:B4. 设X~N(μ, σ^2),下列选项中错误的是()A. X的期望值E(X) = μB. X的方差D(X) = σ^2C. X的概率密度函数关于X = μ对称D. 当σ增大时,X的概率密度函数的峰值减小答案:D5. 在假设检验中,显著性水平α表示()A. 原假设为真的情况下,接受原假设的概率B. 原假设为假的情况下,接受原假设的概率C. 原假设为真的情况下,拒绝原假设的概率D. 原假设为假的情况下,拒绝原假设的概率答案:C二、填空题(每题5分,共25分)6. 设A、B为两个事件,P(A) = 0.5,P(B) = 0.6,P(A∩B) = 0.3,则P(A-B) = _______。
答案:0.27. 设随机变量X服从泊松分布,已知P(X=1) = 0.2,P(X=2) = 0.3,则λ = _______。
答案:1.58. 设随机变量X~N(μ, σ^2),若P(X<10) = 0.2,P(X<15) = 0.8,则μ = _______。
答案:12.59. 在假设检验中,若原假设H0为μ=10,备择假设H1为μ≠10,显著性水平α=0.05,则接受原假设的临界值是_______。
答案:9.5或10.510. 设X、Y为两个随机变量,若X与Y相互独立,则下列选项正确的是()A. E(XY) = E(X)E(Y)B. D(X+Y) = D(X) + D(Y)C. D(XY) = D(X)D(Y)D. 上述选项都正确答案:D三、解答题(每题25分,共100分)11. 设某班有50名学生,其中有20名男生,30名女生。
概率论期末考试题及答案
概率论期末考试题及答案一、选择题(每题4分,共20分)1. 以下哪个事件是必然事件?A. 抛一枚硬币,正面朝上B. 抛一枚硬币,反面朝上C. 抛一枚硬币,正面或反面朝上D. 抛一枚硬币,硬币立起来答案:C2. 假设随机变量X服从正态分布N(μ, σ^2),则以下哪个选项是正确的?A. μ是X的中位数B. μ是X的众数C. μ是X的期望值D. μ是X的方差答案:C3. 假设随机变量X和Y独立,以下哪个选项是正确的?A. P(X=x, Y=y) = P(X=x)P(Y=y)B. P(X=x, Y=y) = P(X=x) + P(Y=y)C. P(X=x, Y=y) = P(X=x) - P(Y=y)D. P(X=x, Y=y) = P(X=x) / P(Y=y)答案:A4. 假设随机变量X服从二项分布B(n, p),以下哪个选项是正确的?A. E(X) = npB. E(X) = n/2C. Var(X) = np(1-p)D. Var(X) = np答案:A5. 假设随机变量X服从泊松分布P(λ),以下哪个选项是正确的?A. E(X) = λB. E(X) = λ^2C. Var(X) = λ^2D. Var(X) = λ答案:A二、填空题(每题5分,共20分)6. 如果随机变量X服从均匀分布U(a, b),则其概率密度函数为:f(x) = ________,其中x∈(a, b)。
答案:1/(b-a)7. 假设随机变量X服从正态分布N(μ, σ^2),其标准正态分布的累积分布函数记为Φ(z),则P(X ≤ x) = Φ((x - μ) / σ)。
答案:Φ((x - μ) / σ)8. 假设随机变量X服从指数分布Exp(λ),其概率密度函数为:f(x) = ________,其中x≥0。
答案:λe^(-λx)9. 假设随机变量X服从几何分布Geo(p),其概率质量函数为:P(X = k) = ________,其中k = 1, 2, 3, ...答案:(1-p)^(k-1)p三、计算题(每题15分,共30分)10. 假设随机变量X服从正态分布N(0, 1),求P(-1 ≤ X ≤ 1)。
概率论期末考试试题和答案
概率论期末考试试题和答案### 概率论期末考试试题#### 第一部分:选择题(每题2分,共20分)1. 事件A和事件B是互斥的,如果P(A)=0.3,P(B)=0.4,那么P(A∪B)的值是:A. 0.1B. 0.3C. 0.7D. 0.52. 若随机变量X服从参数为λ的泊松分布,那么P(X=k)的表达式是:A. \( e^{-\lambda}\lambda^k / k! \)B. \( \lambda^k / e^{\lambda} \)C. \( e^{-k}\lambda^k / k! \)D. \( k! / \lambda^k e^{\lambda} \)3. 以下哪个不是随机变量的期望值的性质?A. 线性B. 非负性C. 可加性D. 可分解性4. 两个事件A和B独立,如果P(A)=0.6,P(B)=0.5,那么P(A∩B)的值是:A. 0.3B. 0.5C. 0.6D. 0.35. 随机变量X和Y的协方差Cov(X,Y)表示的是:A. X和Y的平均值B. X和Y的方差C. X和Y的线性相关性D. X和Y的独立性6. 如果随机变量X服从标准正态分布,那么P(X<0)的值是:A. 0.5B. 0.3C. 0.7D. 0.257. 以下哪个是大数定律的表述?A. 随机变量的期望值等于其观察值的平均值B. 随机变量的方差随着观察次数的增加而减小C. 随机变量的观察值的平均值随着观察次数的增加而趋于稳定D. 随机变量的观察值的方差随着观察次数的增加而趋于稳定8. 以下哪个是中心极限定理的结论?A. 独立同分布的随机变量之和的分布趋近于正态分布B. 独立同分布的随机变量之差的分布趋近于正态分布C. 独立同分布的随机变量之积的分布趋近于正态分布D. 独立同分布的随机变量之比的分布趋近于正态分布9. 以下哪个是马尔可夫链的性质?A. 状态转移概率只依赖于当前状态B. 状态转移概率只依赖于初始状态C. 状态转移概率只依赖于最终状态D. 状态转移概率依赖于所有历史状态10. 以下哪个是贝叶斯定理的应用?A. 根据先验概率和似然函数计算后验概率B. 根据后验概率和先验概率计算似然函数C. 根据似然函数和后验概率计算先验概率D. 根据先验概率和后验概率计算似然函数#### 第二部分:简答题(每题10分,共30分)1. 解释什么是条件概率,并给出一个实际的例子。
概率论期末考试题及答案
概率论期末考试题及答案概率论是一门研究随机现象及其规律性的数学分支。
以下是一套概率论期末考试题及答案,供参考。
一、选择题(每题2分,共20分)1. 事件A和事件B是互斥的,P(A)=0.3,P(B)=0.4,那么P(A∪B)等于多少?A. 0.1B. 0.7C. 0.35D. 0.6答案:B2. 抛一枚均匀的硬币两次,求正面朝上的次数为1的概率。
A. 0.25B. 0.5C. 0.75D. 1答案:B3. 随机变量X服从参数为λ的泊松分布,求P(X=1)。
A. λB. λe^(-λ)C. e^(-λ)D. 1/λ答案:B4. 某工厂有5台机器,每台机器正常工作的概率都是0.9,求至少有3台机器正常工作的概率。
A. 0.999B. 0.99C. 0.95D. 0.9答案:C5. 一个骰子连续抛掷两次,求点数之和为7的概率。
A. 1/6B. 1/3C. 5/36D. 2/9答案:C二、填空题(每题2分,共10分)6. 随机变量X服从正态分布N(μ, σ²),其密度函数的峰值出现在X=______。
答案:μ7. 假设事件A和B相互独立,P(A)=0.6,P(B)=0.5,则P(A∩B)=______。
答案:0.38. 某随机试验中,事件A发生的概率为0.2,事件B发生的概率为0.3,且P(A∪B)=0.4,则P(A∩B)=______。
答案:0.19. 连续型随机变量X的分布函数F(x)=1-e^(-λx),其中λ>0,当x≥0时,X服从______分布。
答案:指数10. 假设随机变量X服从二项分布B(n, p),求其期望E(X)=______。
答案:np三、简答题(每题10分,共30分)11. 简述什么是条件概率,并给出条件概率的公式。
答案:条件概率是指在某个事件已经发生的条件下,另一个事件发生的概率。
条件概率的公式为P(A|B) = P(A∩B) / P(B),其中 P(A|B) 表示在事件B发生的条件下事件A发生的概率,P(A∩B) 是事件A和B 同时发生的概率,P(B) 是事件B发生的概率。
概率期末考试题及答案
概率期末考试题及答案一、选择题(每题2分,共20分)1. 随机变量X服从标准正态分布,那么P(X > 1.96)的值是:A. 0.025B. 0.05C. 0.025D. 0.01答案:C2. 假设事件A和事件B是互斥的,且P(A) = 0.3,P(B) = 0.2,那么P(A∪B)的值是:A. 0.4B. 0.5C. 0.3D. 0.2答案:A(以下题目格式同上,共10题)二、填空题(每空1分,共10分)1. 若随机变量X服从参数为λ的泊松分布,那么X的概率质量函数为 P(X=k) = __________。
答案:\( \frac{e^{-\lambda} \lambda^k}{k!} \)2. 两个独立事件同时发生的概率等于各自概率的 __________。
答案:乘积(以下题目格式同上,共5空)三、简答题(每题5分,共15分)1. 简述什么是大数定律,并给出其数学表达式。
答案:大数定律是指当试验次数足够大时,随机变量的样本均值将趋近于其期望值。
数学表达式为:\( \lim_{n \to \infty}\frac{1}{n} \sum_{i=1}^{n} X_i = \mu \),其中\( X_i \)是独立同分布的随机变量,\( \mu \)是它们的期望值。
2. 什么是条件概率?请给出条件概率的定义公式。
答案:条件概率是在已知某个事件B发生的条件下,事件A发生的概率。
条件概率的定义公式为:\( P(A|B) = \frac{P(A \capB)}{P(B)} \)。
(以下题目格式同上,共1题)四、计算题(每题10分,共30分)1. 假设随机变量X服从正态分布N(μ, σ²),给定μ=100,σ=15,求P(70 < X < 130)。
答案:首先计算Z值,然后使用标准正态分布表查找对应的概率。
2. 某工厂有5台机器,每台机器正常工作的概率为0.9。
假设机器工作是相互独立的,求至少有3台机器正常工作的概率。
概率论期末试题及答案
概率论期末试题及答案### 概率论期末试题及答案#### 一、选择题(每题2分,共20分)1. 事件A和B是互斥的,P(A)=0.3,P(B)=0.5,则P(A∪B)等于:A. 0.5B. 0.8C. 0.3D. 0.22. 抛一枚均匀硬币两次,求至少出现一次正面的概率是:A. 0.5B. 0.75C. 0.25D. 13. 随机变量X服从正态分布N(μ, σ²),其中μ=0,σ²=1,求P(X>1):A. 0.1587B. 0.3173C. 0.6827D. 0.84134. 某工厂生产的产品中,有5%的产品是次品。
若随机抽取100件产品,求至少有3件次品的概率:A. 0.95B. 0.05C. 0.02D. 0.985. 某随机实验中,事件A发生的概率为0.6,事件B发生的概率为0.3,且P(A∩B)=0.1,则P(A∪B)等于:A. 0.8B. 0.9C. 0.7D. 0.6#### 二、简答题(每题10分,共20分)1. 请简述什么是条件概率,并给出一个实际应用的例子。
条件概率是指在另一个事件已经发生的条件下,一个事件发生的概率。
例如,在医学领域,如果已知某人患有某种疾病,那么在这种情况下,他出现某种症状的条件概率可能会比一般人群要高。
2. 解释什么是大数定律,并说明它在统计学中的重要性。
大数定律是概率论中的一个重要定理,它描述了在重复进行独立随机实验时,随着实验次数的增加,实验结果的相对频率会越来越接近事件发生的概率。
在统计学中,大数定律是进行概率估计和推断的基础,它保证了样本均值的稳定性和可靠性。
#### 三、计算题(每题15分,共40分)1. 某工厂生产零件,每个零件的合格率为0.95。
求生产100个零件中,至少有90个合格的概率。
设X为100个零件中合格的数量,X服从二项分布B(100, 0.95)。
使用二项分布公式计算P(X≥90)。
2. 随机变量X服从均匀分布U(0, 4),求P(X>2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章1.设P (A )=31,P (A ∪B )=21,且A 与B 互不相容,则P (B )=____61_______.2. 设P (A )=31,P (A ∪B )=21,且A 与B 相互独立,则P (B )=______41_____.3.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A )=___0.5_____.4.已知P (A )=1/2,P (B )=1/3,且A ,B 相互独立,则P (A B )=________1/3________. A 与B 相互独立5.设P (A )=0.5,P (A B )=0.4,则P (B|A )=___0.2________.6.设A ,B 为随机事件,且P(A)=0.8,P(B)=0.4,P(B|A)=0.25,则P(A|B)=____ 0.5______.7.一口袋装有3只红球,2只黑球,今从中任意取出2只球,则这两只恰为一红一黑的概率是________ 0.6________.8.设袋中装有6只红球、4只白球,每次从袋中取一球观其颜色后放回,并再放入1只同颜色的球,若连取两次,则第一次取得红球且第二次取得白球的概率等于____12/55____.9.一袋中有7个红球和3个白球,从袋中有放回地取两次球,每次取一个,则第一次取得红球且第二次取得白球的概率p=___0.21_____.10.设工厂甲、乙、丙三个车间生产同一种产品,产量依次占全厂产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该厂生产的产品中任取1件,它是次品的概率; 3.5% (2)该件次品是由甲车间生产的概率. 3518第二章1.设随机变量X~N (2,22),则P {X ≤0}=___0.1587____.(附:Φ(1)=0.8413) 设随机变量X~N (2,22),则P{X ≤0}=(P{(X-2)/2≤-1} =Φ(-1)=1-Φ(1)=0.15872.设连续型随机变量X 的分布函数为⎩⎨⎧≤>-=-,0,0;0,1)(3x x e x F x则当x >0时,X 的概率密度f (x )=___ xe 33-_____.3.设随机变量X 的分布函数为F (x )=⎩⎨⎧≤>--,0,0;0,2x x e a x 则常数a =____1____.4.设随机变量X~N (1,4),已知标准正态分布函数值Φ(1)=0.8413,为使P{X<a}<0.8413,则常数a<___3_________.5.抛一枚均匀硬币5次,记正面向上的次数为X ,则P{X ≥1}=_____3231_______.6.X 表示4次独立重复射击命中目标的次数,每次命中目标的概率为0.5,则X~ _B(4, 0.5)____7.设随机变量X 服从区间[0,5]上的均匀分布,则P {}3≤X = ____0.6_______.8.设随机变量X 的分布律为 ,且Y =X 2,记随机变量Y 的分布函数为F Y (y ),则F Y (3)=_____9/16____________.9.设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 110.已知随机变量X 的密度函数为f (x )=A e|x |, ∞<x <+∞,求:(1)A 值;(2)P {0<X <1}; (3) F (x ).21 21(1-e ) ⎪⎩⎪⎨⎧≤>-=-0210211)(x e x ex F x x11.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-⎧+≥>⎨<⎩(1) 求常数A ,B ;(2) 求P {X ≤2},P {X >3}; (3) 求分布密度f (x ). A=1 B=-1 P {X ≤2}=λ21--e P {X >3}=λ3-e⎩⎨⎧≤>=-0)(x x e x f xλλ 12.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≤-<≤.,0,21,2,10,其他x x x x 求X 的分布函数F (x ).X -1 0 1 2P 81 83161 167⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤<-+-≤<≤=21211221102100)(22x x x x x x x x FX 2 1 0 1 3P k1/5 1/6 1/5 1/15 11/30求(1)X 的分布函数,(2)Y =X 2的分布律.⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤--<≤--<=313130/191030/170130/11125/120)(x x x x x x x F 14.设随机变量X ~U (0,1),试求: (1) Y =e X 的分布函数及密度函数; (2) Z =2ln X 的分布函数及密度函数.⎪⎩⎪⎨⎧<<=others e y y y f Y 011)( ⎪⎩⎪⎨⎧>=-othersz ez f zZ 0021)(2第三章1.设二维随机变量(X ,Y )的概率密度为 ⎪⎩⎪⎨⎧>>=+-,,0;0,0,),()(其他y x ey x f y x(1)求边缘概率密度f X (x)和f Y (y ),(2)问X 与Y 是否相互独立,并说明理由.⎩⎨⎧≤>=-000)(x x e x f xX ⎩⎨⎧≤>=-0)(y y e y f y Y 因为 )()(),(y f x f y x f Y X = ,所以X 与Y 相互独立2.设二维随机变量221212(,)~(,, ,,)X Y N μμσσρ,且X 与Y 相互独立,则Y1 4 9 P k1/5 7/30 1/5 11/30ρ=____0______.3.设X~N (-1,4),Y~N (1,9)且X 与Y 相互独立,则2X-Y~___ N (-3,25)____.4.设随机变量X 和Y 相互独立,它们的分布律分别为,则{}==+1Y X P _____516_______. 5.设随机变量(X,Y)服从区域D 上的均匀分布,其中区域D 是直线y=x ,x=1和x 轴所围成的三角形区域,则(X,Y)的概率密度101()2y x f x y others⎧≤<≤⎪=⎨⎪⎩,.6X ,Y)的分布律;(2)随机变量Z=XY 的分布律.7求:和Y 的边缘分布列;(3)X 与Y 是否独立?为什么?(4)X+Y 的分布列.因为{0,1}{0}{1}P X Y P X P Y ==≠==,所以X 与Y 不相互独立。
8.设随机变量(X ,Y )的分布密度f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)43(其他y x A y x e求:(1) 常数A ; (2) P {0≤X <1,0≤Y <2}. A=12 P {0≤X <1,0≤Y <2}=38(1)(1)e e ----9.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<--.,0,42,20),6(其他y x y x k(1) 确定常数k ;(2) 求P {X <1,Y <3};(3) 求P {X +Y ≤4}.18 38 2310.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,e 55其他y y求 X 与Y 的联合分布密度.f (x, y )=525e ,0,0,0,.y x y -⎧>>⎨⎩其他11.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤⎧⎨⎩其他求边缘概率密度.12.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<-.,0,0,其他e y x y求边缘概率密度.13.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ; (2) 求边缘概率密度.14.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).(2) X 与Y 是否相互独立?第四章1.设X ~B (4,21),则E (X 2)=____5_______. 2.设E (X )=2,E (Y )=3,E (XY )=7,则Cov (X ,Y )=____1_______.3.随机变量X 的所有可能取值为0和x ,且P{X=0}=0.3,E (X )=1,则x =____10/7________. 4.设随机变量X 服从参数为3的指数分布,则E (2X+1)=__5/3__, D (2X+1)=___4/9___.5. X 的分布律为则{}=<)(X E X P __ 0.8 __.6.设X 1,X 2,Y 均为随机变量,已知Cov(X 1,Y )=-1,Cov(X 2,Y )=3,则Cov(X 1+2X 2,Y )=__7_____.7.设X~N (0,1),Y~B (16,21),且两随机变量相互独立,则D(2X+Y)= ____8____.8.设二维随机向量(X ,Y )的概率密度为⎩⎨⎧<<<<=,y x xy y x f 其他,0;20,10,),(试求:(1)E (X ),E (Y );(2)D (X ),D (Y );(3)ρXY . 2/3 4/3 1/18 2/9 0 9,且已知E (Y )=1,试求:(1)常数α,β;(2)E (X );(3)E (XY ). 0.2 0.2 0.6 0.6 10.设随机变量X 的分布律为1 0 1 2求E (X ),E (X 2),E (2X +3).11.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ).12.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望.(1) U =2X +3Y +1;(2) V =YZ 4X .13.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E(3X2Y ),D (2X3Y ).14.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<.,0,0,10,其他x y x k试确定常数k ,并求XY ρ.15.对随机变量X 和Y ,已知D (X )=2,D (Y )=3,Cov(X ,Y )=1,计算:Cov (3X2Y +1,X +4Y3).16.设二维随机变量(X ,Y )的概率密度为f (x ,y )=221,1,π0,.x y ⎧+≤⎪⎨⎪⎩其他试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.17.1 0 11 0 11/8 1/8 1/81/8 0 1/8 1/8 1/8 1/8验证X 和Y 是不相关的,但X 和Y 不是相互独立的.第六章1.设总体~(0, 1)X N ,X 1, X 2,…,X n 为样本,则统计量21nii X=∑的抽样分布为___)(2n χ___.2. 设X 1,X 2…,X n 是来自总体2~(, )X N μσ的样本,则∑=σμ-n1i i )X (2 ~__)(2n χ__(需标出参数).XY3. 设X 1,X 2,…,X n (n>5) 是来自总体~(0, 1)X N 的样本,则∑∑==-=ni ii iXX n Y 62512)55(~__)5,5(-n F __(需标出参数).4.设总体2~(1, )X N σ,X 1, X 2,…,X n 为来自该总体的样本,则11ni i X X n ==∑,则()E X =____1____, ()D X =__n2σ___。