步进电机的单片机控制
单片机课程设计单片机控制步进电机

误差分析方法:统计分析、方 差分析、回归分析等
优化建议:提高硬件精度、优 化软件算法、改善工作环境等
测试结果:测试结果与预期结 果的比较,以及误差分析与优 化建议的实施效果
06
单片机控制步进电机的应用案例分析
案例一:基于单片机的步进电机控制系统设计
设计目标:实现步进电机的 精确控制和稳定运行
应用背景:工业自动化、机 器人控制等领域
驱动器类型:选择合适的驱动器类型,如直流、交流、步进等 驱动器性能:考虑驱动器的性能参数,如输出电流、电压、频率等 驱动器接口:选择合适的驱动器接口,如串行、并行、USB等 驱动器价格:考虑驱动器的价格,选择性价比高的产品
电路板设计
单片机: 作为控制 核心,负 责接收指 令并控制 步进电机
步进电机: 执行机构, 根据指令 进行精确 定位
单片机控制步进电机的应用场景
工业自动化:用于控制生产线上 的机械设备,实现自动化生产
医疗器械:用于控制医疗设备的 运动,实现精确的医疗操作
添加标题
添加标题
添加标题
添加标题
机器人技术:用于控制机器人的 运动,实现机器人的自动化操作
家用电器:用于控制家用电器的 运动,实现智能化的家居生活
03
单片机控制步进电机的硬件设计
单击此处添加副标题
单片机控制步进电机
汇报人:
目录பைடு நூலகம்
01 02 03 04 05 06
添加目录项标题
单片机控制步进电机概述
单片机控制步进电机的硬件设计
单片机控制步进电机的软件设计
单片机控制步进电机的性能测试 单片机控制步进电机的应用案例分
析
01
添加目录项标题
02
基于stm32单片机的步进电机实验报告

基于stm32单片机的步进电机实验报告步进电机是一种将电脑控制信号转换为机械运动的设备,常用于打印机、数码相机和汽车电子等领域。
本实验使用STM32单片机控制步进电机,主要目的是通过编程实现步进电机的旋转控制。
首先,我们需要了解步进电机的基本原理。
步进电机是一种能够按照一定步长精确旋转的电机。
它由定子和转子两部分组成,通过改变定子和转子的电流,使转子按照一定的角度进行旋转。
在本实验中,我们选择了一种四相八拍步进电机。
该电机有四个相位,即A、B、C、D相。
每个相位都有两个状态:正常(HIGH)和反向(LOW)。
通过改变相位的状态,可以控制步进电机的旋转。
我们使用STM32单片机作为控制器,通过编程实现对步进电机的控制。
首先,我们需要配置STM32的GPIO口为输出模式。
然后,编写程序通过改变GPIO口的状态来控制步进电机的旋转。
具体来说,我们将A、B、C、D相分别连接到STM32的四个GPIO口,设置为输出模式。
然后,通过改变GPIO口输出的电平状态,可以控制相位的状态。
为了方便控制,我们可以定义一个数组,将表示不同状态的四个元素存储起来。
通过循环控制数组中的元素,可以实现步进电机的旋转。
在实验中,我们通过实时改变数组中元素的值,可以实现不同的旋转效果。
例如,我们可以将数组逐个循环左移或右移,实现步进电机的正转或反转。
在实验过程中,我们可以观察步进电机的旋转情况,并根据需要对程序进行修改和优化。
可以通过改变步进电机的旋转速度或步进角度,来实现更加精确的控制。
总结起来,通过本次实验,我们了解了步进电机的基本原理,并通过STM32单片机控制步进电机的旋转。
通过编写程序改变GPIO口的状态,我们可以实现步进电机的正转、反转和精确控制。
这对于理解和应用步进电机技术具有重要意义。
单片机控制步进电机程序设计

单片机控制步进电机程序设计1.引言步进电机是一种常用的电机类型,其特点是精度高、稳定性好、速度可调。
在很多自动控制系统中,步进电机被广泛应用于位置控制、定位、打印机等领域。
本文将介绍如何使用单片机来控制步进电机,并给出一个简单的步进电机程序设计示例。
2.步进电机简介步进电机是一种将电脉冲信号转换为角位移或线位移的电机。
其优点包括:-分辨率高:每个步进电机的旋转角度可以非常小,可实现较高的位置精度。
-可控制性强:通过控制电压脉冲的频率和顺序,可以精确控制步进电机的转动方向和步数。
-响应快速:步进电机的响应速度较快,可达数千转每分钟。
3.单片机选型与连接在实现步进电机的控制过程中,我们选择了一款适用于步进电机控制的单片机。
这款单片机具有以下特点:-高效的运算能力和大容量存储空间,适用于复杂的控制算法。
-可编程性强,支持多种开发环境,开发过程相对简便。
-丰富的外设接口,方便与步进电机的连接和控制。
连接单片机与步进电机的基本电路如下所示:步进电机驱动引脚1--单片机引脚A步进电机驱动引脚2--单片机引脚B步进电机驱动引脚3--单片机引脚C步进电机驱动引脚4--单片机引脚D4.步进电机控制原理步进电机控制原理基于对步进电机驱动引脚输入电压脉冲信号的控制。
针对不同的步进电机类型,控制方式可以有所不同,常见的控制方式包括全步进控制和半步进控制。
4.1全步进控制全步进控制方式是将电流依次施加到步进电机的每个驱动相,使其按照一定顺序正转或反转。
控制步骤如下:1.给引脚A和引脚B施加电压,使电机顺时针转动一个步距。
2.给引脚B和引脚C施加电压,使电机顺时针转动一个步距。
3.给引脚C和引脚D施加电压,使电机顺时针转动一个步距。
4.给引脚D和引脚A施加电压,使电机顺时针转动一个步距。
4.2半步进控制半步进控制方式是在全步进控制的基础上,通过控制相邻两个相的电流互补关系,实现更细微的步距调整。
控制步骤如下:1.给引脚A施加电压,使电机顺时针转动半个步距。
单片机电机控制

单片机电机控制引言:单片机作为一种集成电路芯片,广泛应用于各个领域,尤其在电机控制方面发挥着重要作用。
本文将介绍单片机在电机控制中的应用及相关知识,以及常见的控制方法和技术。
一、单片机在电机控制中的应用单片机在电机控制中的应用广泛,包括直流电机控制、步进电机控制、交流电机控制等。
通过单片机的控制,可以实现电机的启停、速度调节、方向控制等功能。
1. 直流电机控制:直流电机是一种常见的电机类型,广泛应用于各个领域。
单片机可以通过PWM信号控制直流电机的转速和方向。
通过改变PWM信号的占空比,可以控制直流电机的速度,通过改变PWM信号的正负脉冲,可以控制直流电机的正转和反转。
2. 步进电机控制:步进电机是一种精密控制的电机,常用于需要准确定位的应用中。
单片机可以通过控制步进电机驱动器的信号,实现步进电机的精确控制。
通过改变驱动器信号的频率和脉冲数,可以控制步进电机的转速和步距。
3. 交流电机控制:交流电机是一种常见的电机类型,广泛应用于各个领域。
单片机可以通过外部电路和传感器,获取交流电机的相关信号,从而实现对交流电机的控制。
常见的控制方法包括矢量控制、电流控制和速度控制等。
二、电机控制的常见方法和技术在单片机电机控制中,常见的方法和技术有PWM调速、PID控制、闭环控制等。
1. PWM调速:PWM调速是一种通过改变PWM信号的占空比来调节电机转速的方法。
通过改变占空比,可以改变电机的平均电压和平均功率,从而实现电机的调速功能。
PWM调速具有调速范围广、控制精度高的优点,在电机控制中被广泛应用。
2. PID控制:PID控制是一种比例、积分和微分控制的方法,常用于对电机速度和位置的控制。
通过测量电机的反馈信号和设定值,PID控制可以根据误差的大小来调整控制器的输出,从而实现电机的精确控制。
3. 闭环控制:闭环控制是一种通过反馈信号来调节电机控制器输出的方法。
通过测量电机的反馈信号,可以实时调整控制器的输出,从而实现对电机的精确控制。
单片机步进电机控制实训报告

单片机步进电机控制实训报告一、引言随着工业自动化技术的不断发展,步进电机作为一种能够将电脉冲转化为机械转动的装置,在各种自动化控制系统中得到了广泛的应用。
而单片机作为现代电子计算机技术的重要分支,具有体积小、价格低、抗干扰能力强等特点,被广泛应用于各类电机的控制中。
本次实训旨在通过单片机实现对步进电机的控制,加深对步进电机和单片机理论知识的理解,提高实际操作技能。
二、实验目标本次实训的目标是通过单片机控制步进电机,实现电机的正转、反转、停转等操作。
同时,通过对电机的控制,进一步了解步进电机的特性和工作原理。
三、实验原理步进电机是一种将电脉冲转化为机械转动的装置。
当给步进电机施加一个电脉冲信号时,电机就会转动一个固定的角度,这个角度通常称为“步进角”。
通过控制电脉冲的数量和频率,可以实现对电机的速度和位置的控制。
而单片机的GPIO口可以输出高低电平信号,通过控制输出信号的频率和占空比,可以实现对步进电机的控制。
四、实验步骤1、准备器材:单片机开发板、步进电机、杜邦线、面包板、焊锡等。
2、连接电路:将步进电机连接到单片机开发板上,使用杜邦线连接电源和信号接口。
3、编写程序:使用C语言编写程序,通过单片机控制GPIO口输出电脉冲信号,控制步进电机的转动。
4、调试程序:在调试过程中,需要不断调整程序中的参数,观察电机的反应,直到达到预期效果。
5、测试结果:完成程序调试后,进行实际测试,观察步进电机是否能够实现正转、反转、停转等操作。
五、实验结果及分析通过本次实训,我们成功地实现了通过单片机控制步进电机的正转、反转、停转等操作。
在实验过程中,我们发现步进电机的转速和方向可以通过改变单片机输出信号的频率和占空比来控制。
我们还发现步进电机具有较高的精度和稳定性,适用于需要精确控制的位置和速度控制系统。
六、结论与展望通过本次实训,我们深入了解了步进电机的工作原理和单片机的应用。
实践证明,单片机控制步进电机是一种高效、精确、可靠的方法。
单片机控制步进电机系统(C语言源代码)

题目:单片机控制步进电机系统摘要很多工业控制设备对位移和角度的控制精度要求较高, 一般电机很难实现, 而步进电机可精确实现所设定的角度和转数。
本设计主要是运用51 单片机控制六线4相步进电机系统, 由单片机产生驱动脉冲信号, 控制步进电机以一定的转速向某一方向产生一定的转动角度。
同时能够利用单片机实现电机的正、反转及速度控制,并能在数码管上显示出相应的速度。
本文中给出了该系统设计的硬件电路,软件设计,人机交互等。
并对各个功能模块进行了详细的说明。
主要内容包括以下几个方面:单片机控制步进电机的一般原理。
电机驱动及控制的实现。
控制系统整体设计以及模块划分说明。
原理图。
代码。
关键词:单片机;步进电机;系统;驱动AbstractMany Industrial control equipment have a highly requirement in displacement and angle with control accuracy, the most motor can't carry out .but the step motor can carry out the displacement and angle that you enactmented in accuracy. This design mainly used SCM to control step motor system.The step motor is formed six lines and four phasic.Through SCM generate the drive pulse signal.Control stepper motor through a certain speed in a direction to get a certain degree of rotation angle.At the same time, It can use SCM to realization of the motor is , reverse and speed control. and showed the speed in the digital tube.In this paper, given the design of the system hardware circuit,software design, human-computer interaction and so on.and it given the details description of each functional module.the main contents include the following:(1) The general principles of signal_chip controlling step motor.(2) The realization of motor driving and controlling(3) Control system overall design and description module division(4) Schematic Diagram(5) CodeKey Words:SCM; stepper motor; system; drive目录引言41 单片机控制步进电机的一般原理41.1 步进电机41.1.1 步进电机介绍41.1.2 步进电机分类51.1.3 技术指标51.1.4 步进电机工作原理51.2 单片机72 步进电机驱动实现82.1简介82.2驱动选择83 系统硬件设计93. 1 单片机控制电机93.2 键盘93.3 显示部分10程序流程图11总结12致谢13参考文献13附录13C代码13引言目前,在工业控制生产以及仪器上应用十分广泛。
c语言实现单片机控制步进电机加减速源程序

C 语言实现单片机控制步进电机加减速源程序1. 引言在现代工业控制系统中,步进电机作为一种常见的执行元件,广泛应用于各种自动化设备中。
而作为一种常见的嵌入式软件开发语言,C 语言在单片机控制步进电机的加减速过程中具有重要的作用。
本文将从单片机控制步进电机的加减速原理入手,结合 C 语言的编程技巧,介绍如何实现单片机控制步进电机的加减速源程序。
2. 单片机控制步进电机的加减速原理步进电机是一种能够精确控制角度的电机,它通过控制每个步骤的脉冲数来实现旋转。
在单片机控制步进电机的加减速过程中,需要考虑步进电机的加速阶段、匀速阶段和减速阶段。
在加速阶段,需要逐渐增加脉冲的频率,使步进电机的转速逐渐增加;在匀速阶段,需要保持恒定的脉冲频率,使步进电机以匀速旋转;在减速阶段,需要逐渐减小脉冲的频率,使步进电机的转速逐渐减小。
这一过程需要通过单片机的定时器和输出控制来实现。
3. C 语言实现步进电机加减速的源程序在 C 语言中,可以通过操作单片机的 GPIO 来控制步进电机的旋转。
在编写源程序时,需要使用单片机的定时器模块来生成脉冲信号,以控制步进电机的旋转角度和速度。
以下是一个简单的 C 语言源程序,用于实现步进电机的加减速控制:```c#include <reg52.h>void main() {// 初始化定时器// 设置脉冲频率,控制步进电机的加减速过程// 控制步进电机的方向// 控制步进电机的启停}```4. 总结与回顾通过本文的介绍,我们了解了单片机控制步进电机的加减速原理和 C 语言实现步进电机加减速源程序的基本思路。
掌握这些知识之后,我们可以更灵活地应用在实际的嵌入式系统开发中。
在实际项目中,我们还可以根据具体的步进电机型号和控制要求,进一步优化 C 语言源程序,实现更加精准和稳定的步进电机控制。
希望本文能为读者在单片机控制步进电机方面的学习和应用提供一定的帮助。
5. 个人观点与理解在我看来,掌握 C 语言实现单片机控制步进电机加减速源程序的技术是非常重要的。
步进电机控制(单片机C语言)

步进电机控制(单⽚机C语⾔)模块⼆简单应⽤实例调试任务2 步进电机控制(H22)⼀、任务要求⽤单⽚机P1端⼝控制步进电机,编写程序输出脉冲序列到P1⼝,控制步进电机正转、反转,加速,减速。
⼆、任务⽬的1.了解步进电机控制的基本原理。
2.掌握控制步进电机转动的编程⽅法。
三、电路连线框图步进电机电流⼩于0.5A时可采⽤ULN2003A进⾏驱动(反相)四、原理控制说明步进电机驱动原理是通过对每相线圈中的电流的顺序切换来使电机作步进式旋转。
切换是通过单⽚机输出脉冲信号来实现的。
所以调节脉冲信号的频率便可以改变步进电机的转速,改变各相脉冲的先后顺序,可以改变电机的旋转⽅向。
步进电机的转速应由慢到快逐步加速。
电机驱动⽅式可以采⽤双四拍(AB→BC→CD→DA→AB)⽅式,也可以采⽤单四拍(A→B→C→D→A)⽅式,或单、双⼋拍(A→AB→B→BC→C→CD→D→DA→A)⽅式。
控制时公共端是接在VCC上的,所以实际控制脉冲是低电平有效。
单⽚机的P1⼝输出的脉冲信号经(MC1413或ULN2003A)倒相驱动后,向步进电机输出脉冲信号序列。
五、程序框图# include#define Astep 0x01#define Bstep 0x02#define Cstep 0x04#define Dstep 0x08unsigned char dly_c;void delay(){unsigned char tt,cc;cc = dly_c; //外循环次数tt = 0x0; //内循环次数do{do {}while(--tt);}while(--cc);}void main(){dly_c = 0x10;// 双四拍⼯作⽅式while(1){P1= Astep+Bstep;delay();P1= Bstep+Cstep;delay();P1= Cstep+Dstep;delay();P1= Dstep+Astep;delay();if (dly_c>3) dly_c --; // 加速控制};。
单片机步进电机控制程序代码

单片机步进电机控制程序代码引言:步进电机是一种常见的电机类型,它具有准确的位置控制和高速运动的特点,在许多应用中被广泛使用。
为了实现步进电机的精确控制,我们需要编写相应的单片机控制程序代码。
本文将介绍一种常见的单片机步进电机控制程序代码,并详细解析其实现原理和使用方法。
一、控制原理:步进电机通过控制电流的方向和大小来控制转子的运动,常见的步进电机控制方式有两相和四相控制。
本文将以四相控制为例进行介绍。
四相控制是指通过控制四个线圈的电流状态来控制步进电机的运动。
具体控制方式有全步进和半步进两种。
全步进模式下,每一步都是四个线圈中的两个同时激活;半步进模式下,每一步都是四个线圈中的一个或两个同时激活。
在本文中,我们将介绍半步进模式的控制程序代码。
二、程序代码:下面是一段常见的单片机步进电机控制程序代码:```c#include <reg51.h>sbit A1 = P1^0;sbit A2 = P1^1;sbit B1 = P1^2;sbit B2 = P1^3;void delay(unsigned int t){unsigned int i, j;for (i = 0; i < t; i++)for (j = 0; j < 120; j++);}void main(){unsigned int i;unsigned char step[8] = {0x01, 0x03, 0x02, 0x06, 0x04, 0x0C, 0x08, 0x09};while (1){for (i = 0; i < 8; i++){P1 = step[i];delay(1000);}}}```三、代码解析:1. 引用头文件reg51.h,该头文件定义了单片机51的寄存器等相关信息。
2. 定义了四个IO口A1、A2、B1、B2,分别对应步进电机的四个线圈。
3. 定义了一个延时函数delay,用于控制电机转动的速度。
基于单片机的步进电机控制系统设计方案

D10-基于单片机旳步进电机控制系统一、理解什么是步进电机以及其工作原理步进电机是数字控制电机,步进电机旳运转是由电脉冲信号控制旳,其角位移量或线位移量与脉冲数成正比,每个一种脉冲,步进电机就转动一种角度(不距角)或前进、倒退一步。
步进电机旋转旳角度由输入旳电脉冲数确定,因此,也有人称步进电机为数字/角度转换器。
步进电机旳各相绕组按合适旳时序通电,就能使步进电机转动。
当某一相绕组通电时,对应旳磁极产生磁场,并与转子形成磁路,这时,假如定子和转子旳小齿没有对齐,在磁场旳作用下,由于磁通具有力图走磁阻最小途径旳特点,则转子将转动一定旳角度,使转子与定子旳齿互相对齐,由此可见,错齿是促使电机旋转旳原因。
二、步进电机旳特点(1)步进电机旳角位移与输入脉冲数严格成正比,因此当它转一转后,没有合计误差,具有良好旳跟随性。
(2)由步进电机与驱动电路构成旳开环数控系统,既非常以便、廉价,也非常可靠。
同步,它也可以有角度反馈环节构成高性能旳闭环数控系统。
(3)步进电机旳动态响应快,易于启停、正反转及变速。
(4)速度可在相称宽旳范围内平滑调整,低速下仍能保证获得很大旳转矩,因此一般可以不用减速器而直接驱动负载。
(5)步进电机只能通过脉冲电源供电才能运行,它不能直接用交流电源或直流电源。
(6)步进电机自身旳噪声和振动比较大,带惯性负载旳能力强。
三、步进电机旳控制步进电机旳控制重要包括换相次序旳控制、速度控制、速度控制、加减速控制等,控制系统就是运用单片机旳功能实现以上控制旳系统,即本次设计旳目旳。
四、示意图五、硬件设计计划本设计旳硬件电路只要包括控制电路、最小系统、驱动电路、显示电路四大部分。
最小系统只要是为了使单片机正常工作。
控制电路只要由开关和按键构成,由操作者根据对应旳工作需要进行操作。
显示电路重要是为了显示电机旳工作状态和转速。
驱动电路重要是对单片机输出旳脉冲进行功率放大,从而驱动电机转动。
(1)控制电路根据步进电机旳工作原理可以懂得,步进电机转速旳控制重要是通过控制通入电机旳脉冲频率,从而控制电机旳转速。
控制步进电机实验报告(3篇)

第1篇一、实验目的1. 理解步进电机的工作原理及控制方法。
2. 掌握单片机与步进电机驱动模块的接口连接方法。
3. 学习使用C语言编写程序,实现对步进电机的正反转、转速和定位控制。
4. 通过实验,加深对单片机控制系统的理解。
二、实验原理步进电机是一种将电脉冲信号转换为角位移或线位移的电机,其特点是控制精度高、响应速度快、定位准确。
步进电机控制实验主要涉及以下几个方面:1. 步进电机驱动模块:常用的驱动模块有ULN2003、A4988等,它们可以将单片机的数字信号转换为步进电机的控制信号。
2. 单片机:单片机是整个控制系统的核心,负责接收按键输入、处理数据、控制步进电机驱动模块等。
3. 步进电机:步进电机分为单相、双相和三相等类型,本实验使用的是双相四线步进电机。
三、实验设备1. 单片机开发板:例如STC89C52、STM32等。
2. 步进电机驱动模块:例如ULN2003、A4988等。
3. 双相四线步进电机。
4. 按键。
5. 数码管。
6. 电阻、电容等元件。
7. 电源。
四、实验步骤1. 硬件连接(1)将步进电机驱动模块的输入端(IN1、IN2、IN3、IN4)分别连接到单片机的P1.0、P1.1、P1.2、P1.3口。
(2)将按键的输入端连接到单片机的P3.0口。
(3)将数码管的段选端连接到单片机的P2口。
(4)将步进电机驱动模块的电源端连接到电源。
(5)将步进电机连接到驱动模块的输出端。
2. 编写程序(1)初始化单片机I/O端口,设置P1口为输出端口,P3.0口为输入端口,P2口为输出端口。
(2)编写按键扫描函数,用于读取按键状态。
(3)编写步进电机控制函数,实现正反转、转速和定位控制。
(4)编写主函数,实现以下功能:a. 初始化数码管显示;b. 读取按键状态;c. 根据按键状态调用步进电机控制函数;d. 更新数码管显示。
3. 调试程序(1)将程序烧写到单片机中;(2)打开电源,观察数码管显示和步进电机运行状态;(3)根据需要调整程序,实现不同的控制效果。
基于51单片机的步进电机控制系统设计

基于51单片机的步进电机控制系统设计步进电机是一种特殊的直流电动机,具有定角度、定位置、高精度等特点,在许多领域得到广泛应用,如机械装置、仪器设备、医疗设备等。
本文将基于51单片机设计一个步进电机控制系统,主要包括硬件设计和软件设计两部分。
一、硬件设计步进电机控制系统的硬件设计主要包括51单片机、外部电源、步进电机驱动模块、以及其他辅助电路。
1.51单片机选择由于步进电机控制需要执行复杂的算法和时序控制,所以需要一个性能较高的单片机。
本设计选择51单片机作为主控芯片,因为51单片机具有丰富的外设接口、强大的计算能力和丰富的资源。
2.外部电源步进电机需要较高的电流供给,因此外部电源选择稳定的直流电源,能够提供足够的电流供电。
电源电压和电流的大小需要根据具体的步进电机来确定。
3.步进电机驱动模块步进电机驱动模块是连接步进电机和51单片机的关键部分,它负责将51单片机输出的脉冲信号转化为对步进电机的驱动信号,控制步进电机准确转动。
常用的步进电机驱动芯片有L297、ULN2003等。
4.其他辅助电路为了保证步进电机控制系统的稳定运行,还需要一些辅助电路,如限流电路、电源滤波电路、保护电路等。
这些电路的设计需要根据具体的应用来确定。
二、软件设计1.系统初始化系统初始化主要包括对51单片机进行外部中断、定时器、串口和IO 口等初始化设置。
根据实际需求还可以进行其他模块的初始化设置。
2.步进电机驱动程序步进电机的驱动程序主要通过脉冲信号来控制电机的转动。
脉冲信号的频率和脉冲宽度决定了电机的转速和运行方向。
脉冲信号可以通过定时器产生,也可以通过外部中断产生。
3.运动控制算法步进电机的运动控制可以采用开环控制或闭环控制。
开环控制简单,但无法保证运动的准确性和稳定性;闭环控制通过对电机转动的反馈信号进行处理来调整脉冲信号的生成,从而实现精确的运动控制。
4.其他功能设计根据具体的应用需求,可以加入其他功能设计,如速度控制、位置控制、加速度控制等。
基于51单片机的步进电机控制系统设计与实现

步进电机工作原理
步进电机是一种基于磁场的控制系统,工作原理是当电流通过定子绕组时,会 产生一个磁场,该磁场会吸引转子铁芯到相应的位置,从而产生一定的角位移。 步进电机的角位移量与输入的脉冲数量成正比,因此,通过控制输入的脉冲数 量和频率,可以实现精确的角位移和速度控制。同时,步进电机具有较高的分 辨率和灵敏度,可以满足各种高精度应用场景的需求。
二、系统设计
1、硬件设计
本系统主要包括51单片机、步进电机、驱动器、按键和LED显示等部分。其中, 51单片机负责接收按键输入并控制步进电机的运动;步进电机用于驱动负载运 动;驱动器负责将51单片机的输出信号放大,以驱动步进电机。LED显示用于 显示当前步进电机的状态。
2、软件设计
软件部分主要包括按键处理、步进电机控制和LED显示等模块。按键处理模块 负责接收用户输入,并根据输入控制步进电机的运动;步进电机控制模块根据 按键输入和当前步进电机的状态,计算出步进电机下一步的运动状态;LED显 示模块则负责实时更新LED显示。
三、系统实现
1、按键输入的实现
为了实现按键输入,我们需要在主程序中定义按键处理函数。当按键被按下时, 函数将读取按键的值,并将其存储在全局变量中。这样,主程序可以根据按键 的值来控制步进电机的转动。
2、显示输出的实现
为了实现显示输出,我们需要使用单片机的输出口来控制显示模块的输入。在 中断服务程序中,我们根据设定的值来更新显示模块的输出,以反映步进电机 的实时转动状态。
基于单片机的步进电机控制系统需要硬件部分主要包括单片机、步进电机、驱 动器、按键和显示模块等。其中,单片机作为系统的核心,负责处理按键输入、 控制步进电机转动以及显示输出等功能。步进电机选用四相八拍步进电机,驱 动器选择适合该电机的驱动器,按键用于输入设定值,显示模块用于显示当前 步进电机的转动状态。
单片机控制步进电机的_原理

步进电机控制原理步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。
步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。
步进电机区别于其他控制电机的最大特点是,它是通过输入脉冲信号来进行控制的,即电机的总转动角度由输入脉冲数决定,而电机的转速由脉冲信号频率决定。
步进电机的驱动电路根据控制信号工作,控制信号由单片机产生。
其基本原理作用如下:(1)控制换相顺序通电换相这一过程称为脉冲分配。
例如:三相步进电机的三拍工作方式,其各相通电顺序为A-B-C-D,通电控制脉冲必须严格按照这一顺序分别控制A,B,C,D 相的通断。
(2)控制步进电机的转向如果给定工作方式正序换相通电,步进电机正转,如果按反序通电换相,则电机就反转。
(3)控制步进电机的速度如果给步进电机发一个控制脉冲,它就转一步,再发一个脉冲,它会再转一步。
两个脉冲的间隔越短,步进电机就转得越快。
调整单片机发出的脉冲频率,就可以对步进电机进行调速。
步进电机是机电控制中一种常用的执行机构,它的用途是将电脉冲转化为角位移,通俗地说:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。
通过控制脉冲个数即可以控制角位移量,从而达到准确定位的目的;同时通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
用51单片机控制步进电机一、步进电机常识常见的步进电机分三种:永磁式(PM),反应式(VR)和混合式(HB),永磁式步进一般为两相,转矩和体积较小,步进角一般为7.5度或15度;反应式步进一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。
在欧美等发达国家80年代已被淘汰;混合式步进是指混合了永磁式和反应式的优点。
它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为 0.72度。
单片机控制步进电机正反转

void Motor()
{
unsigned char i;
for(i=0;i<8;i++)
{
GPIO_MOTOR = FFW[i];
Delay(Speed);//调节转速
}
}
当然,这种控制个人觉得是不太精确的,如果只是让一个轴转动180度,则用步进电机外接减速箱,然后接一轴,让电机转一圈,轴转10度或20度,则控制会更精准。
unsigned char code FFZ[8]={0xf9,0xf8,0xfc,0xf4,0xf6,0xf2,0xf3,0xf1}; //正转顺序
unsigned char Direction;
void Delay(unsigned int t);
void Motor();
void main()
Delay(10);
GPIO_MOTOR = FFZ[3];
Delay(10);
GPIO_MOTOR = FFZ[4];
Delay(10);
GPIO_MOTOR = FFZ[5];
Delay(10);
GPIO_MOTOR = FFZ[6];
Delay(15);
GPIO_MOTOR = FFZ[7];
{
unsigned char i;
while(1)
{
if(K1==0)//检测按键K1是否按下
{
Delay(10);//消除抖动
if(K1==0)
{
Direction=1;}while((i<200)&&(K1==0))//检测按键是否松开
51单片机驱动步进电机的方法

51单片机驱动步进电机的方法一、步进电机简介步进电机是一种将电脉冲转化为角位移的执行机构,广泛应用于各种自动化设备中。
其工作原理是,当一个脉冲信号输入时,电机转动一个步距角,从而实现电机的精确控制。
二、51单片机驱动步进电机的方法1、硬件连接需要将51单片机与步进电机连接起来。
通常,步进电机需要四个引脚,分别连接到单片机的四个GPIO引脚上。
同时,还需要连接一个驱动器来提高电机的驱动能力。
2、驱动程序编写接下来,需要编写驱动程序来控制步进电机的转动。
在51单片机中,可以使用定时器或延时函数来产生脉冲信号,然后通过GPIO引脚输出给电机。
同时,还需要设置电机的步距角和转向,以保证电机的精确控制。
3、示例程序以下是一个简单的示例程序,用于演示如何使用51单片机驱动步进电机:cinclude <reg52.h> //包含51单片机的头文件sbit motorPin1=P1^0; //定义连接到P1.0引脚的电机引脚sbit motorPin2=P1^1; //定义连接到P1.1引脚的电机引脚sbit motorPin3=P1^2; //定义连接到P1.2引脚的电机引脚sbit motorPin4=P1^3; //定义连接到P1.3引脚的电机引脚void delay(unsigned int time) //延时函数unsigned int i,j;for(i=0;i<time;i++)for(j=0;j<1275;j++);void forward(unsigned int step) //正转函数motorPin1=0;motorPin2=0;motorPin3=0;motorPin4=0; //清零电机引脚delay(step); //延时一段时间motorPin1=1;motorPin3=1;motorPin2=0;motorPin4=0; //设置转向和步距角delay(step); //延时一段时间void backward(unsigned int step) //反转函数motorPin1=0;motorPin2=0;motorPin3=0;motorPin4=0; //清零电机引脚delay(step); //延时一段时间motorPin2=1;motorPin4=1;motorPin3=0;motorPin1=0; //设置转向和步距角delay(step); //延时一段时间void main() //主函数unsigned int step=1000; //设置步距角为1000微步forward(step); //正转一圈backward(step); //反转一圈while(1); //循环等待,保持电机转动状态在这个示例程序中,我们使用了四个GPIO引脚来控制步进电机的转动。
步进电机控制体系设计中的单片机应用

步进电机控制体系设计中的单片机应用步进电机是一种用于控制精确位置和速度的电机,它通常由电子驱动器和控制系统控制。
在步进电机控制体系中,单片机是一种常见的控制器,它可以通过编程实现对步进电机的精确控制,以适应不同的应用场景。
本文将探讨步进电机控制体系设计中单片机的应用,并介绍其在实际工程中的应用案例。
单片机是一种集成了中央处理器、存储器和输入输出接口的微型计算机,它可以通过编程实现各种控制功能。
在步进电机控制体系中,单片机可以实现以下功能:1. 位置控制:单片机可以通过编程控制步进电机的步进角度,从而实现精确的位置控制。
根据不同的应用需求,可以实现单步、多步、定位和追踪等不同的位置控制模式。
单片机在步进电机控制体系设计中具有广泛的应用,主要体现在以下几个方面:1. 控制算法设计:单片机可以通过编程实现各种控制算法,如位置闭环控制算法、速度闭环控制算法和方向控制算法等。
通过不断优化算法,可以实现步进电机的更精确控制。
2. 通信接口设计:单片机可以通过串口、以太网、CAN总线等通信接口与上位机或其他外部设备进行通信,实现远程控制和监测。
通过合理设计通信接口,可以实现步进电机的远程控制和数据传输。
3. 运动控制系统设计:单片机可以作为运动控制系统的核心控制器,与传感器、驱动器、显示屏等外部设备进行配合,实现步进电机的全面控制和监测。
通过合理设计运动控制系统,可以实现步进电机在复杂环境下的稳定运行。
1. 机械臂控制系统:将单片机作为机械臂控制系统的核心控制器,与多个步进电机进行配合,实现机械臂的精确控制和自动化操作。
通过合理设计控制算法和通信接口,可以实现机械臂在工业生产线上的自动化操作。
2. 三维打印系统:将单片机作为三维打印系统的核心控制器,与多个步进电机进行配合,实现打印头的精确控制和打印材料的均匀堆积。
通过合理设计运动控制系统和电源管理系统,可以实现三维打印系统的高效打印和稳定运行。
单片机控制步进电机的原理

单片机控制步进电机的原理
单片机控制步进电机是通过对步进电机的相序进行控制,从而实现不同的转动效果。
步进电机通常由定子和转子组成,定子上的绕组接通不同的电流即可实现不同的步进角度。
在单片机控制步进电机过程中,首先需要电源为步进电机提供工作电压。
然后,通过单片机的输出引脚来控制步进电机驱动器的相序,驱动器根据接收到的相序信号,将不同的电流通入步进电机的不同相序绕组,从而引起转子的步进运动。
单片机通常会配置一个时序驱动器,用来产生相序信号。
时序驱动器内部会保存一个相序表,包含所有可能的相序组合。
单片机通过改变时序驱动器的输入信号,来改变驱动器输出的相序信号,从而实现对步进电机的控制。
在实际应用中,单片机一般使用脉冲信号来驱动步进电机。
每个脉冲信号会引起步进电机转动一个固定的角度,这个角度取决于步进电机的结构特性,如步距角等。
通过改变脉冲信号的频率和相序,可以控制步进电机的转速和转向。
例如,正转时,依次给出相序A、B、C、D;反转时,依次给出相序D、C、B、A。
这样,单片机通过控制相序信
号的变化,就能控制步进电机的运动模式。
除此之外,单片机还可以结合其他传感器信息来实现更复杂的步进电机控制。
例如,通过接收光电传感器的信号,可以实现步进电机在指定位置停止;通过接收陀螺仪的信号,可以实现
步进电机的姿态控制等。
总之,单片机控制步进电机的原理是通过改变步进电机的相序,从而控制步进电机的转动效果。
这样的控制方式简单可靠,广泛应用于各种工业自动化和机器人控制领域。
单片机步进电机控制程序代码

单片机步进电机控制程序代码在现代工业控制系统中,步进电机被广泛应用于各种场合,如数控机床、医疗设备、自动化生产线等。
而单片机作为一种集成电路,具有高度集成、体积小、功耗低等特点,成为控制步进电机的理想选择。
本文将介绍单片机步进电机控制程序代码的编写方法及其实现原理。
一、步进电机控制程序代码的编写方法步进电机的控制可以通过单片机来实现,而单片机控制步进电机的关键在于编写合适的控制程序代码。
下面将介绍一种常用的步进电机控制程序代码编写方法。
1. 确定引脚连接:首先,需要确定步进电机的引脚连接方式。
步进电机一般有两种连接方式,即单相连接和双相连接。
在单相连接方式中,步进电机只需两个控制引脚,而在双相连接方式中,步进电机需要四个控制引脚。
根据步进电机的具体型号和使用要求,选择合适的引脚连接方式。
2. 编写控制程序:根据步进电机的引脚连接方式,编写相应的控制程序。
以双相连接方式为例,步进电机的控制程序代码如下:```#include <reg52.h>sbit IN1 = P1^0; // 步进电机引脚1sbit IN2 = P1^1; // 步进电机引脚2sbit IN3 = P1^2; // 步进电机引脚3sbit IN4 = P1^3; // 步进电机引脚4void delay(unsigned int time){unsigned int i, j;for (i = time; i > 0; i--)for (j = 110; j > 0; j--);}void main(){while (1){IN1 = 1; IN2 = 0; IN3 = 0; IN4 = 0; // 步进电机正转 delay(1000);IN1 = 0; IN2 = 1; IN3 = 0; IN4 = 0;delay(1000);IN1 = 0; IN2 = 0; IN3 = 1; IN4 = 0;delay(1000);IN1 = 0; IN2 = 0; IN3 = 0; IN4 = 1;delay(1000);}}```上述代码中,通过控制引脚的电平状态,实现步进电机的正转。
步进电机的 单片机控制方法

步进电机的单片机控制方法
步进电机是一种常见的电机类型,它可以通过单片机控制来实现精确的运动控制。
在本文中,我们将介绍步进电机的单片机控制方法。
步进电机的工作原理是通过电磁场的变化来实现转动。
它由多个电磁线圈组成,每个线圈都可以控制电机的一个步进角度。
单片机可以通过控制这些线圈的电流来控制电机的转动。
步进电机的单片机控制方法可以分为两种:全步进控制和微步进控制。
全步进控制是指将电机分为几个步进角度,每个步进角度对应一个电磁线圈的电流控制。
微步进控制是指将电机分为更小的步进角度,通过控制电磁线圈的电流大小来实现更精细的控制。
在全步进控制中,单片机需要控制电机的每个步进角度。
这可以通过控制电磁线圈的电流来实现。
例如,如果要将电机转动一个步进角度,单片机可以将第一个电磁线圈的电流打开,同时将其他电磁线圈的电流关闭。
然后,单片机可以将第二个电磁线圈的电流打开,同时将第一个电磁线圈的电流关闭,以此类推。
在微步进控制中,单片机需要控制电机的更小的步进角度。
这可以通过控制电磁线圈的电流大小来实现。
例如,如果要将电机转动一个微步进角度,单片机可以逐渐增加第一个电磁线圈的电流,同时逐渐减小其他电磁线圈的电流。
然后,单片机可以逐渐增加第二个电磁线圈的电流,同时逐渐减小第一个电磁线圈的电流,以此类推。
步进电机的单片机控制方法可以实现精确的运动控制。
全步进控制和微步进控制都可以通过控制电磁线圈的电流来实现。
在实际应用中,需要根据具体的需求选择合适的控制方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本设计采用凌阳16 位单片机SPCE061A对步00进电机进行控制,通过IO口输出的具有时序的方波作为步进电机的控制信号,信号经过芯片L298N驱动步进电机;同时,用4X4的键盘来对电机的状态进行控制,并用数码管显示电机的转速,采用74LS164作为4位单个数码管的显示驱动,从单片机输入信号;利用凌阳单片机的语音功能播报电机的转速。
步进电机的单片机控制作者:李通刘志垠摘要:本设计采用凌阳16 位单片机SPCE061A对步进电机进行控制,通过IO口输出的具有时序的方波作为步进电机的控制信号,信号经过芯片L298N驱动步进电机;同时,用4X4的键盘来对电机的状态进行控制,并用数码管显示电机的转速,采用74L S164作为4位单个数码管的显示驱动,从单片机输入信号;利用凌阳单片机的语音功能播报电机的转速。
关键词:步进电机单片机数码管一、方案论证与比较1、本设计的重点在于对步进电机的控制和驱动,设计中受控电机为四相六线制的步进电机(内阻33欧,步进1.8度,额定电压12V)方案一:使用多个功率放大器件驱动电机通过使用不同的放大电路和不同参数的器件,可以达到不同的放大的要求,放大后能够得到较大的功率。
但是由于使用的是四相的步进电机,就需要对四路信号分别进行放大,由于放大电路很难做到完全一致,当电机的功率较大时运行起来会不稳定,而且电路的制作也比较复杂。
方案二:使用L298N芯片驱动电机L298N芯片可以驱动两个二相电机(如图1-1),也可以驱动一个四相电机,输出电压最高可达50V,可以直接通过电源来调节输出电压;可以直接用单片机的IO口提供信号;而且电路简单,使用比较方便。
图1-1通过比较,使用L298N芯片充分发挥了它的功能,能稳定地驱动步进电机,且价格不高,故选用L298N驱动电机。
而使用L298N时,可以用L297来提供时序信号,可以节省单片机IO口的使用;也可以直接用单片机模拟出时序信号,由于控制并不复杂,故选用后者。
2、数码管显示电路的设计方案一:串行接法设计中要显示4位数字,用74LS164作为显示驱动,其中带锁存,使用串行接法可以节约IO口资源,但要使用SIO,发送数据时容易控制。
方案二:并行接法使用并行接法时要对每个数码管用IO口单独输入数据,占用资源较多。
由于设计中用一块单片机进行控制,资源有限,选择了方案一。
另外,使用锁存也起到节约资源的作用。
二、步进电机控制原理步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。
步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。
步进电机区别于其他控制电机的最大特点是,它是通过输入脉冲信号来进行控制的,即电机的总转动角度由输入脉冲数决定,而电机的转速由脉冲信号频率决定。
步进电机的驱动电路根据控制信号工作,控制信号由单片机产生。
其基本原理作用如下:(1)控制换相顺序通电换相这一过程称为脉冲分配。
例如:三相步进电机的三拍工作方式,其各相通电顺序为A-B-C-D,通电控制脉冲必须严格按照这一顺序分别控制A,B,C,D相的通断。
(2)控制步进电机的转向如果给定工作方式正序换相通电,步进电机正转,如果按反序通电换相,则电机就反转。
(3)控制步进电机的速度如果给步进电机发一个控制脉冲,它就转一步,再发一个脉冲,它会再转一步。
两个脉冲的间隔越短,步进电机就转得越快。
调整单片机发出的脉冲频率,就可以对步进电机进行调速。
三、理论设计综和以上选取的方案,总的流程如图3-2所示。
图3-11、步进电机驱动电路通过L298N构成步进电机的驱动电路,电路图如图3-2所示。
通过单片机SPCE061A的IOB8~IOB13对L298N的IN1~IN4口和ENA、ENB口发送方波脉冲信号,起时序图如图3-3所示。
图3-2图3-32、数码管显示电路的设计数码管的显示驱动使用74LS164,通过SPCE061A的IOB0和IOB1口对DATA和CL K发送数据。
图3-43、4x4键盘电路在设计中,使用了标准的4x4键盘,其电路图如图3-5所示。
单片机的A口低8位为键盘的接口。
尽管设计要求中只需要4个键对步进电机的状态进行控制,但考虑到对控制功能的扩展,我们使用了4x4的键盘。
图3-5四、程序设计在进行程序设计的过程中,主要分为五个部分:双机通讯、语音报数、数字显示、步进电机驱动、键盘;其中双机通讯的实现和语音报时比较有特点,将其流程简要介绍如下,其他部分见附的程序。
1、双机通讯图4-1我们在实现双机通讯的过程中使用了“三次握手”的方式,这是Intle网中成用的数据通讯确认协议,其流程图如图4-1所示。
2、语音报数程序设计中语音报数使用的是SACM-A2000,考虑到程序比较简单,首先使用了自动报数方式,但发现不能进行连续报数,于是使用了非自动方式,流程图如图4-2所示。
图4-2五、结果分析与总结应该说这次课程设计还是基本达到了设计的要求,但是也存在着未能解决的问题,由于在执行语音程序时对资源的消耗比较大,在语音报数的时候会中断步进电机驱动信号的输出,导致电机停转。
为此,我们修改了方案,使用了两块单片机,通过双机通讯来传递信号,遗憾的是问题仍然没有得到解决。
这次步进电机的综合实验我们学到了步进电机、数码管、4*4键盘、语音报数和双机通讯的使用,更重要的是学会了程序出问题时调试的方法,并养成了Debug的习惯,学到了程序出问题后怎样去解决的基本方法。
参考文献:[1]谢自美《电子线路设计、实验、测试(第二版)》[M]武汉:华中理工大学出版社,2000.[2]薛钧义,张彦斌,樊波等《凌阳十六位单片机原理及应用》[M]北京:北京航空航天大学出版社,2003HH204步进电机驱动电路在复费率计度器上的应用The application of HH204 (step motor drive circuit) to multiple-expenses power meter上海华晖自控设备有限公司陈辉随着复费率电表在全国电网的大面积普及,对复费率计度器的性价比提出越来越高的要求。
低价格的步进电机驱动芯片HH204能够可靠的应用于复费率计度器的电机驱动。
在驱动力矩、控制信号的灵活性上优于市场上的其他芯片。
一块HH204电路内含四路H桥可以同时驱动一个四相步进电机或者二个二相步进电机,所以一块HH204电路可以完成复费率电机的二个步进电机的驱动电路。
With the widely use of multiple-expenses power meter, users have put much higherrequirements on its performance and price. HH204, low price chip for step motor drive, can be applied to the multiple-expenses power meter with high reliability. The drive moment and the agility of controlling signal of HH204 overmatched any other chips being launched in the market.One HH204 circuit, including 4 H bridges, is able to drive one four-phase step motor or two two-phase step motors, so one HH204 can perform the function of two step motors’drive circuit.HH204用作复费率电表二相四拍步进电机驱动芯片时,每个步进电机仅需要CPU 提供三个I/O口,二个步进电机共需CPU提供六个I/O口,但可以利用HH204——1、7与11、17脚使能输入端的控制,将二电机的相同绕组的输入端分别并联(见图1),这样仅用四根MCU的I/O端口就可控制二只步进电机的分别运转。
以市场上大量销售的TJD-1计度器为例,当二组方向输入端口的状态每改变四次,刻度就走进0.01度电量。
这方案比带高价专用IC芯片的计度器仅多用了一根MCU的I/O口线,但价格上最起码下降了30%以上,对电表厂家来说,这是一个非常重要的选择。
下面给出用C51编写的复费率计度器驱动程序。
电表常数选用了3200p/kwh,用T0计数方式,T0对电能计量芯片的CF脚进行计数,满32只脉冲时,使计度器前进0.01度。
当计数器溢出时,响应中断。
用户只需根据硬件情况,稍加修改就可移植到PIC、TI等其它公司的单片机上。
When HH204 is used as the chip for two-phase four steps stepper motor in multiple-expenses power meter, each stepper motor only needs three I/O ports. However, if we paralleled connect two groups of direction input ports to control EN pin 1,7 and EN pin 11, 17, we are only need 4 MCU I/O ports to control two stepper motors respectively. Take the TJD-1 as instance, when the state of the two groups of direction ports are changed four times, the scale will forward 0.01. This plan uses one more MCU I/O line but with cost drop at least 30% than uses specialized IC chip.The following is the drive program of multiple-expenses power meter in C51 language.#include "reg51.h"sbit EN1=P1^7;//P1^7使能平电机控制 peak period motor controlsbit EN2=P1^6;//P1^6使能谷电机控制 valley period motor controlsbit D1= P1^5;//电机数字码 motor digital codesbit D2= P1^4;//电机数字码 motor digital codeunsigned int tnum;void turn_step(bit tim,bit backflag);//函数定义 function definitionvoid turn(bit tim,bit backflag); //函数定义 function definitionvoid tint() interrupt 1 // time0计数中断服务程序 count interrupt service routine{TR0=0;turn_step(0,1);turn_step(0,1);turn_step(0,1);turn_step(0,1); //使平电机反转0.01度 enable motor which controls peakperiod to reverse 0.01 degreeTH0=0xff;TL0=0xe0; //32个脉冲中断一次 32 pulses interrupt onceTR0=1;}//-----------------------------------------void turn_step(bit tim,bit backflag) // 电机走一拍,计度器走4拍等于0.01度电{ //tim 表示电机的选择 tim=1表示平motor forwards one step andcounter forwards 4 steps, thenrepresents 0.01 watttim represents the choice of motor tim=1represents the flatunsigned int i; //backflag=1表示反转 represents reverseunsigned char ka;if(D1==1 && D2==0) ka=1;else if(D1==1 && D2==1) ka=2;else if(D1==0 && D2==1) ka=3;else if(D1==0 && D2==0) ka=4; //判断电机电极位置 judge the electrodeposition of motorif(tim==1) EN1=0;else EN2=0; //判断平谷 judge rush-hour or flat-hourperiodif(backflag==1){switch(ka){case 1: D1=1; D2=1; for(i=0;i<1000;i++); break;//2case 2: D1=0; D2=1; for(i=0;i<1000;i++); break;//3case 3: D1=0; D2=0; for(i=0;i<1000;i++); break;//4case 4: D1=1; D2=0; for(i=0;i<1000;i++); break;//1}}else{switch(ka){case 1: D1=0; D2=0; for(i=0;i<1000;i++); break; //4case 2: D1=1; D2=0; for(i=0;i<1000;i++); break; //1case 3: D1=1; D2=1; for(i=0;i<1000;i++); break; //2case 4: D1=0; D2=1; for(i=0;i<1000;i++); break; //3}}EN1=1; EN2=1;}//************************************void turn(bit pin,bit backflag ) //全速转 full speed turning {unsigned int i;if(pin==1) EN1=0;else EN2=0;if(backflag==1){D1=1; D2=0; for(i=0;i<tnum;i++);D1=1; D2=1; for(i=0;i<tnum;i++);D1=0; D2=1; for(i=0;i<tnum;i++);D1=0; D2=0; for(i=0;i<tnum;i++);}else{D1=0; D2=0; for(i=0;i<tnum;i++);D1=0; D2=1; for(i=0;i<tnum;i++);D1=1; D2=1; for(i=0;i<tnum;i++);D1=1; D2=0; for(i=0;i<tnum;i++);}EN1=1; EN2=1;}//***************************************main(){EN1=1;EN2=1;D1=1; D2=1; //管脚初始化 pin initializationTMOD=0x05; //定时器0设置为计数器 timer 0 is set to be the counterTH0=0xff;TL0=0xe0; //置初值 set initial valueTR0=1;ET0=1; //定时器中断使能 timer interrupts the EN EA=1; // 总中断使能 global interrupts the EN tnum=5500;while(1);}。