单片机间全双工通信
spi通信协议
spi通信协议SPI(Serial Peripheral Interface)串行外设接口是一种同步的、全双工的通信协议,常用于单片机和外部设备之间的通信。
SPI协议定义了一种主从模式的通信方式,其中一个设备充当主设备,负责发起通信,而其他设备则充当从设备,负责接收和处理通信数据。
SPI通信协议由四根线组成:时钟线(CLK)、片选线(SS)、主设备发出数据(MOSI)和主设备接收数据(MISO)。
在SPI通信中,主设备通过时钟线提供时钟脉冲,通过片选线选择和控制不同的从设备。
在通信开始时,主设备将片选线拉低,选择需要通信的从设备。
然后,主设备在每个时钟脉冲中,通过MOSI线发送数据给从设备,同时从设备通过MISO线将数据发送回主设备。
SPI通信协议的通信方式为全双工,即主设备和从设备可以同时发送和接收数据。
在通信过程中,主设备和从设备通过时钟的同步来保持数据的一致性。
主设备在上升沿将数据发送到MOSI线上,而从设备在下降沿将数据从MISO线上读取。
通过时钟的同步,主从设备可以准确地发送和接收数据。
在SPI通信中,数据的传输是串行的,即每个数据位都按顺序传输。
通信的起始位和终止位可以由主设备和从设备约定。
通常情况下,通信的起始位由主设备发起,并在时钟上升沿进行传输。
终止位可以由主设备或从设备发起,并在时钟下降沿进行传输。
SPI通信协议的速度可以通过调整时钟频率来控制。
时钟频率越高,数据传输的速度越快。
然而,时钟频率的增加也会增加信号的噪声和功耗。
因此,在选择时钟频率时,需要权衡速度和可靠性的要求。
SPI通信协议还支持多个从设备的通信。
每个从设备都有一个独立的片选线,主设备可以通过选择不同的片选线来与不同的从设备进行通信。
这种多从设备的通信方式使SPI协议更加灵活,可以同时与多个外部设备进行数据交换。
综上所述,SPI通信协议是一种常用的串行通信协议,使用主从模式进行数据交换。
它具有简单、可靠、高速的特点,适用于单片机和外部设备之间的通信。
单片机串口通信的发送与接收(可编辑修改word版)
51 单片机的串口,是个全双工的串口,发送数据的同时,还可以接收数据。
当串行发送完毕后,将在标志位TI 置1,同样,当收到了数据后,也会在RI 置1。
无论RI 或TI 出现了1,只要串口中断处于开放状态,单片机都会进入串口中断处理程序。
在中断程序中,要区分出来究竟是发送引起的中断,还是接收引起的中断,然后分别进行处理。
看到过一些书籍和文章,在串口收、发数据的处理方法上,很多人都有不妥之处。
接收数据时,基本上都是使用“中断方式”,这是正确合理的。
即:每当收到一个新数据,就在中断函数中,把RI 清零,并用一个变量,通知主函数,收到了新数据。
发送数据时,很多的程序都是使用的“查询方式”,就是执行while(TI ==0); 这样的语句来等待发送完毕。
这时,处理不好的话,就可能带来问题。
看了一些网友编写的程序,发现有如下几条容易出错:1.有人在发送数据之前,先关闭了串口中断!等待发送完毕后,再打开串口中断。
这样,在发送数据的等待期间内,如果收到了数据,将不能进入中断函数,也就不会保存的这个新收到的数据。
这种处理方法,就会遗漏收到的数据。
2.有人在发送数据之前,并没有关闭串口中断,当TI = 1 时,是可以进入中断程序的。
但是,却在中断函数中,将TI 清零!这样,在主函数中的while(TI ==0);,将永远等不到发送结束的标志。
3.还有人在中断程序中,并没有区分中断的来源,反而让发送引起的中断,执行了接收中断的程序。
对此,做而论道发表自己常用的方法:接收数据时,使用“中断方式”,清除RI 后,用一个变量通知主函数,收到新数据。
发送数据时,也用“中断方式”,清除TI 后,用另一个变量通知主函数,数据发送完毕。
这样一来,收、发两者基本一致,编写程序也很规范、易懂。
更重要的是,主函数中,不用在那儿死等发送完毕,可以有更多的时间查看其它的标志。
实例:求一个PC 与单片机串口通信的程序,要求如下:1、如果在电脑上发送以$开始的字符串,则将整个字符串原样返回(字符串长度不是固定的)。
单片机与无线射频模块的通信方法
单片机与无线射频模块的通信方法一、引言单片机与无线射频模块的通信方法在现代无线通信系统中扮演着重要的角色。
本文将讨论常见的单片机与无线射频模块的通信方法,包括串口通信、SPI通信和I2C通信等。
二、串口通信串口通信是单片机与无线射频模块最常见的通信方法之一。
单片机通过串口与无线射频模块进行数据传输。
通常,串口通信包括一个传输数据的引脚(TX)和一个接收数据的引脚(RX)。
单片机通过配置串口通信参数,如波特率、数据位数和校验位等,与无线射频模块进行通信。
三、SPI通信SPI通信是一种全双工的、同步的通信方式,常用于单片机与无线射频模块之间的高速数据传输。
SPI通信需要同时使用四根线进行传输,包括时钟线(SCK)、主设备输出从设备输入线(MOSI)、主设备输入从设备输出线(MISO)和片选线(SS)。
单片机作为主设备发送数据,无线射频模块作为从设备接收数据,并通过SPI总线进行交互。
四、I2C通信I2C通信是一种串行通信协议,适用于单片机与无线射频模块之间短距离的数据传输。
I2C通信只需要两根线,包括串行数据线(SDA)和串行时钟线(SCL)。
单片机通过发送I2C的起始信号来启动通信,然后通过发送地址和数据来与无线射频模块进行通信。
五、无线射频通信方式选择在选择单片机与无线射频模块的通信方法时,需要考虑以下几个因素:1. 通信速率:如果需要高速传输大量数据,SPI通信可能是更好的选择。
2. 距离:如果通信距离较短,I2C通信可以提供简单和成本效益的解决方案。
3. 异常处理:串口通信可以提供更可靠的错误检测和纠正机制。
六、通信参数配置无论选择哪种通信方法,正确配置通信参数非常重要。
通信参数包括波特率、数据位数、校验位和停止位等。
通过准确配置这些参数,可以确保单片机与无线射频模块之间的通信能够正常进行。
七、通信安全性与稳定性在单片机与无线射频模块的通信中,保证通信的安全性和稳定性至关重要。
常见的安全措施包括数据加密、认证机制和信号干扰抑制等。
基于单片机的红外数据通信全双工编解码器设计
收 稿 日期 : 2 0 1 2 . 0 8 — 0 2 基金项 目: 四川省青年科技基金资助项 目( 0 8 z Qo 2 6—0 8 9 )
1 3 0
成
都
信
息
工
程
学 院
学
报
第2 8卷
一
个 比 特 总 时 长 T b i t l 1 5 2 0 0 = 警 ≈ 8 . 6 8 s
文 章 编 号 :1 6 7 1 . 1 7 4 2 ( 2 0 1 3 J 0 2 — 0 1 2 9 . 0 4
基 于 单 片 机 的红 外 数 据 通 信 全 双 工 编 解 码 器 设计
郑红菱 , 张 杰2 , 郑郁正2
( 1 . 成都信 息工程学院计算机学院 , 四川 成都 6 1 0 2 2 5 ; 2 . 成都信息工程学院通信工程学院, 四川 成都 6 1 0 2 2 5 )
必须经过 I r D M. 0 标准编解码器与红外收发器连接 , 才能实现红外数据通信。有些串行通信芯片或者智能处理器 的 串行通信 部件都集 成 了 I r D M . 0编解 码器 , 但 独立使 用 I r D A 1 . 0编解 码 器还 占了很大 一部 分 , 其 中有 TI 公 司 的 TI R 1 0 0 0 、 公司 的 H S D L - 7 0 0 0 、 Z i l o g公 司的 Z H X 1 0 1 0 、 Mi c r c  ̄h i p 公 司的 MC P 2 1 X X系列红外编解码 器 。
从集 成 的红外 收 发 器结 构来 看 , 所 有 编 解 码 器 与 这 类 的红 外 收发器连接工作 时 , 都只能以半 双工模式工作。对 于要 以全双工 模式工作的设备来说 , 如果想将有线通信方式改 为红外无线通信 方式 , 将 很 难找 到现 成 的解决 方案 。 因此 , 选用高性价比的 MC S 5 1 单片机 , 成本不足人 民币 2 - 元, 设计了一个 I r D A 1 . 0标准协议栈控制器 ; 采用软件缓冲技术 , 利用 红外数据通信 的半双工信 道 , 实 现了透 明全 双工通信。 同时 , 对 I r D A 1 . 0的编解码做 了改进 , 采用了时长编码 , 将传输速度提高 了 倍, 实现 了 1 1 5 2 0 0 b p s 全双 工通 信 。
单片机 串口通信原理
单片机串口通信原理
单片机串口通信是指通过串行口进行数据的传输和接收。
串口通信原理是利用串行通信协议,将数据按照一定的格式进行传输和接收。
在单片机中,串口通信一般是通过UART(通用异步收发传输器)模块来实现的。
UART模块包括发送和接收两部分。
发送部分将数据从高位到低位逐位发送,接收部分则是将接收到的数据重新组装成完整的数据。
串口通信的原理是利用串行通信协议将发送的数据进行分帧传输。
在传输的过程中,数据被分成一个个的数据帧,每帧包括起始位、数据位、校验位和停止位。
起始位和停止位用于标识数据的开始和结束,数据位则是用来存放需要传输的数据。
校验位用于校验数据的正确性。
在发送端,单片机将需要发送的数据按照一定的格式组装成数据帧,然后通过UART发送出去。
在接收端,UART接收到的数据也是按照数据帧的格式进行解析,然后重新组装成完整的数据。
通过这样的方式,发送端和接收端可以进行数据的传输和接收。
串口通信具有简单、可靠性高、适应性强等优点,广泛应用于各种领域,如物联网、嵌入式系统等。
掌握串口通信原理对于单片机的应用开发具有重要意义。
单片机SPI通信实现
单片机SPI通信实现SPI(Serial Peripheral Interface)是一种常见的串行通信接口,它用于在电子设备之间进行数据传输。
在单片机中,SPI通信常用于连接外部设备,如传感器、存储器或其他微控制器。
本文将介绍如何在单片机中实现SPI通信。
一、SPI通信的基本原理SPI通信包括一个主设备(MCU)和一个或多个从设备之间的通信。
通常,SPI使用四根信号线实现通信:1. 时钟线(SCLK):用于主设备提供时钟信号,同步主设备和从设备的数据传输。
2. 主输出,从输入线(MISO):用于主设备发送数据给从设备,并由从设备接收数据。
3. 主输入,从输出线(MOSI):用于主设备接收从设备发送的数据。
4. 片选线(SS):用于选择与主设备通信的特定从设备。
SPI通信是全双工的,意味着主设备和从设备可以同时发送和接收数据。
通信的过程如下:1. 主设备发送时钟信号给从设备。
2. 主设备通过MOSI线发送数据给从设备。
3. 从设备通过MISO线接收主设备发送的数据。
4. 从设备可以通过MISO线发送数据给主设备。
二、硬件设置在单片机中实现SPI通信,需要根据具体芯片型号和开发板的硬件接口进行设置。
通常需配置以下参数:1. SPI模式:SPI通信有四种模式,根据通信的时钟极性和相位来确定。
要根据所连接的设备要求选择适当的SPI模式。
2. 数据位长度:确定通信中每个数据包的位数。
3. 时钟频率:选择与所连接设备的最大通信频率兼容的时钟频率。
三、代码实现以下是一个示例代码,用于在单片机中实现SPI通信:```c#include <avr/io.h>void SPI_MasterInit(){// 设置引脚方向:SCLK, MOSI和SS作为输出引脚,MISO作为输入引脚DDRB = (1 << DDB5) | (1 << DDB3) | (1 << DDB2);// 使能SPI,并设置为主设备模式,设置时钟频率为fck/4SPCR = (1 << SPE) | (1 << MSTR);}void SPI_MasterTransmit(uint8_t data){// 启动数据传输SPDR = data;// 等待传输完成while (!(SPSR & (1 << SPIF)));}int main(void){// 初始化SPI主设备SPI_MasterInit();// 主设备发送数据SPI_MasterTransmit(0x55); // 发送0x55 return 0;}```以上代码是一个简单的SPI主设备配置和数据发送的示例,具体代码实现需要根据所使用的单片机型号和开发环境进行相应修改。
FPGA和单片机串行通信接口的实现
FPGA和单片机串行通信接口的实现FPGA(Field-Programmable Gate Array)和单片机(Microcontroller)是两种常用的数字电子设备,它们在串行通信接口方面有不同的实现方式。
首先,我们需要了解串行通信是一种将数据以位的形式逐个传输的通信方式。
常见的串行通信协议包括UART(Universal Asynchronous Receiver/Transmitter)、SPI(Serial Peripheral Interface)和I2C (Inter-Integrated Circuit)等。
对于FPGA和单片机之间的串行通信,我们可以基于以下几种方式进行实现:1. UART:UART是一种常见的串行通信协议,可以实现全双工的通信。
在FPGA和单片机之间建立UART通信,需要在FPGA中实现UART模块,并将其与单片机的UART接口连接。
在FPGA中,我们可以使用硬件语言(如Verilog或VHDL)来实现UART模块,该模块负责将FPGA内部的数据通过UART协议进行封装和解封装。
单片机与FPGA之间通过TX(发送)和RX (接收)引脚建立连接。
单片机可以通过串口发送数据给FPGA,FPGA接收到数据后进行处理,然后再通过串口将处理后的数据发送给单片机。
2.SPI:SPI是一种用于片上外设之间通信的串行通信协议,常用于FPGA与外部设备(例如传感器、显示器等)之间的通信。
在FPGA和单片机之间建立SPI通信,需要在FPGA中实现SPI控制器,并将其与单片机的SPI接口连接。
FPGA通过把数据写入SPI发送缓冲区或从SPI接收缓冲区读取数据来实现与单片机的通信。
单片机通过控制SPI接口的时钟、数据和使能信号来与FPGA进行数据传输。
3.I2C:I2C是一种双线制串行总线,常用于连接多个设备的系统,例如FPGA、单片机和其他外部设备之间的通信。
在FPGA和单片机之间建立I2C通信,需要在FPGA中实现I2C控制器,并将其与单片机的I2C接口连接。
(完整word版)单片机名词解释
单片机名词解释一、名词解释1.微处理器:即中央处理器CPU,它是把运算器和控制器集成在一块芯片上的器件总称。
2.单片机(单片微型计算机):把CPU、存储器、I/O接口、振荡器电路、定时器/计数器等构成计算机的主要部件集成在一块芯片上构成一台具有一定功能的计算机,就称为单片微型计算机,简称单片机。
3.程序计数器:程序计数器PC是一个不可寻址的16位专用寄存器(不属于特殊功能寄存器),用来存放下一条指令的地址,具有自动加1的功能。
4.数据指针:数据指针DPTR是一个16位的寄存器,可分为两个8位的寄存器DPH、DPL,常用作访问外部数据存储器的地址寄存器,也可寻址64K字节程序存储器的固定数据、表格等单元。
5.累加器:运算时的暂存寄存器,用于提供操作数和存放运算结果。
它是应用最频繁的寄存器,由于在结构上与内部总线相连,所以一般信息的传送和交换均需通过累加器A。
6.程序状态字:程序状态字PSW是一个8位寄存器,寄存当前指令执行后的状态,为下条或以后的指令执行提供状态条件。
它的重要特点是可以编程。
7.堆栈:堆栈是一组编有地址的特殊存储单元,数据遵循先进后出的存取原则。
栈顶地址用栈指针SP指示。
8.软件堆栈:通过软件唉内部RAM中定义一个区域作为堆栈(即由软件对SP设置初值),称软件堆栈。
9.振荡周期(晶振周期):振荡电路产生的脉冲信号的周期,是最小的时序单位。
10.时钟周期:把2个振荡周期称为S状态,即时钟周期。
1个时钟周期=2个振荡周期。
11.机器周期:完成一个基本操作所需的时间称为机器周期。
1个机器周期=12个振荡周期。
12.指令周期:执行一条指令所需的全部时间称为指令周期。
MCS-51单片机的指令周期一般需要1、2、4个机器周期。
13.地址/数据分时复用总线:是指P0口用作扩展时,先输出低8位地址至地址锁存器,而后再由P0口输入指令代码,在时间上是分开的。
14.准双向并行I/O口:当用作通用I/O口,且先执行输出操作,而后要由输出变为输入操作时,必须在输入操作前再执行一次输出“1”操作(即先将口置成1),然后执行输入操作才会正确,这就是准双向的含义。
基于单片机AT89C51的全双工串行口通信设计
第3期(总第127期)机械管理开发2012年6月No.3(SUM No.127)MECHANICAL MANAGEMENT AND DEVELOPMENT Jun.20120引言视频监控系统是一种安全防范能力较强的系统。
随着社会和技术的进步,人们对视频监控的要求提高。
视频监控系统已从模拟视频监控、基于视频压缩板卡的数字视频监控,发展到全数字化网络视频监控。
本文系统采用DirectShow 技术进行视频监控软件开发,可方便地从支持WDM 驱动模型的采集卡上捕获数据,并且进行后期处理存储到文件中[1]。
这使多媒体数据库管理系统(MDBMS )中多媒体数据的存取变得更加方便、设计更加简单。
1Directshow 技术简介DirectShow 是微软提供的在Windows 平台上进行流媒体处理的一种方案,也是完全基于COM 的应用系统。
该系统位于应用层中,使用Filter Graph (过滤器图表)模型管理整个数据流的处理;参与数据处理的各个功能模块叫Filter (过滤器);各个Filter 在Fil ⁃ter Graph 中按照一定的顺序连接成一条“流水线”协同工作[2]。
按照功能,Filter 分为3类:Source Filter (源过滤器),Trance Filter (转换过滤器),Render Filter (提交过滤器)。
源过滤器主要负责获取数据,数据源可以是文件、因特网计算机里的采集卡、数字摄像机等,然后将数据往下传输。
转换过滤器主要负责数据的格式转换,例如数据流分离/合成、解码/编码等,然后将数据继续往下传输。
提交转换器主要负责数据的最终去向——将数据送给显卡、声卡进行多媒体的演示,或者输出到文件进行存储[3]。
2系统软件架构设计系统采用C/S 架构,又称Client/Serve 或客户端/服务器模式,分为客户端和服务器两层,主要由6个功能模块组成:视频采集模块、视频压缩编码模块、网络通信与数据传输模块、视频数据文件存储模块、视频流解码播放模块,见图1。
单片机课程设计-- 单片机之间的双向通信演示
课程设计任务书课程单片机课程设计题目单片机之间的双向通信演示专业姓名学号一、任务以AT89C51单片机为控制核心,利用串行通信技术实现两个单片机之间的数据传输。
二、设计要求[1] 单片机甲机向单片机乙机发送控制命令符,甲机同时接收乙机发送的数字,并显示在数码管上[2] 基本电路包括:单片机最小系统,串口通信电路,LED显示电路等。
[3] 提交设计报告、电路图及程序源码。
三、参考资料[1] 万光毅.单片机实验与实践教程[M]. 北京:北京航空航天大学出版社.2005.1.[2] 张毅刚.单片机原理及应用[M]. 北京:高等教育出版社.2003:160-190.[3] 张小波, 徐航.基于MCS—51单片机的串行通信技术.[M].北京:北京航空航天大学出版社.2006[4] 胡汉才.单片机原理与其接口技术(第二版)[M].北京:清华大学出版社,2004.[5] 何文才,杜鹏.基于VB.NET的PC机和MCS-51单片机之间的串行通信 [J]. 北京电子科技学院学报. 2006.4期[6] 李秀忠.基于单片机的LED显示屏控制电路设计.[J].现代电子技术. 2010 .15期完成期限2012.6.29 至2012.7.8指导教师专业负责人2012年6月29 日目录第1章绪论 (1)1.1 单片机AT89C51概述......................... 错误!未定义书签。
1.2 LED显示屏控制技术状况 (2)1.3 MAX232概述 (2)1.4 本设计任务 (3)第2 章总体方案论证与设计......................... 错误!未定义书签。
2.1 LED驱动模块................................ 错误!未定义书签。
2.2 总体硬件组成框图........................... 错误!未定义书签。
第3章系统硬件设计.. (4)3.1 单片机最小系统硬件设计 (4)3.2 串行通信电路 (5)3.3 LED显示电路 (6)第4章系统的软件设计 (7)4.1 甲单片机程序设计 (7)4.2 乙单片机程序设计 (8)第5章系统调试与测试结果分析 (8)5.1 使用的仪器仪表 (9)5.2 系统调试 (9)5.3 测试结果 (9)结论 (9)参考文献 (11)附录1 程序 (12)附录2 仿真效果图 (17)第1章绪论随着科学技术的发展,单片机在各个领域的应用越来越广泛,计算机领域,航天领域,电子技术领域等,都离不开单片机的使用。
单片机各种通信方式的特点和主要应用场合
单片机各种通信方式的特点和主要应用场合串口用的比较多:RS232,用于与标准的RS232设备通讯网卡,用于互联网或采用网卡端口的设备通讯I2C,用于单片机自己外设或多个单片机之间通讯CAN,工业标准,汽车中常用并口:并口就是直接将数据输入或输出,多少位数据就要用多少根线,此外还要加上控制线2根以上。
例如8位的数据通讯,至少用10根线。
由于单片机的引脚数目有限,这种方法很不实用。
并行口现在计算机都几乎不用了。
如果感兴趣,你就找以前的计算技术方面的书上还有介绍。
并口线路复杂,可靠性低,速度低,除了早期的打印机还用,也几乎没有这样的外设了。
大家好,通过前一期的学习,我们已经对ICD2 仿真烧写器和增强型PIC 实验板的使用方法及学习方式有所了解与熟悉,学会了如何用单片机来控制发光管、继电器、蜂鸣器、按键、数码管等资源,体会到了学习板的易用性与易学性,看了前几期实例,大部分都是基于单片机端口操作原理呢?大家是否觉得这样一个单片机系统似乎缺少点什么呢?不错,本期我们将介绍单片机与电脑通讯,使单片机与PC 机能够联机工作。
单片机除了需要控制外围器件完成特定的功能外,在很多应用中还要完成单片机和单片机之间、单片机和外围器件之间,以及单片机和微机之间的数据交换和指令的传输,这就是单片机的通信。
单片机的通信方式可以分为并行通信和串行通信。
并行方式传送一个字节的数据至少需要8 条数据线。
一般来讲单片机与打印机等外围设备连接时,除8条数据线外,还要状态、应答等控制线,当传送距离过远时电线要求过多,成本会增加很多。
单片机的串行通信方法较为多样,传统的串行通信方式是通过单片机自带的串行口进行RS232 方式的通信。
串行通信是以一位数据线传送数据的位信号,即使加上几条通信联络控制线,也比并行通信用的线少。
因此,串行通信适合远距离数据传送,如大型主机与其远程终端之间,处于两地的计算机之间,采用串行通信就非常经济。
串行通信又分为异步传送和同步传送两种基本方式。
51单片机的2个串口分别通信的方法
51单片机的2个串口资源分别通信的方法当使用51单片机的2个串口资源进行通信时,比如用一个串口与PLC的串口使用RS485协议通信,一个串口通过蓝牙模块和另一个单片机无线通信时,该如何处理呢?传统的51单片机只有1个串口资源,只能采用分时复用的方法。
STC的15系列增强版51单片机具有多个串口资源,本文将描述如何使用IAP15W4K58S单片机用一个串口资源与PLC的RS485有线通信,另一个串口资源与Arduino单片机通过蓝牙模块无线通信,该通讯连接过程中PLC作为主机,IAP15W4K58S作为中间机,Arduino单片机作为最低层级。
工作过程是按下启动按键,PLC发信息给IAP15W4K58S单片机发高速脉冲控制步进电机驱动的机械臂运动取走货物,当货物取走后,IAP15W4K58S单片机通过蓝牙模块通知Arduino单片机控制的小车将新货物运送过来。
连接结构示意图如下图所示。
本例程使用的单片机型号为:IAP15W4K58S,该单片机有4个采用UART 工作方式的全双工异步串行通信接口(分别为串口1、串口2、串口3和串口4),每个串行口由2个数据缓冲器、1个移位寄存器、1个串行控制寄存器和1个波特率发生器等组成。
本项目使用串行口1和串行口2。
串行口1的两个缓冲器共用寄存器SBUF (99H),串行口2的两个缓冲器共用寄存器S2BUF(9BH)。
10位(1起始位,8位数据位,1停止位)可变波特率(9600)。
串口1对应的硬件部分是TxD和RxD,串行口2对应硬件部分是TxD2和RxD2。
串口1选择引脚P3.0(RxD)和P3.1(TxD),串口2选择引脚P1.0(RxD)和P1.1(TxD)。
串口1既可以选择T1作为波特率发生器,也可以选择T2作为波特率发生器。
本文串口1提供2个选择(T1和T2),串口2只能选择T2作波特率发生器。
但是当串口1和串口2的波特率相同时,可以共用T2作为波特率发器,当T2工作在1T模式时,串行口1的波特率=SYSclk/(65536-[RL_TH2,RL_TL2])/4,SYSclk表示系统时钟频率,[RL_TH2,RL_TL2]表示T2H,T2L的定时初值设置值。
单片机多机通信的原理
单片机多机通信的原理单片机多机通信是指通过一组单片机进行信息传输和交换的过程。
单片机多机通信可以实现不同单片机之间的数据传输、控制和协调工作。
在多机通信中,每个单片机都有独立的功能和任务,并通过通信方式进行协作完成工作。
1.通信协议:通信协议是单片机多机通信的重要基础。
在多机通信中,需要定义一套协议,规定数据帧的格式,数据的传输方式和操作的流程。
常见的通信协议有SPI、I2C、UART等。
选择合适的通信协议可以根据传输距离、传输速度、设备复杂度等需求来进行选择。
2.总线结构:多机通信中常使用总线结构,将多个单片机连接在同一总线上。
总线结构包括三种类型:并行总线、串行总线和混合总线。
并行总线是指在总线的每条线上同时传输一个单元(八位),速度较快;串行总线是指数据逐位的传输,速度较慢但可以实现长距离传输;混合总线则结合了并行总线和串行总线的优点。
根据具体应用需求,选择合适的总线结构。
3.通信方式:在多机通信中,可以采用半双工通信或者全双工通信方式。
半双工通信是指通信双方交替发送和接收数据,在同一时刻只能进行发送或接收操作;全双工通信是指通信双方可以同时进行发送和接收操作。
根据通信需求和硬件条件,选择合适的通信方式。
4.帧同步:在多机通信中,数据的传输需要进行帧同步,即接收端需要识别出每个数据帧的起始和结束位置。
帧同步可以通过在传输数据中插入特定的起始标识符和结束标识符来实现。
当接收到起始标识符后,接收端开始接收数据帧,直到接收到结束标识符,表示数据帧传输完成。
5.编码和解码:多机通信中,发送数据的单片机需要将数据进行编码,接收数据的单片机需要对接收到的数据进行解码。
编码和解码方式有很多种,如二进制编码、格雷码编码等。
编码和解码的目的是确保数据的可靠传输和正确接收。
6.冲突检测和处理:在多机通信中,由于多个单片机共享同一总线,可能会出现冲突和竞争的情况。
为了避免冲突,需要设计冲突检测和处理机制。
常见的机制有仲裁器、优先级检测和时间片轮转等。
单片机中常见的接口类型及其功能介绍
单片机中常见的接口类型及其功能介绍单片机(microcontroller)是一种集成了中央处理器、内存和各种外围接口的微型计算机系统。
它通常用于嵌入式系统中,用于控制和监控各种设备。
接口是单片机与外部设备之间进行数据和信号传输的通道。
本文就单片机中常见的接口类型及其功能进行介绍。
一、串行接口1. 串行通信口(USART):USART是单片机与外部设备之间进行串行数据通信的接口。
它可以实现异步或同步传输,常用于与计算机、模块、传感器等设备进行数据交换。
2. SPI(串行外围接口):SPI接口是一种全双工、同步的串行数据接口,通常用于连接单片机与存储器、传感器以及其他外围设备。
SPI接口具有较高的传输速度和灵活性,可以实现多主多从的数据通信。
3. I2C(Inter-Integrated Circuit):I2C接口是一种面向外部设备的串行通信总线,用于连接不同的芯片或模块。
I2C接口通过两条双向线路进行数据传输,可以实现多主多从的通信方式,并且占用的引脚较少。
二、并行接口1. GPIO(通用输入/输出):GPIO接口是单片机中最常见的接口之一,用于连接与单片机进行输入输出的外围设备。
通过设置相应的寄存器和引脚状态,可以实现单片机对外部设备进行控制和监测。
2. ADC(模数转换器):ADC接口用于将模拟信号转换为数字信号,常用于单片机中对模拟信号的采集和处理。
通过ADC接口,单片机可以将外部传感器等模拟信号转化为数字信号,便于处理和分析。
3. DAC(数模转换器):DAC接口用于将数字信号转换为模拟信号。
通过DAC接口,单片机可以控制外部设备的模拟量输出,如音频输出、电压控制等。
三、特殊接口1. PWM(脉冲宽度调制):PWM接口用于产生特定占空比的脉冲信号。
通过调节脉冲的宽度和周期,可以控制外部设备的电平、亮度、速度等。
PWM接口常用于控制电机、LED灯、舵机等设备。
2. I2S(串行音频接口):I2S接口用于在单片机和音频设备之间进行数字音频数据传输。
单片机双机通信课程设计报告
课程设计说明书课程设计名称:单片机课程设计课程设计题目:单片机与单片机之间的串行通讯学院名称:信息工程学院专业:电子信息科学与技术班级: 090431班学号: xxx 姓名: xxx 评分:教师: xxx 2012年6月25日电子信息工程专业课程设计任务书20 10 -20 11学年第2 学期第17 周-20 周注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。
2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档摘要串行通讯是单片机的一个重要应用。
本设计就是利用两块单片机来完成一个系统,实现单片机之间的串行通讯。
随着计算机的不断普及,在我们的周围可能会同时出现多台微型计算机,而且这些计算机的牌号,后型号不同,而且有的格式不兼容。
于是利用单片机串行口实现不同计算机之间的相互通信,以达到信息或程序的共享是非常有用的。
从智能家用电器到工业上的控制系统都采用了上位机与下位机基于串行通信的主从工作方式,这样就充分利用了微机分析处理能力强、速度快的特点及下位机(单片机)面向控制、使用灵活方便的优势。
由于AT09C52系列单片机具有性能稳定、工作可靠、价格低廉等可特点,因此其应用相当广泛。
AT09C52单片机中有异步通信串行接口,能方便的构成双机,多机通讯接口。
随着测量向自动化,智能化,网络化方向的发展。
利用多机通讯构成的分布式系统逐渐普及。
本实验就点对点的双机通信进行训练。
学习串口的工作方式,初始化编程,和单片机与单片机点对点通信的编程方法以及硬件电路的设计方法。
在此基础上可以进一步提高,实现多机通信以及单片机与PC机的通讯,手机通过蓝牙与单片机通讯,电脑通过蓝牙与单片机通讯等一系列功能扩展。
【关键字】双机串行通讯 AT89C52 异步通讯功能扩展目录前言 (1)第一章、系统功能 (2)1.1 设计要求和系统的组成及工作原理 (2)第二章、系统设计方案 (3)2.1硬件设计 (3)2.1.1 AT89C52和RS232说明 (3)2..12 双机通讯的方案选择 (7)2.1软件设计 (8)2.2.1 甲机程序的编写说明 (8)2.2.2 甲机程序的编写说明 (12)第三章、调试与操作 (19)3.1 开发板调试 (19)3.2 测试结果与分析 (20)第四章、结论 ........................ 错误!未定义书签。
单片机串口通信及波特率设置
51单片机串口通信及波特率设置MCS-51单片机具有一个全双工的串行通信接口,能同时进行发送和接收。
它可以作为UART(通用异步接收和发送器)使用,也可以作为同步的移位寄存器使用。
1. 数据缓冲寄存器SBUFSBUF是可以直接寻址的专用寄存器。
物理上,它对应着两个寄存器,即一个发送寄存器一个接收寄存器,CPU写SBUF就是修改发送寄存器;读SBUF就是读接收寄存器。
接收器是双缓冲的,以避免在接收下一帧数据之前,CPU未能及时的响应接收器的中断,没有把上一帧的数据读走而产生两帧数据重叠的问题。
对于发送器,为了保持最大的传输速率,一般不需要双缓冲,因为发送时CPU是主动的,不会产生重叠问题。
2. 状态控制寄存器SCONSCON是一个逐位定义的8位寄存器,用于控制串行通信的方式选择、接收和发送,指示串口的状态,SCON即可以字节寻址也可以位寻址,字节地址98H,地址位为98H~9FH。
它的各个位定义如下:MSB LSBSM0 SM1 SM2 REN TB8 RB8 TI RI SM0和SM1是串口的工作方式选择位,2个选择位对应4种工作方式,如下表,其中Fosc是振荡器的频率。
SM0 SM1 工作方式功能波特率0 0 0 8位同步移位寄存器Fosc/120 1 1 10位UART 可变1 02 11位UART Fosc/64或Fosc/321 1 3 11位UART 可变SM2在工作方式2和3中是多机通信的使能位。
在工作方式0中,SM2必须为0。
在工作方式1中,若SM2=1且没有接收到有效的停止位,则接收中断标志位RI不会被激活。
在工作方式2和3中若SM2=1且接收到的第9位数据(RB8)为0,则接收中断标志RB8不会被激活,若接收到的第9位数据(RB8)为1,则RI置位。
此功能可用于多处理机通信。
REN为允许串行接收位,由软件置位或清除。
置位时允许串行接收,清除时禁止串行接收。
TB8是工作方式2和3要发送的第9位数据。
stc15单片机写485通讯程序
stc15单片机写485通讯程序如何在STC15单片机上编写485通信程序引言:STC15单片机是一种常用的单片机芯片,具有低功耗、高性能等特点,在工业自动化领域得到了广泛应用。
其中,485通信是一种常用的通信方式,具有抗干扰能力强、传输距离远等优势。
本文将详细介绍如何在STC15单片机上编写485通信程序,帮助读者了解实际操作过程。
一、了解485通信协议在开始编写485通信程序之前,我们首先要了解485通信协议。
485通信协议是一种串口通信协议,它定义了通信设备之间的数据传输规则。
它使用两根线实现全双工的通信,其中A、B两线分别用于发送和接收数据。
在编写485通信程序时,我们需要掌握标准的485通信协议,包括帧结构、波特率、数据格式等内容。
二、准备开发环境在编写485通信程序之前,我们需要准备好相应的开发环境。
首先,我们需要一台电脑,并安装好STC15系列单片机的开发软件,例如Keil C51。
然后,我们需要准备一块STC15单片机开发板,以及一台支持485通信的外部设备,例如电机控制器、传感器等。
三、了解STC15单片机的485通信功能STC15单片机具有内置的硬件串口模块,可用于实现485通信功能。
我们需要了解STC15单片机的串口模块的工作原理和使用方法。
具体来说,我们需要了解串口的引脚定义、波特率设置、数据格式配置等内容。
四、编写485通信程序接下来,我们可以开始编写485通信程序了。
在Keil C51开发环境中,我们可以利用C语言来编写程序。
首先,我们需要定义相应的引脚,将STC15单片机的串口引脚与外部设备的485通信引脚连接起来。
然后,我们需要进行相应的配置,例如设置波特率、数据位数、停止位等。
最后,我们可以编写数据发送和接收的代码,实现数据的传输和处理。
在编写485通信程序时,需要注意以下几个关键点:1. 引脚定义:需要根据具体的开发板和外部设备,定义好STC15单片机的串口引脚。
MCS-51单片机的串行口及串行通信技术
MCS-51单⽚机的串⾏⼝及串⾏通信技术数据通信的基本概念串⾏通信有单⼯通信、半双⼯通信和全双⼯通信3种⽅式。
单⼯通信:数据只能单⽅向地从⼀端向另⼀端传送。
例如,⽬前的有线电视节⽬,只能单⽅向传送。
半双⼯通信:数据可以双向传送,但任⼀时刻只能向⼀个⽅向传送。
也就是说,半双⼯通信可以分时双向传送数据。
例如,⽬前的某些对讲机,任⼀时刻只能⼀⽅讲,另⼀⽅听。
全双⼯通信:数据可同时向两个⽅向传送。
全双⼯通信效率最⾼,适⽤于计算机之间的通信。
此外,通信双⽅要正确地进⾏数据传输,需要解决何时开始传输,何时结束传输,以及数据传输速率等问题,即解决数据同步问题。
实现数据同步,通常有两种⽅式,⼀种是异步通信,另⼀种是同步通信。
异步通信在异步通信中,数据⼀帧⼀帧地传送。
每⼀帧由⼀个字符代码组成,⼀个字符代码由起始位、数据位、奇偶校验位和停⽌位4部分组成。
每⼀帧的数据格式如图7-1所⽰。
⼀个串⾏帧的开始是⼀个起始位“0”,然后是5〜8位数据(规定低位数据在前,⾼位数据在后),接着是奇偶校验位(此位可省略),最后是停⽌位“1”。
起始位起始位"0”占⽤⼀位,⽤来通知接收设备,开始接收字符。
通信线在不传送字符时,⼀直保持为“1”。
接收端不断检测线路状态,当测到⼀个“0”电平时,就知道发来⼀个新字符,马上进⾏接收。
起始位还被⽤作同步接收端的时钟,以保证以后的接收能正确进⾏。
数据位数据位是要传送的数据,可以是5位、6位或更多。
当数据位是5位时,数据位为D0〜D4;当数据位是6位时,数据位为D0〜D5;当数据位是8位时,数据位为D0〜D7。
奇偶校验位奇偶校验位只占⼀位,其数据位为D8。
当传送数据不进⾏奇偶校验时,可以省略此位。
此位也可⽤于确定该帧字符所代表的信息类型,“1"表明传送的是地址帧,“0”表明传送的是数据帧。
停⽌位停⽌位⽤来表⽰字符的结束,停⽌位可以是1位、1.5位或2位。
停⽌位必须是⾼电平。
接收端接收到停⽌位后,就知道此字符传送完毕。
单片机与SD卡的接口技术及应用
单片机与SD卡的接口技术及应用SD卡是一种常见的存储介质,被广泛应用于各种电子设备中。
而单片机作为一种微型计算机,常常需要与SD卡进行数据交互,实现数据的读写。
本文将重点讨论单片机与SD卡的接口技术及应用。
首先,为了实现单片机与SD卡之间的通信,必须了解SD卡的工作原理和接口规范。
SD卡采用SPI(Serial Peripheral Interface)或SDIO(SecureDigital InputOutput)接口进行通信。
SPI接口是一种串行通信接口,采用4线全双工通信模式;而SDIO接口则是一种并行接口,采用多线程通信模式。
根据实际需求,选择合适的接口方式。
在选择接口方式后,需要根据SD卡的物理接口进行连接。
SD卡的物理接口分为标准卡接口和微型卡接口,标准卡接口主要用于传统的SD卡,而微型卡接口则用于小型设备。
通过适配器可以实现不同接口类型之间的兼容。
根据SD卡的接口类型,将其与单片机相应的接口引脚连接。
接下来,需要编写相应的软件驱动程序,以实现单片机与SD卡的数据交互。
首先,需要对SD卡进行初始化,包括发送命令和等待SD卡的响应。
接着,可以实现数据的读取和写入操作。
数据读取包括发送读命令、接收数据和校验数据等步骤;数据写入包括发送写命令、发送数据和校验数据等步骤。
通过相应的操作,可以实现对SD卡中存储数据的读取和写入。
在实际应用中,单片机与SD卡的接口技术具有广泛的应用场景。
首先,可以将单片机与SD卡结合,实现数据的存储和读取。
例如在一些嵌入式系统中,单片机可以采集传感器数据,并将其存储在SD卡中,以便后续的数据分析和处理。
同时,通过SD卡的大容量,可以存储更多的数据,提高系统的灵活性和可扩展性。
此外,单片机与SD卡的接口技术还可以被应用于数据传输领域。
通过单片机与SD卡的组合,可以实现数据的高速传输和存储。
例如在一些音频设备中,单片机可以通过SD卡来播放音乐和录制声音,提供更好的用户体验。
单片机tcp通信程序
单片机tcp通信程序1、单片机tcp通信单片机tcp通信是一种基于Internet协议(IP)的通讯技术,采用全双工方式实现数据传输,用于通过单片机实现网络之间的数据通信。
任何一个节点都可以请求服务器的数据,并且可以从该服务器上接收数据。
它把低级的硬件接口,软件接口,用户程序,中间件,应用软件等都合并在一起,提供异地不同机器之间高效而快速的通讯服务,可以通过局域网或者互联网来链接各种体系结构网络,如网际协议、以太网等等,它主要使用TCP/IP协议进行网络控制。
2、实施步骤(1)单片机tcp通信程序的设计:首先,根据所要实现的网络的数据传输结构和目的,需要确定使用哪种tcp/ip协议,通常使用HTTP或者TCP等通信协议,然后根据不同的协议,设计出网络通信的硬件结构,软件结构,用户程序和中间件等。
(2)单片机tcp通信程序的实现:安装TCP/IP通信软件,根据设计好的程序,在单片机系统中编写网络通信程序,完成TCP/IP通信软件的安装,通过设置参数,输入网络地址,连接网络,终端设备接入网络,即可实现单片机tcp通信。
(3)单片机tcp通信程序的测试:测试程序的正确性和可用性,包括软件测试和硬件测试,分别测试单片机的处理速度和IP地址的可用性以及网关的可通行。
3、优势(1)网络质量好:tcp/ip协议让网络架构更加规范,数据传输可靠性高,网络质量能够稳定。
(2)易于技术维护:其技术维护方面非常方便,技术维护和网络升级容易实现。
(3)安全可靠:tcp/ip使用的数据传输模式可以让用户传输的数据更加可靠,其安全性得到有效的保障,可以减少攻击的可能性。
(4)路由可变:单片机tcp/ip的路由可变,对用户更加友好,可以根据实际需求修改路由,给用户带来更大的操作方便,节约了技术维护成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北民族学院信息工程学院课程设计报告题目: 单片机的全双工通信系统课程:单片机课程设计专业:电子信息科学与技术班学学生姓名:指导教师:年月日信息工程学院课程设计任务书年月日信息工程学院课程设计成绩评定表摘要随着电子技术的不断发展,单片机的应用范围越来越广泛,在工业控制、家电控制、数据采集等多个领域都有着十分重要的作用,由于单片机的使用,越来越多的系统开始向智能化方向发展。
而单片机自带的串口功能可以实现其与其他外设MCU或PC机之间的通信,这样就使得控制系统更加的方便实用,利用单片机的串口通信可以实现数据的远程传输、数据分析与系统综合控制功能,尤其是在数据量比较大的场合下,利用一个主机向各个从机发送控制指令是一个很好的解决方案,在这个过程中,串口通信是实现单片机与单片机之间通信的关键。
本文介绍了基于单片机的串口通信设计,通过按键输入数据,单片机通过串口将数据发送给另一个单片机,同时发送的数据均可在2个单片机控制的数码管上显示,以检测串口通信的准确性。
本文介绍的方法简单易懂,可广泛应用于各种串口数据通信系统中。
关键词:单片机数据串口通信设计目录目录1 任务提出与方案论证 (7)1.1 任务提出 (7)1.2 设计方案 (7)2 总体设计 (9)2.1 硬件设计 (9)2.2 软件设计 (10)3 详细设计及仿真 (11)3.1按键控制电路 (11)3.2单片机控制电路 (11)3.3 MAX232电平转换电路 (12)3.4 显示电路 (13)3.5仿真结果 (14)4 总结 (15)参考文献 (16)附录 (17)1 任务提出与方案论证1.1 任务提出数据通信是通信技术和计算机技术相结合而产生的一种新的通信方式。
要在两地之间传输信息必须由传输信道,根据传输媒体的不同,有有线数据通信与无线数据通信之分,但它们都是通过传输信道将数据终端与计算机连接起来,而使不同地点的数据终端实现软、硬件和信息资源的共享。
数据通信的发展主要分为五个阶段。
第一阶段:以语言为主,通过人力、马力、烽火等原始手段传递信息;第二阶段:文字、邮政;第三阶段:印刷;第四阶段:电报、电话、广播;第五阶段:信息时代,除语言信息外,还有数据、图像、文本等。
串口通信是按位发送和接收字节,尽管比按字节的并行通信慢,但是串口可以在使用一根线发送数据的同时利用另一根线接收数据,很简单且能实现远距离通信,长度可以达到1200米。
串行通信是指计算机主机与外设之间以及主机系统与主机系统之间数据的串行传送。
使用串口通信时,发送和接收到的每一个字符实际上都是一次一位的传送的,每一位为1或者为0。
串行通信只使用一条数据线,将数据一位一位地依次传输,每一位数据占据一个固定的时间长度。
其只需要少数几条线就可以在系统间交换信息。
最被人们熟悉的串行通信技术标准是EIA-232、EIA-422和EIA-485,目前EIA-232是PC机与通信工业中应用最广泛的一种串行接口。
EIA-422标准全称是“平衡电压数字接口电路的电气特性”,它定义了一种平衡通信接口,将传输速率提高到了10Mbps,传输距离延长到了1219米,并允许在一条平衡总线上最多连接10个接收器。
1983年EIA在EIA-422的基础上制定了EIA-485标准,增加了多点、双向通信能力,即允许多个发送器连接到同一条总线上,同时增加了发送器的驱动能力和冲突保护特性,扩展了总线共模范围,后命名为TIA/EIA-485-A标准。
1.2 设计方案在2个相同单片机之间利用串口进行通信,通过按键输入要发送的数据,该数据为数字,并可在数码管上显示出来,设置完后通过串口通信发送给另一个单片机,另一个单片机接收到后在数码管上显示出来,2个单片机可以互相发送数据,通过2个单片机系统的数码管显示的数字可以判断串口通信发送的数据的正确性。
系统设计框图如图3.1所示。
本设计主要由按键输入电路、单片机控制电路和数码管显示电路组成,2个单片机的电路图完全相同,实现的功能也相同,所以本文只介绍其中一块单片机电路的设计方法和串口通信的原理。
图1-2系统设计框图2 总体设计2.1 硬件设计系统总体电路图:图2-1系统总体设计电路硬件电路包括:按键输入电路,AT89C51控制电路,MAX232电平转换电路,led显示电路,数码管显示电路,LM1602显示电路这几大部分。
Altium designer软件的使用1、建立数据库。
打开Altium designer软件后,在“文件”标题栏里选择“新建”选项,在弹出的对话框里选择Document Folder,然后点击OK即可。
2、打开Documents,选择“文件”标题栏里选择“新建”选项,在弹出的对话框里选择“Schematic Document”选项,建立原理图文件,并给原理图文件命名。
3、设计电路原理图。
利用Altium designer里的元器件库完成电路原理图的绘制。
4、检查原理图电性能可靠性。
选择工具下面的电气规则检查,在“Rule Matrix”中选择要进行电气检查的项目,设置好各项后,在“Setup Electrical Rlues Check”对话框上选择“OK”即可运行电气规则检查,检查结果将被显示到界面上。
2.2 软件设计Keil C51集成开发环境1、源代码编辑器:uVision4编辑器包含了所有用户熟悉的特性。
彩色语法显像和文件辩识都对C源代码进行和优化。
可以在编辑器内调试程序,它能提供一种自然的调试环境,使你更快速地检查和修改程序。
2、断点:uVision4允许用户在编辑时设置程序断点(甚至在源代码未经编译和汇编之前)。
用户启动V4调试器之后,断点即被激活。
断点可设置为条件表达式,变量或存储器访问,断点被触发后,调试器命令或调试功能即可执行。
在属性框中可以快速浏览断点设置情况和源程序行的位置。
代码覆盖率信息可以让你区分程序中已执行和未执行的部分。
3、调试函数语言:uVision4中,可以编写或使用类似C的数语言进行调试。
<1>、内部函数:如printf, memset, rand及其它功能的函数。
<2>、信号函数:模拟产生CPU的模拟信号和脉冲信号。
<3>、用户函数:扩展指令范围,合并重复动作。
4、变量和存储器:用户可以在编辑器中选中变呈来观察其取值。
双层窗口显示,可进行以下调整:当前函数的局部变量;用户在两个不同watch窗口页面上的自定义变量;堆栈调用(call stack)页面上的调用记录;不同格式的四个存储区。
C51允许用户使用C语言编写中断服务程序,快速进、出代码和寄存器区的转换功能使C语言中断功能更加高效。
可再入功能是用关键字来定义的。
多任务,中断或非中断的代码要求必须具备可再入功能。
C51提供了灵活高效的指针。
通用指针用3个字节来存储存储器类型及目标地址,可以在8051的任意存储区内存取任何变量。
特殊指针在声明的同时已指定了存储器类型,指向某一特定的存储区域。
由于地址的存储只需1-2字节,因此,指针存取非常迅速。
Keil C51兼容单片机C语言软件开发系统,与汇编相比,C语言在功能上、结构上、可读性、可维护性上有明显的优势,因而易学易用。
3 详细设计及仿真3.1按键控制电路常用的按键有独立键盘和矩阵键盘,矩阵式键盘分行和列,通过行和列来确定某一个按键的位置,适用于多键盘操作,可以节省单片机的I/O口。
独立式键盘是直接将按键连接至单片机I/O口,单片机通过检测I/O的电平来判断按下的按键,编程简单,但是占用I/O资源比较多。
本设计中只需要用到4个按键来实现数据的输入,所以使用独立式键盘即可。
按键输入电路如图4.1所示。
单片机的P1.0-P1.3引脚用来控制4路按键,4个按键分别代表4组数据“1、12、123、1234”,不同长度的数据可以更充分的检测串口数据传输的准确性。
图3-1按键控制电路3.2单片机控制电路该部分电路设计如图4.2所示。
单片机的时钟的频率直接影响着单片机的速度和系统的稳定性。
AT89S51片内由一个反相放大器构成振荡器,可以通过它俩产生时钟。
常用的单片机产生时钟的方法有两种:内部时钟方式和外部时钟方式。
本设计选用外部时钟方式,单片机内部XTAL1引脚为高增益反向放大器的输入端,XTAL2为输出端,在这2个引脚之间接石英晶振和电容,就可以构成一个稳定的自激振荡器。
外接晶振振荡频率不大于单片机的最大工作频率即可。
如果有串行通信,需要选择振频率除以串行通信频率可以整除的晶振。
本设计选用的11.0592MHz晶振。
复位是单片机的初始化操作,复位信号是高电平有效,复位操作有上电自动复位、按键电平复位、外部脉冲复位和自动复位四种方式。
在本设计中复位电路采用按键电平方式,使RST引脚经过10u电解电容与VCC电源接通,同时经过电阻与地连接而实现,按下按键时,RST引脚置高,实现复位功能。
单片机的P1.0-P1.3引脚控制4个按键用于输入数字,P2口控制数码管显示电路,单片机之间的通信通过串行口RXD和TXD。
3.3 MAX232电平转换电路使用+5v单电源供电。
第一部分是电荷泵电路。
由1、2、3、4、5、6脚和4只电容构成。
功能是产生+12v和-12v两个电源,提供给RS-232串口电平的需要。
第二部分是数据转换通道。
由7、8、9、10、11、12、13、14脚构成两个数据通道。
其中13脚(R1IN)、12脚(R1OUT)、11脚(T1IN)、14脚(T1OUT)为第一数据通道。
8脚(R2IN)、9脚(R2OUT)、10脚(T2IN)、7脚(T2OUT)为第二数据通道。
TTL/CMOS数据从11引脚(T1IN)、10引脚(T2IN)输入转换成RS-232数据从14脚(T1OUT)、7脚(T2OUT)送到电脑DB9插头;DB9插头的RS-232数据从13引脚(R1IN)、8引脚(R2IN)输入转换成TTL/CMOS数据后从12引脚(R1OUT)、9引脚(R2OUT)输出。
第三部分是供电。
15脚GND、16脚VCC(+5v)。
图3-3 MAX232电平转换电路3.4 显示电路本设计中选用数码管作为显示器件。
LED数码管由八只发光二极管组成,编号是a、b、c、d、e、f、g、h,分别和同名管脚相连,当发光二极管导通时发光。
每个二极管就是一个笔划,若干个二极管发光时,就构成一个显示字符。
若将单片机的I/O口与数码管的a-g和h相连,高电平(对应共阴极数码管)或低电平(对应共阳极数码管)的位对应的发光二极管就会亮,这样,I/O口输出不同的代码就可以控制数码管显示不同的字符。
为减少电路板中的焊接线,本设计选用4位一体数码管,采用串行输入并行输出的8位移位寄存器74LS164进行驱动输出,单片机的P2.6和P2.7引脚分别作为74LS164的数据线和CLK信号。