第三章压电式传感器

合集下载

压电式力传感器

压电式力传感器

石英晶体的压电效应演示
当力的方向改变时,电荷的极性随之改变,输出电压 的频率与动态力的频率相同;当动态力变为静态力时,电 荷将由于表面漏电而很快泄漏、消失。
4
压电效应是可逆的 在介质极化的方向施加电场时,电介质会产生 形变,将电能转化成机械能,这种现象称

“逆压电效应”。 •压电元件可以将机械能——转化成电能 也可以将电能——转化成机械能。
Z
Z
Y Y
X X
(a ) (b)
石英晶体
(a)理想石英晶体的外形 (b)坐标系 8
Y -
Y +
X
+
+
(b)
X
(a)
硅氧离子的排列示意图
(a) 硅氧离子在Z平面上的投影 (b)等效为正六边形排列的投影
石英晶体具有压电效应,是由其内部结构决定的。 组成石英晶体的硅离子 Si4+和氧离子 O2- 在 Z平面投影, 如图 ( a ) 。为讨论方便,将这些硅、氧离子等效为图 ( b ) 中正六边形排列,图中“+”代表 Si 4 + ,“-”代表 2O2-。 9
2.压电陶瓷压电效应产生的机理
压电陶瓷属于铁电体一类的物质,是人工制造的多晶压电材料, 它具有类似铁磁材料磁畴结构的电畴结构。电畴是分子自发形成 的区域,它有一定的极化方向,从而存在一定的电场。在无外电 场作用时,各个电畴在晶体上杂乱分布,它们的极化效应被相互 抵消,因此原始的压电陶瓷内极化强度为零,见图(a)。
直流电场E 剩余极化强度
电场作用下的伸长 (a)极化处理前 (b)极化处理中
剩余伸长 (c)极化处理后
15
但是,当把电压表接到陶瓷片的两个电极上进行测量时,却无 法测出陶瓷片内部存在的极化强度。这是因为陶瓷片内的极化强 度总是以电偶极矩的形式表现出来,即在陶瓷的一端出现正束缚 电荷,另一端出现负束缚电荷。由于束缚电荷的作用,在陶瓷片 的电极面上吸附了一层来自外界的自由电荷。这些自由电荷与陶 瓷片内的束缚电荷符号相反而数量相等,它起着屏蔽和抵消陶瓷 片内极化强度对外界的作用。所以电压表不能测出陶瓷片内的极 化程度,如图。

压电式传感器工作原理

压电式传感器工作原理

压电式传感器工作原理压电式传感器是一种将压电效应应用于传感器中的设备,它可以将压力、力、加速度、温度等物理量转换为电信号。

压电效应是指某些晶体在受到外力作用时会产生电荷,这种效应被应用在压电式传感器中,使其能够实现物理量到电信号的转换。

本文将介绍压电式传感器的工作原理及其应用。

1. 压电效应压电效应是指某些晶体在受到外力作用时会产生电荷的现象。

这种效应最早是由法国物理学家居里夫妇在1880年发现的,他们发现某些晶体在受到机械应力时会产生电荷,这种现象被称为正压电效应。

此外,这些晶体在受到电场作用时也会发生形变,这种现象被称为逆压电效应。

这两种效应被应用在压电式传感器中,使其能够实现物理量到电信号的转换。

2. 压电式传感器的结构压电式传感器通常由压电陶瓷、电极、外壳和连接线组成。

压电陶瓷是压电式传感器的核心部件,它是由压电晶体制成的,具有压电效应。

电极用于接收压电陶瓷产生的电荷,并将其转换为电信号。

外壳用于保护压电陶瓷和电极,连接线用于将电信号传输到外部设备。

3. 压电式传感器的工作原理当压电式传感器受到压力、力、加速度或温度等物理量的作用时,压电陶瓷会产生电荷。

这些电荷会被电极接收,并转换为电信号。

这个电信号可以是电压、电流或电荷量,其大小与作用在传感器上的物理量成正比。

通过测量电信号的大小,就可以确定作用在传感器上的物理量的大小。

4. 压电式传感器的应用压电式传感器具有灵敏度高、频率响应快、稳定性好等优点,因此被广泛应用于工业自动化、汽车电子、医疗设备、航空航天等领域。

例如,在工业自动化中,压电式传感器可以用于测量压力、力等物理量,用于控制和监测生产过程。

在汽车电子中,压电式传感器可以用于测量发动机的振动和噪声,用于改善车辆的驾驶舒适性。

在医疗设备中,压电式传感器可以用于测量血压、心率等生理参数,用于诊断和治疗疾病。

在航空航天中,压电式传感器可以用于测量飞机的结构应力和振动,用于确保飞行安全。

15第3章_电气式传感(1)

15第3章_电气式传感(1)
Rx kl x s xp Rp R
x
B
C
A
x
xp
灵敏度
dR dx
kl

e0 ey
e0
x
ey
x
x pey e0
1.1 变阻器式传感器

x x pey e0 kley
e0
ey
0
x
Hale Waihona Puke xp1.1 变阻器式传感器
后接分压电路
R p Rx
e0
Rx
ey
RL
V
ey

A
dl
l
A
2
dA
l A
d
代入 R l / A
dR R

dl l

dA A

d

1.2 电阻应变式传感器
金属丝 A r 2 金属丝体积不变
dR dl l
dr r dl l
2 d

2 dr r

d

R


器(differential transformer))
2.1 自感型(self-inductance)(可变磁阻式)
原理:电磁感应
线圈
由电磁学原理可知: L W m i 其 中 : L 电 感 ; W 线 圈 匝 数 ; i 电 流 ;
m 电 流 i产 生 的 磁 通
基于金属导体的应变效应(strain effect),即
金属导体在外力作用下发生机械变形时,其电 阻值随着所受机械变形(伸长或缩短)的变化而 发生变化象。
1.2 电阻应变式传感器

压电式传感器的原理及应用

压电式传感器的原理及应用

压电式传感器的原理及应用压电式传感器是一种应用了压电效应的传感器,通过将压电材料置于受力区域,当被测物体发生变形或受力时,压电材料发生形变,从而产生电荷信号,利用该信号来测量被测量的变化情况。

一、压电效应的原理压电效应是一种物理现象,指在压力或拉伸下,某些晶体(通常是晶体的极性方向)会产生电位差。

这种效应被广泛应用于各种传感器中,特别是在加速度计、其它惯性传感器、压力传感器和液位传感器等方面。

二、压电式传感器的原理压电式传感器通常由压电晶体和测量电路组成。

当被测物体发生形变或受力时,压电材料中的极性方向的晶体产生压电效应,导致产生电荷的位移,并与电荷电容匹配的放大器或其他电路连接。

由于被测量的变化(压力,成形,位移等)与电荷位移之间存在特定关系,所以可以根据电荷电荷读数来确定被测物体发生变化的精确程度。

三、压电式传感器的应用由于压电效应具有高灵敏度、高频响应、耐腐蚀、抗干扰等优点,压电式传感器在各种领域得到广泛应用。

1.压力测量:压电式传感器常用于压力传感器的制造,用于测量汽车轮胎、气缸、油压和空气压力等。

2.振动测量:压电式传感器还可以用于测量机器和车辆的振动水平,以便定位有问题的部件。

3.流量测量:压电式传感器在流量测量中应用广泛,例如在医疗方面测量血流,工业方面可以应用于计算液体的流量。

4.力学测试:压电式传感器的高灵敏度和高频响应特性,在体育、自然科学和工程学中用于测量冲击、震动和变形等量。

5.地震观测:压电式传感器还可以用于地震观测,以便在监测过程中测量地震的振动率。

压电式传感器在上述应用领域中具有重要作用,并与其他类型的传感器如压阻式传感器、光电式传感器、磁性传感器等合作,实现了各种领域的数据测量工作,体现了良好的应用前景。

第3章 压电式传感器

第3章 压电式传感器

图3-1 天然结构的石英晶体示意图
第3章 压电式传感器
从晶体上沿着轴线切下的一片压电元件称为压电晶片,当晶片在沿X 轴方向有作用力Fx作用时,会在与X轴方向垂直的表面产生电荷,其大小 为: q x d11Fx (电荷极性由力的方向决定)
当晶片在沿Y轴方向有作用力Fy作用时,会在与Y轴方向垂直的表面产 生电荷,其大小为: q y d11 a Fy (电荷极性由力的方向决定) b L 从以上两式可以看出,纵向压电效应与元件尺寸无关,而横向压电效 应与元件尺寸有关;且从式中的负号可以看出,两者产生电荷的极性相反。 综上所述,晶体切片上电荷的符号与受力方向的关系可用图3-2表示。
1—基座;2—压电片;3—质 量块;4—弹簧;5—壳体
第3章 压电式传感器
图3-12是一种振动加速度传感器的测量电路。电路中,利用传感 器将被测加速度转换成电压输出,经过运放741和阻容元件组成的二 阶低通滤波器将53Hz以上的振荡频率衰减,再经IC2(3521)和阻容元 件组成的高通滤波器滤去低于1Hz的振荡频率。IC3与IC4组成交流放大 积分器,可以将IC2的输出转换成速度输出。IC5与IC6又可以将速度积 分成位移输出。由于加速度、速度、位移幅度的不同,为了都能送至 同一片MC14433做A/D转换,电路中配备了未标阻值的三个串联分压器, 可以根据需要设计选择。图中IC7是反相器。
第3章 压电式传感器
图3-12 振动加速度传感器测量电路图
第3章 压电式传感器
3.4.3 电子气压计 用气压表监测大气压力,对于预报天气具有重要的意义。传统的气压 计是玻璃管式的气压表,在使用之前,需要调节刻度盘指针位置,经较 长时间才能测量出气压的变化,而且由于机械磨擦的影响,会带来很大 的测量误差。这里介绍的电子气压计,是用压电片作为压力传感器,用

压电式传感器 原理

压电式传感器 原理

压电式传感器原理
压电式传感器是一种常见的传感器类型,它利用压电效应来检测和转换压力、应变、加速度和力的变化。

压电效应指的是当一些特定的晶体或陶瓷材料受到压力或应变时,会产生电荷的聚集或分离,从而形成电压信号。

这种材料被称为压电材料。

常见的压电材料包括石英、压电陶瓷和聚偏二氟乙烯等。

压电式传感器的工作原理是将压电材料作为传感器的感应元件,当外界施加压力或应变时,材料会发生弹性变形,从而产生电荷的分布变化。

这个变化可以通过电极连接在压电材料上的方式来测量。

为了测量这一电荷信号,压电式传感器通常由压电材料、电极和信号调理电路组成。

当外部压力或应变作用于传感器时,压电材料产生电荷,在电极中产生电压。

信号调理电路会将这个电压信号放大、过滤和转换成可读取的信号,比如电流或电压。

压电式传感器具有许多优势,如高精度、快速响应、宽频率范围和良好的耐用性。

这些特点使得压电式传感器广泛应用于工业控制、机械测量、医疗设备和汽车工程等领域。

值得注意的是,压电式传感器的输出信号与外部压力或应变之间存在一定的非线性关系,因此在实际应用中需要进行校准和补偿。

另外,在选择和使用压电式传感器时,还需考虑适当的电极设计、尺寸选取以及工作环境对传感器性能的影响。

压电式传感器原理

压电式传感器原理

压电式传感器原理压电式传感器是一种常用的传感器类型,它利用压电效应来将机械应力转换为电信号。

压电效应是指某些晶体或陶瓷材料在受到机械应力作用时,会产生电荷分布不均匀的现象。

这种现象被称为压电效应,而利用这种效应制成的传感器就是压电式传感器。

压电式传感器的工作原理非常简单直观。

当传感器受到外部力或压力作用时,传感器内部的压电材料会发生形变,导致电荷分布不均匀。

这些不均匀的电荷会产生一个电势差,从而产生一个电信号。

这个电信号可以被放大和处理,最终转换成我们可以理解的物理量,如力、压力、加速度等。

压电式传感器的工作原理可以用一个简单的例子来解释。

想象一个压电陶瓷材料制成的传感器,当这个传感器受到外部力作用时,陶瓷材料会产生微小的形变。

这种形变会导致陶瓷材料内部的电荷分布不均匀,从而产生一个微弱的电信号。

通过放大和处理这个电信号,我们就可以获得关于外部力的信息。

压电式传感器具有许多优点,其中最显著的是灵敏度高、响应速度快、结构简单、体积小等。

这些优点使得压电式传感器在各种工业和科学领域得到广泛应用。

比如在汽车制造业中,压电式传感器可以用来检测引擎的振动情况;在医疗领域,压电式传感器可以用来监测心脏的跳动情况。

除了上述应用外,压电式传感器还可以用于声波传感、压力传感、加速度传感等领域。

由于其工作原理简单、性能优越,压电式传感器在现代科技领域有着广阔的应用前景。

总的来说,压电式传感器是一种利用压电效应将机械应力转换为电信号的传感器。

它的工作原理简单直观,具有高灵敏度、快响应速度等优点,因此在各种领域得到广泛应用。

随着科技的不断发展,压电式传感器的应用范围将会更加广泛,为人类的生活和工作带来更多便利。

压电式传感器原理与应用

压电式传感器原理与应用

压电式传感器原理与应用压电式传感器是一种利用压电效应进行测量的传感器。

压电效应是指在压力作用下,一些晶体会产生电荷分布的改变,从而产生电势差。

压电式传感器利用这种原理,将压力或力的变化转化为电信号输出,从而实现对压力或力的测量。

1.传感器中的压电材料受到外力作用产生变形,从而引起内部电荷分布的改变。

2.内部电荷分布的改变使得传感器的两个电极上产生电势差。

3.传感器将电势差转化为与外力大小成正比的电信号输出。

1.工业自动化:压电式传感器可以用于测量各种物体的压力,如流体管道中的压力、机械设备的挤压力等,从而实现对工业过程的自动控制。

2.汽车工业:压电式传感器可以用于测量汽车发动机的油压、气压等参数,从而实现对发动机的控制和保护。

3.医疗器械:压电式传感器可以用于测量人体体内的压力,如心脏的血压、呼吸的压力等,从而实现对人体生理状态的监测。

4.空气质量监测:压电式传感器可以用于测量空气中的压力、气体浓度等参数,从而实现对空气质量的监测。

5.智能手机:压电式传感器可以用于智能手机屏幕上的触摸功能,可以感知用户的触摸力度和位置,从而实现对屏幕的操作。

1.灵敏度高:压电材料对压力或力的变化非常敏感,可以实现对微小压力的测量。

2.响应速度快:压电材料的压电效应响应速度非常快,可以实现对快速变化的压力的测量。

3.耐用性好:由于压电材料的特殊性质,压电式传感器具有较好的耐用性,可以经受较大的压力和力的作用。

4.体积小:压电材料的尺寸可以做得非常小,因此压电式传感器可以设计成小型化的产品。

5.易于集成:压电材料和传感器电路可以进行集成设计,从而降低了传感器的制造成本,提高了其可靠性。

总之,压电式传感器是一种利用压电效应进行测量的传感器,在工业、汽车、医疗、环境监测等领域有着广泛的应用。

它具有高灵敏度、快速响应、良好的耐用性、小体积和易集成等优点,可以满足各种应用场景的需求。

机械工程测试技术基础张军第三章2

机械工程测试技术基础张军第三章2
§3-4 电感传感器
被测机械量——电感量(互感量) 分类:自感型——(可变磁阻式、电涡流式) 互感型——(差动变压器式) 变换原理:基于电磁感应
一、可变磁阻式电感传感器
工作原理 : 由电工学知,线圈自感量L为
W——线圈匝数 Rm ——磁路总磁阻
如果空气隙δ较小,而且不考虑磁路的铁损时,总磁阻
测量电路
§3-6 压电式传感器
被测机械量——压电敏感元件的电荷输出
一、压电材料与压电效应
压电效应
正压电效应:某些晶体在其表面施加力,不仅几何尺寸发生变化,而且内部极化,在其表面出现电荷,形成电场;当外力消失时,材料重新回复到原来状态,这种现象成为正压电效应。 逆压电效应:将这些晶体置于电场中,其几何尺寸也发生变化,这种由于外电场作用导致物质的机械变形的现象,称为逆压电效应,或称为电致伸缩效应。
六、应用
正压电效应测力(加速度、扭矩) 逆压电效应振动送料器、执行器
加速度计
力传感器
YDS-78Ⅰ型石英压电传感器 测力范围:5000N 分辨率:0.01N 线性误差:<±1% 电荷灵敏度:3.8~4.2pc/N 绝缘电阻:>5×1013Ω 固有频率:50KHz 工作温度:-60~+140℃ 重量:10克 尺寸:ф18mm×7mm 获省科技成果一等奖
工作原理:电涡流现象: 金属板置于一只线圈附近,相互距离为δ。当线圈中有一高频交变电流I通过时,便产生磁通φ1。此交变磁通通过邻近的金属板,金属板上便产生感应电流i1。这种涡电流也将产生交变磁通φ1。根据楞次定律,涡电流的交变磁场与线圈的磁场变化方向相反,φ1总是抵抗φ的变化。由于涡流磁场的作用使原线圈的等效阻抗Z发生变化,变化程度与距离δ有关。

压电式传感器原理

压电式传感器原理

压电式传感器原理
一、什么是压电式传感器
压电式传感器是一种由电容式传感器演变而来的电磁式传感器,它利用晶体管在物理变化时所产生的电容效应,来对外界环境作出反应。

压电式传感器可以改变电容大小、变换电压幅度、改变电流流向、改变极性、改变电容量等,可以检测出外界压力、温度、拉力、拨动力等的变化。

二、压电式传感器的工作原理
压电式传感器的工作原理是,当一个外力施加在晶体片上时,由于晶体与晶体之间电子的运动受到外力的影响,在晶体的正线上的电容变化,把外力的变化转化成电容变化。

由于电容变化会改变电路中的电流,因此可以检测到外力的变化。

三、压电式传感器的特点
1、结构紧凑:压电式传感器具有小尺寸、低成本和机械结构紧凑的特点,使它成为其他传感器技术所不可取代的传感器。

2、高灵敏度:由于电容改变量可达几微安的级别,使得压电式传感器具有极高的灵敏度,可以自动感知微小外界变化。

3、快速响应:压电式传感器的信号响应速度很快,具有良好的动态特性,并且能够保持较高的精度和准确度。

4、广泛的应用:压电式传感器可广泛应用于航空航天、汽车、电子仪表、运动控制、重力检测和高精度测量等领域。

- 1 -。

压电式传感器.完美版PPT

压电式传感器.完美版PPT

正压电效应
电能
机械能
逆压电效应
(一)石英晶体的压电效应
天然结构石英晶体的理想外形是一个正六面体,在晶体
学中它可用三根互相垂直的轴来表示,其中纵向轴Z-Z 称为光轴;经过正六面体棱线,并垂直于光轴的X-X 轴称为电轴;与X-X轴和Z-Z轴同时垂直的Y-Y轴
(垂直于正六面体的棱面)称为机械轴。
通常把沿电轴X-X方向
P3
-
- -
+-
X
在X轴的正向出现负电荷,在Y、Z方向则不出现电荷。
可见,当晶体受到沿X(电轴)方向的力FX作用时,它在X
方向产生正压电效应,而Y、Z方向则不产生压电效应。
晶体在Y轴方向力FY作用下的情况与FX相似。当FY>0 时,晶体的形变与图(b)相似;当FY<0时,则与图 (c)相似。由此可见,晶体在Y(即机械轴)方向的力 FY作用下,使它在X方向产生正压电效应,在Y、Z方向 则不产生压电效应。
电极
++++ q ――――
q Ca
时,则两极板呈现一定 压电晶体
的电压,其大小为
U
a
q Ca
(a)
(b)Biblioteka 压电传感器的等效电路因此,压电传感器可等 效 为 电 压 源 Ua 和 一 个 电 容 器 Ca 的 串 联 电 路 , 如 图 (a) ; 也 可 等 效 为 一 个 电荷源q和一个电容器Ca 的并联电路,如图(b)。
Ca Ua Ua=q/ Ca
q Ca q =UaCa
(a)电压等效电路 (b)电荷等效电路
压电传感器等效原理
传感器内部信号电荷无“漏损”,外电路负载无穷大时, 压电传感器受力后产生的电压或电荷才能长期保存,否 则电路将以某时间常数按指数规律放电。这对于静态标 定以及低频准静态测量极为不利,必然带来误差。事实 上,传感器内部不可能没有泄漏,外电路负载也不可能 无穷大,只有外力以较高频率不断地作用,传感器的电 荷才能得以补充,因此,压电晶体不适合于静态测量。

压电式传感器

压电式传感器

压电式传感器论文班级:10233姓名:周经纬学号:1023324专业:机电一体化压电式传感器一、压电效应某些电介质在沿一定方向上收到外力的作用而形变时,内部会产生极化现象,同时在其表面上产生电荷,当去掉外力后,又重新回到不带点的状态,这种现象称为压电效应。

在晶体的弹性限度内,压电材料受力后,其表面产生的电荷Q与所施加的力F成正比,即式中Q=dFx式中d——压电场数。

正压电效应(顺压电效应):某些电介质,当沿着一定方向对其施力而使它变形时,内部就产生极化现象,同时在它的一定表面上产生电荷,当外力去掉后,又重新恢复不带电状态的现象。

当作用力方向改变时,电荷极性也随着改变。

逆压电效应(电致伸缩效应):当在电介质的极化方向施加电场,这些电介质就在一定方向上产生机械变形或机械压力,当外加电场撤去时,这些变形或应力也随之消失的现象。

自然界中与压电效应有关的现象很多。

例如在敦煌的鸣沙丘,当许多游客在沙丘上蹦跳或从鸣沙丘上往下滑时,可以听到雷鸣般的隆隆声。

产生这个现象的原因是无数干燥的沙子在重压引起振动,表面产生电荷,在某时刻,恰好形成电压串联,产生很高的电压,并通过空气放电而发出声音。

在电子打火机中,雅典材料受到敲击,产生很高的电压,通过尖端放电,而点燃火焰。

二、压电材料压电式传感器中的压电元件一般有三类:一类是压电晶体(单晶体);另一类的hi经过极化处理的压电陶瓷(多晶体);第三类是高分子压电材料。

(一)石英晶体石英晶体是一种良好的压电晶体,它的优点是性能非常稳定。

它具有自振频率高、动态响应好机械强度高、绝缘性能好、迟滞小、重复性好、线性范围宽等优点。

石英晶体不足之处就是压电常数小。

因此石英晶体大多只在标准传感器、高精度传感器或使用温度较高的传感器中使用,而在一般要求的测量中,基本上采用压电陶瓷。

(二)压电陶瓷压电陶瓷是人工制造的多晶体点材料,它由无数细微的电畴组成。

这些电畴实际上是分子自发极化的小区域。

在无外电场作用时,各个电畴在晶体中杂乱分布,它们的极化效应被互相抵消了,因此原始的电压陶瓷呈中性,不具有电压性质。

传感器与自动检测技术@余成波第三章重点

传感器与自动检测技术@余成波第三章重点

一、电阻式传感器1.应变式电阻传感器的概念及使用原理:是一种利用电阻应变效应,由电阻应变片和弹性敏感元件组合起来的传感器。

将应变片粘贴在各种弹性敏感元件上,当弹性敏感元件感受到外力、位移、加速度等参数的作用,弹性敏感元件产生应变,再通过粘贴在上面的电阻应变片将其转换成电阻的变化。

2.应变式电阻传感器的的组成及各部分作用:通常,它主要是由敏感元件、基底、引线和覆盖层等组成。

其核心元件是电阻应变片(敏感元件),它主要作用是敏感元件实现应变—电阻的变换。

3.根据敏感元件材料与结构的不同,应变片可分为,金属电阻应变片和半导体式应变片。

4.金属电阻应变片(1)金属电阻应变片基本结构由盖层、敏感栅、基底及引线四部分组成。

①敏感栅可由金属丝、金属箔制成,它是转换元件,被粘贴在基底上。

②用黏合剂粘贴在传感器弹性元件或试件上的应变片通过基底把应变传递到敏感栅上。

(1—敏感栅2—基底3—引线4—盖层5—黏合剂)③同时基底起绝缘作用。

④盖层起绝缘保护作用。

焊接于敏感栅两端引线连接测量导线之用。

目前,常用的金属电阻应变片主要有:金属丝式应变片、箔式应变片、及金属薄膜应变片等结构形式。

(2)金属电阻应变片工作原理:金属电阻应变片的工作原理是利用金属材料的电阻定律。

当应变片的结构尺寸发生变化时,其电阻也发生相应的变化。

6.半导体应变片(1)半导体应变片结构:是用半导体材料,采用与丝式应变片相同方法制成的半导体应变片。

图中1为基片,2为半导体敏感条,3为外引线,4为引线联接片,5为内引线。

(2)半导体应变片原理工作原理是基于半导体材料的压阻效应。

所谓压阻效应是指,当半导体材料的某一轴向受外力作用时,其电阻率 发生变化的现象。

半导体应变片受轴向力作用时,其电阻相对变化为,(3)半导体应变片的特点 半导体应变片最突出的优点是体积小,灵敏度高,频率响应范围很宽,输出幅值大,不需要放大器,可直接与记录仪连接使用,使测量系统简单;但它具有温度系数大,应变时非线性比较严重的缺点。

压电式传感器的原理与应用

压电式传感器的原理与应用

压电式传感器的原理与应用1. 压电式传感器的工作原理压电式传感器是一种将机械变形转化为电信号的传感器。

其工作原理基于压电效应,即某些晶体材料在受到机械应力作用后能够产生电荷分布的不对称性,进而产生电压差。

压电材料通常采用多晶形式的陶瓷材料,如氢化铅锆钛(PZT)等。

当外部施加机械应力时,压电材料中的晶格结构发生变形,导致晶体表面的正负电荷分布不均匀。

这样,就可以通过测量材料表面的电荷分布情况,间接获得机械应力的信息。

压电式传感器通常由压电材料、电极、输出电路等组成。

当受到机械应力作用时,压电材料上的电荷分布不均匀,导致电极上产生电压信号。

该电压信号可以通过输出电路进行放大和处理,最终输出与机械应力相关的电信号。

2. 压电式传感器的优点•高灵敏度:压电式传感器可以将微小的机械变形转化为电信号,具有高灵敏度。

•快速响应:由于压电材料具有快速的机械响应特性,压电式传感器的响应速度较快。

•宽频响特性:压电材料具有宽频带特性,能够在广泛的频率范围内进行测量。

•耐高温性:压电材料可以在高温环境中工作,适用于一些特殊的工业场合。

3. 压电式传感器的应用领域3.1 声学领域压电式传感器在声学领域应用广泛。

由于其高灵敏度和宽频响特性,可以用于声波的检测和测量。

常见的应用包括:•声波传感:压电式传感器可以转化声波的机械振动为电信号,用于声音的采集和分析。

•声压级测量:通过测量压电式传感器的输出信号,可以准确测量声波的压力级别。

3.2 力学领域压电式传感器在力学领域也有重要的应用。

由于其快速响应和高灵敏度,可以用于力学量的测量和控制。

常见的应用包括:•机械振动检测:通过测量压电式传感器的输出信号,可以判断机械系统的运动状态和振动频率。

•力的测量:将压电式传感器安装在受力部位,可以测量受力大小和方向。

3.3 气象领域压电式传感器在气象领域也有应用。

由于其高灵敏度和宽频响特性,可以用于气象参数的测量和监测。

常见的应用包括:•风速测量:通过测量压电式传感器受到的气流压强,可以准确测量风速。

压电式传感器总结

压电式传感器总结

.
U srd33F m sint1j
jR R (C aC cC i)
因此前置放大器的输入电压幅值Usm为:
Usrm
d33FmR 12R2(CaCcCi)2
定义压电传感器输出电压灵敏度为:
K uU F sm rm1 精选p2 pR t 2 d (3 C 3aR C cC i)2
28
当 2R 2(C aC cC i)2 1,可得
精选ppt
U
a
Q Ca
精选ppt
21
压电元件的等效电路 若考虑负载,则等效电路如下:
精选ppt
22
假设一恒定力F作用于压电元件,产生电量Q,则输出电压:
ua
Q C Ca
Q Cc Ci
Ø 压电传感器本身产生的电荷量很小,且传感器本身的电阻很
大(压电元件漏电阻Ra一般在1013~1014Ω以上),因此输出信号很
(d)面切变形(FS);精选(ep)pt剪切变形(TS)
5
电致伸缩效应:即电介质在电场的作用下,由于感应极化 作用而产生应变,应变大小与电场平方成正比,与电场方向无 关。压电效应仅存在于无对称中心的晶体中。而电致伸缩效应 对所有的电介质均存在,不论是非晶体物质,还是晶体物质, 不论是中心对称性的晶体,还是极性晶体。
具有较高的压电系数(d33=200~500×10-12C/N)和居里点 (300℃以上),各项机电参数随温度、时间等外界条件的变化小, 在锆钛酸铅的基方中添加一两种微量元素,可以获得不同性能 的PZT材料。是传感器中经常采用的一种压电材料。
精选ppt
19
3. 高分子聚合物压电薄膜 聚二氟乙烯(PVF2)、聚氟乙烯(PVF)、聚氯乙烯(PVC)、聚
(一)压电材料的主要特性

传感器的类型ppt课件

传感器的类型ppt课件
▪ 传感器是将感知到的各种信号转换成易测量 的信号,把相应的信号输入计算机,计算机 发出指令,控制各执行机构。
.
§3-1传感器的定义
一、传感器的定义( Transducer/Sensor ) ▪ 定义:将被测参量转换为与之对应的,易
于测量,传输和处理的信号的装置。
GB7665一87:能够感受规定的被测量并按 照一定规律转换成可用输出信号的器件或 装置。
.
§3-2-2 电位计式传感器
回转型变阻器式传感器,其电阻值随转角而变化。
其灵敏度
S
dR
d
k
式中α—转角[rad]
kα—单位弧度对应的电阻值。
.
§3-2-2 电位计式传感器
非线性变阻器式传感器,或称为函数电位器。 当被测量与电刷位移x之间具有某种函数关系时, 通过它可以获得输出电阻与输入被测量的线性关 系。设r(x)为电位器任意瞬时位置(微小区间Δx) 内的电阻,则电阻位移为x时总电阻值为:
KS由两部分组成:
前一部分是(1+2μ),由材料的几何尺寸变化引起,一般
金属μ≈0.3,因此(1+2μ)≈1.6;
后一部分为
l
/,电阻率随应变而引起的(称“压阻效应”)。
/l
对金属材料,以前者为主,则KS≈ 1+2μ;
对半导体, KS值主要由电阻率相对变化所决定。
实验表明,在金属丝拉伸比例极限内,电阻相对变化与轴
第三章 传感器
§3-1 §3-2 §3-3 §3-4 §3-6
传感器的概念 电阻式传感器 电容式传感器 电感式传感器 压电式传感器
.
第三章 传感器
▪ 传感器是人类五官的延长,又称之为电五 官;
信息 传感器技术 通信技术 计算机技术

压电式传感器工作原理

压电式传感器工作原理

压电式传感器工作原理
压电式传感器工作原理是基于压电效应的。

压电效应是指某些晶体在受到机械应力或电场作用下,会产生电荷的现象。

压电式传感器通常由压电材料和电极组成。

当外界施加压力或力量作用在压电材料上时,压电材料会发生分子结构的畸变,从而产生电荷的偏移。

这个电荷的偏移量与所施加的压力大小成正比。

压电传感器中的电极会收集这些电荷,产生对应的电压信号。

为了提高传感器的灵敏度和稳定性,常常在压电材料的两侧加上金属电极,形成一个电场。

这个电场可以使压电材料更容易产生电荷的偏移,从而提高传感器的灵敏度。

压电式传感器适用于各种应用领域,比如重量测量、压力检测、加速度测量等。

在重量测量方面,压电式传感器可以通过测量压电材料上产生的电荷量来计算受测物体的重量。

在压力检测方面,传感器可以通过测量压电材料上产生的电压信号来计算作用在传感器上的压力大小。

在加速度测量方面,压电式传感器可以通过测量压电材料上产生的电荷量来计算物体的加速度。

总之,压电式传感器利用压电效应实现对压力、重量以及加速度等物理量的测量。

通过测量压电材料上产生的电荷量或电压信号,可以计算出所测量物理量的值。

压电传感器等效电路

压电传感器等效电路
下一页 返回
第二节 压电传感器等效电路和测 量电路
并联连接式压电传感器的输出电容C’和极板上的电荷q‘分别
上一页 下一页 返回
第一节 压电效应和压电材料
三、石英晶体的压电特性
石英晶体是单晶体结构,其形状为六角形晶柱,两端呈六棱 锥形状,如图3-1所示。石英晶体各个方向的特性是不同的。 在三维直角坐标系中,z轴被称为晶体的光轴。经过六棱柱 棱线,垂直于光轴z的x轴称为电轴,把沿电轴x施加作用力 后的电压效应称为纵向压电效应。垂直于光轴z和电轴x的y 轴称为机械轴。把沿机械轴y方向的力作用下产生电荷的压 电效应称为横向压电效应。沿光轴z方向施加作用力则不产 生压电效应。
下一页 返回
第一节 压电效应和压电材料
二、压电材料简介
压电材料可以分为两大类:压电晶体和压电陶瓷。前者为晶 体,后者为极化处理的多晶体。它们都具有较好特性:压电 常数高,机械性能优良(强度高,固有振荡频率稳定),时 间稳定性和温度稳定性好等,是较理想的压电材料。
1.压电晶体 常见压电晶体有天然和人造石英晶体。石英晶体,其化学成
由于外力作用而使压电材料上产生电荷,该电荷只有在无泄 漏的情况下才会长期保存,因此需要测量电路具有无限大的 输入阻抗,而实际上这是不可能的,所以压电传感器不宜作 静态测量,只能在其上加交变力,电荷才能不断得到补充, 可以供给测量电路一定的电流,故压电传感器只宜作动态测 量。
制作压电传感器时,可采用两片或两片以上具有相同性能的 压电晶片粘贴在一起使用。由于压电晶片有电荷极性,因此 接法有并联和串联两种,如图3-6所示。
上一页 下一页 返回
第一节 压电效应和压电材料
如果在压电陶瓷片上加一个与极化方向平行的外力,陶瓷片 产生压缩变形,片内的束缚电荷之间表面的自由电荷,有一 部分被释放而呈现放电现象。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶体机电特性时,采用xyz右手直角坐标较方便,并 统一规定:x轴称之为电轴,它穿过六棱柱的棱线,
在垂直于此轴的面上压电效应最强;y轴垂直m面,称 之为机轴,在电场的作用下,沿该轴方向的机械变形 最明显;z轴称之为光轴,也叫中性轴,光线沿该轴 通过石英晶体时,无折射,沿z轴方向上没有压电效 应。
在三维直角坐标系内的力一电作用状况如图3-2 所示。
图中:T1、T2、T3分别为沿x、y、z向的正应力分量 (压应力为负);T4、T5、T6分别为绕x、y、z轴的切
应力分量(顺时钟方向为负);σ1、σ2、σ3分别为
在x、y、z面上的电荷密度(或电位移D)。式3.5为
正压电方程的向量矩阵表示,式3.6为逆压电方程的 向量矩阵表示。压电方程是全压电效应的数学描述。 它反映了压电介质的力学行为与电学行为之间相互作 用(即机-电转换)的规律。
(3.3)
—真空介电常数=8.85pF/m。
那么可以计算出平行板电容器模型中正压电效应产生的电
压 d
V Eh Th
r0
(3.4)
式3.4中h—平行板电容器极板间距。
人们常用 gd/(r0)表示压电电压系数。
例如,压电材料钛酸铅 d=44pC/N, =600。取T=1000N, h=1cm,则V=828V。当在该平行板电容器模型加1kV电 压时,S=4.4 。
(a)正压电效应;
(b)压电效应的可逆性 图3-1压电效应
由物理学知,一些离子型晶ቤተ መጻሕፍቲ ባይዱ的电介质(如石英、酒石酸
钾钠、钛酸钡等)不仅在电场力作用下,而且在机械力作
用下,都会产生极化现象。为了对压电材料的压电效应进
行描述,表明材料的电学量(D、E)力学量(T、S)行为
之间的量的关系,建立了压电方程。正压电效应中,外力
T1
D1 d11
D2
d21
D3 d31
d12 d22 d32
d13 d23 d33
d14 d24 d34
d15 d25 d35
d16 d26 d36
T2 TT34 T5
T6
S1 d11 d 21 d 31
S
2
d
1
2
S S
3 4
d d
1 1
3 4
式3.2中S—应变,应变 ,微应变 ;
E—外加电场强度,V/m;
—逆压电系数,C/N。
当外加应力下表面面积不变时,d =d’ 。
压电材料是绝缘材料。把压电材料置于两金属极板之间, 构成一种带介质的平行板电容器,金属极板收集正压电效 应产生的电荷。由物理学知,平行板电容器中
式中
Dr0E
—压电材料的相对介电常数;
具有压电性的电介质(称压电材料),能实现机-电 能量的相互转换。压电材料是各项异性的,即不同方 向的压电系数不同,常用矩阵向量d表示,6×3维。进 而有电位移矩阵向量D,1×3维;应力矩阵向量T, 1×6维;应变矩阵向量S,1×6维;电场强度矩阵向量 E,1×3维。用向量形式对压电材料和压电效应,在空 间上进行统一描述。实际上对于具体压电材料压电系 数中的元素多数为零或对称,人们可以在压电效应最 大的主方向上,“一维”地进行压电传感器设计。
S
5
d
1
5
d 22 d 23 d 24 d 25
d d d d
32 33 34 35
E1 E2 E3
S 6 d 1 6 d 2 6 d 3 6
(3.5) (3.6)
压电方程组也表明存在极化方向(电位差方向)与外 力方向不平行的情况。正压电效应中,如果所生成的 电位差方向与压力或拉力方向一致,即为纵向压电效 应(longitudinal piezoelectric effect)。正压 电效应中,如所生成的电位差方向与压力或拉力方向 垂直时,即为横向压电效应(transverse piezoelectric effect)。在正压电效应中,如果在 一定的方向上施加的是切应力,而在某方向上会生成 电位差,则称为切向压电效应(tangential piezoelectric effect)。逆压电效应也有类似情况。
压电晶体
由晶体学可知,无对称中心的晶体,通常具有压电性。 具有压电性的单晶体统称为压电晶体。石英晶体(图 3-3)是最典型而常用的压电晶体。
石英晶体俗称水晶,有天然和人工之分。目前传感器 中使用的均是以居里点为573℃,晶体的结构为六角 晶系的α-石英。其外形如图3-3所示,呈六角棱柱 体。密斯诺(Mcissner.A)所提出的石英晶体模型,如 图3-4所示,硅离子和氧离子配置在六棱柱的晶格上, 图中较大的圆表示硅离子,较小的圆相当于氧离子。 硅离子按螺旋线的方向排列,螺旋线的旋转方向取决 于所采用的是光学右旋石英,还是左旋石英。图中所 示为左旋石英晶体(它与右旋石英晶体的结构成镜象 对称,压电效应极性相反)。硅离子2比硅离子1的位 置较深,而硅离子3又比硅离子2的位置较深。在讨论
§3.1.2 压电材料
迄今已出现的压电材料可分为三大类:一是压电晶体 (单晶),它包括压电石英晶体和其他压电单晶;二 是压电陶瓷(多晶半导瓷);三是新型压电材料,其 中有压电半导体和有机高分子压电材料两种。
在传感器技术中,目前国内外普遍应用的是压电 单晶中的石英晶体和压电多晶中的钛酸钡与钛酸铅系 列压电陶瓷。择要介绍如下:
与因极化作用而在材料表面存储的电荷量成正比。即:
D dT或 dT (3. 1)
式3.1中D、σ—电位移矢量、电荷密度,单位面积的电荷 量,C/m2;
T—应力,单位面积作用的应力,N/m2;
d—正压电系数,C/N。
逆压电效应中,外电场作用下的材料应变与电场强度成正
比。即:
S d'E
(3. 2)
第三章压电式传感器
当在电介质的极化方向施加电场,某些电介质在一定方向 上将产生机械变形或机械应力,当外电场撤去后,变形或 应力也随之消失,这种物理现象称为逆压电效应 (reverse piezodielectric effect),其应变的大小与 电场强度的大小成正比,方向随电场方向变化而变化。它 属于将电能转化为机械能的一种效应。1880-1881年,雅克 (Jacques)和皮埃尔·居里(Piere Curie)发现了这两种 效应。图3-1为压电效应示意图。
相关文档
最新文档