电容率与磁导率
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
介质光速和介质折射率、
磁导率、电容率(介电常数)的关系
/zhoujiajun198204@126/
摘要:介质里的光速和该介质的折射率、磁导率、电容率是有关系的,但是这种关系却不适用到所有的介质。确切来说,介质里的光速和该介质的折射率的关系,有久恒的关系,适用于任何介质。介质光速和该介质磁导率、电容率(介电常数)的关系,不适用于所用介质,在某些介质中适用或许是一种偶然,又或许介质的折射率、磁导率、电容率还有一些我们尚未知道的关系。
关键词:真空光速;介质光速;介质绝对折射率;入射角;折射角;光速传播计算公式;磁导率;电容率;相对磁导率;相对电容率。
介质绝对折射率n,是说光从真空射入介质发生折射时,入射角i与折射角r的正弦之比,亦为真空光速c0和介质光速c x之比:
n==
由麦克斯韦电磁方程组电磁波计算公式c=,可知介质里的光线传播速度只与该介质的磁导率μ、电容率ε有关。
任何一种介质的相对磁导率μr、相对电容率εr为:
μr=
εr=
μr:相对磁导率,εr:相对电容率,μx: 介质磁导率,εr:介质电容率,μ0:真空磁导率,ε0:真空电容率。因此,就可推导出介质里光线传播计算公式,为:
c x=
根据介质绝对折射率的定义,可得:
n===
由此可见,介质的绝对折射率和该介质的相对磁导率μr、相对电容率εr有关。用此关系式对介质进行检验,结果如下:
1、用空气检验
空气为顺磁性介质,其相对磁导率μr=1.0000004,相对电容率εr=1.000585,代入计算得
n空气===1.000293≈1.0003
和实际很相符。
2、用水检验
水为抗磁性介质,其相对磁导率μr=0.999991,相对电容率εr=81.5,代入计算得
n水===9.0277≠1.33
和实际相差很大。
从这两个例子可看出,光速和磁导率、电容率的关系适用于非磁性介质和顺磁性介质,对于抗磁性介质却不适用,差别很大。对于铁磁性介质来说,会是什么结果呢,因为没有这方面的参考资料,没法判定。介质的绝对折射率计算公式,是一个通式,能适用于任何介质。为何用相对磁导率、相对电容率对此进行计算时,却得不出相等的结果呢,介质里的光线传播速度和该介质的磁导率、电容率是否还有我们尚未得知的关系,介质的非导电性、导电性、非磁性、顺磁性、抗磁性、铁磁性等性质对该介质的光线传播又有怎样的影响,这就有待人们去证实了。
参考文献:
1、《折射率》百度百科
2、《电介质的介电常数》 <重庆邮电大学>网站
3、《磁场中的磁介质》 <西北工业大学>网站
4、《附录B 常用物理数据》 <郧阳师范高等专科学校>网站
磁导率
磁导率
magnetic permeability
表征磁介质磁性的物理量。常用符号μ表示,μ为介质的磁导率,或称绝对磁导率[1]。
μ等于磁介质中磁感应强度B与磁场强度H之比,即通常使用的是磁介质的相对磁导率μr ,其定义为磁导率μ与真空磁导率μ0之比,即
μ=B/H
相对磁导率μ与磁化率χ的关系是
磁导率μ,相对磁导率μr和磁化率xm都是描述磁介质磁性的物理量。
对于顺磁质μr>1;对于抗磁质μr<1,但两者的μr都与1相差无几。在铁磁质中,B与H 的关系是非线性的磁滞回线,μr不是常量,与H有关,其数值远大于1。
例如,如果空气(非磁性材料)的磁导率是1,则铁氧体的磁导率为10,000,即当
比较时,以通过磁性材料的磁通密度是10,000倍。
在国际单位制(SI)中,相对磁导率μr是无量纲的纯数,磁导率μ的单位是亨利/米(H/m)。
电容率
电容率
permittivity
表征电介质极化性质的宏观物理量。又称介电常数。定义为电位移D和电场强度E之比,D=εΕ,ε的单位为法拉/米(F/m)。电介质的电容率ε与真空电容率ε0之比称为该电介质的相对电容率εr ,εr=ε/ε0是无量纲的纯数,εr与电极化率χe的关系为εr=1+χe。
线性各向同性电介质的电容率是标量,比较简单;非线性电介质(如铁电体)的电容率表示式是很复杂的;各向异性电介质(如某些晶体)的电容率则要用张量表示(见电极化强度)。电容率除取决于电介质本身的性质外,还与温度及电磁场变化的频率有关。
相对电容率εr 的数值等于同一电容器中充满均匀电介质时的电容C与真空时的电容C0之比,即εr=C/C0。电容率的名称即来源于此。用较大εr 的电介质充填电容器,可以减小电容器的体积和重量。
电容率[1]又称介电常数(或相对介电常数),测定在一个电容两电极之间和周围全部只有绝缘油充满时的电容与同样电板的真空电容之比。不同绝缘油具有不同电容率,电容率通常随温度和频率而发生变化,在实际使用中,要求电容器的电容率随温度和频率变化越小越好。如果电容器的电容率变化较然而,失去安全感,应采取相应的措施。