初中几何九大模型图
初中数学几何模型
全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型说明:上图依次是°、°、°、°及有一个角是°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型构造方法:遇度旋度,造等边三角形遇度旋度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋度,造中心对称说明:IS 8模型变形BEFcEB说明:说明:nnnnnnnnnnnnnnnnnnnnnnn nnnnn口叩皿皿皿皿皿中点模型 边构诗中{fflt 逢阳点闵iS 中幽城 几何最值模型 VH *h 轴对称模型 对称最值 线mi 差模型 fflftffw 同侧"异侧两蜒段之利罐短视它 同侧、异删芮线投之羞媪小槐型 四边形周怏垠小根地 三角形眉长 必小檢哩三线穀之和 她知爬制过桥模取旋转最值说明:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。
简拼模型三角形j四边形E 面积等分说明:说明:3045602说明:ACOCOAA 模型一:手拉手模型-旋转型全等<2)等濮的AA Mfr=血°拟述°均为等媵直甬M 册A 结险(DA (UCtAO^l>j 超乙他»③。
E 平分£忖了儿(1)―况> Sfr :LDW 牛底皿力能转至右囲检置A 皓论:> 右图中①bOCWMe\QAC AOSD 』 >⑨延氏M 交购于点G 必肖5氏-LBOA⑵特燥惜况>条件m 3MB ,厶伽■剜,将AXD 龍讳至右團位蛊a gife :右gcp fflAfJCD^iOJ^AC?JCiM£33②延长M 交加于点瓦愁有3EC -LUGA f BD 000B (5)-—--——=—-=tan ZlfX D®ACOCOA 3f^SDLAC.灘接也JC >临加*†g ・a+o>s ⑥矢"訐c&J 冊哒相垂直的四嬷)<3)任翦腰三角晤†辭,。
初中数学九大几何模型
初中数学九大几何模型一、手拉手模型----旋转型全等D (1)等边三角形OOCDEECA B图1A B图2【条件】:△OAB和△OCD均为等边三角形;【结论】:①△OAC≌△OBD;②∠AEB=60°;③OE平分∠AEDD(2)等腰直角三角形DOOCEECA B图1A B图2【条件】:△OAB和△OCD均为等腰直角三角形;【结论】:①△OAC≌△OBD;②∠AEB=90°;③OE平分∠AEDD (3)顶角相等的两任意等腰三角形OOC【条件】:△OAB和△OCD均为等腰三角形;DE且∠COD=∠AOBE 【结论】:①△OAC≌△OBD;C②∠AEB=∠AOB;③OE平分∠AED A BA B图1图2OO二、模型二:手拉手模型 ----旋转型相似(1)一般情况D【条件】:CD ∥AB , CDEC将△ OCD 旋转至右图的位置ABABD 【结论】:①右图中△ OCD ∽△ OAB →→→△ OAC ∽△ OBD ;②延长 AC 交 BD 于点 E ,必有∠ BEC=∠ BOAOOC(2)特殊情况【条件】:CD AB AOB=90 ∥ ,∠ °CDE将△ OCD 旋转至右图的位置ABAB【结论】:①右图中△ OCD ∽△ OAB →→→△ OAC ∽△ OBD ; ②延长 AC 交 BD 于点 E ,必有∠ BEC=∠ BOA ; ③ B DACOD OC OB OAtan ∠OCD ;④ BD ⊥AC ;1 2⑤连接A D 、BC ,必有222BC AB CDAD ;⑥ SAC BD△BCD2AC三、模型三、对角互补模型D (1)全等型-90 °【条件】:①∠ AOB=∠DCE=90°;② OC 平分∠ AOBOEB1【结论】:① CD=CE ;② OD+OE= 2 OC ;③2SSS△DCEOC△OCD△OCE2A证明提示:CM①作垂直,如图 2,证明△ CDM ≌ △ CEND图 1②过点 C 作 CF ⊥ OC ,如图 3,证明△ ODC ≌ △ FECONEB ※当∠ DCE 的一边交 AO 的延长线于 D 时(如图 4):图 2A 以上三个结论:① CD=CE ;② OE-OD=2 OC ;③1S△OCESOC△OCD2ACMC2D O BNED 图4O E F B图3(2)全等型-120 °【条件】:①∠AOB=2∠DCE=120°;②OC平分∠AOB3【结论】:①CD=CE;②OD+OE=O;C③ 2S△DCE S S OC△OCD △OCE4证明提示:①可参考“全等型-90 °”证法一;②如右下图:在OB上取一点F,使OF=OC,证明△OCF为等边三角形。
九年级数学几何模型
九年级数学几何模型一、相似三角形模型。
1. A字模型。
- 基本图形:在三角形ABC中,DE平行于BC,则三角形ADE相似于三角形ABC。
- 性质:对应边成比例,即(AD)/(AB)=(AE)/(AC)=(DE)/(BC)。
- 应用:在很多几何证明和计算中,若已知平行关系和部分线段长度,可以利用此模型求出其他线段的长度。
例如,已知AD = 2,AB = 5,BC = 6,求DE的长度。
根据(DE)/(BC)=(AD)/(AB),可得DE=(AD× BC)/(AB)=(2×6)/(5)=(12)/(5)。
2. 8字模型。
- 基本图形:若有四边形ABDC,其中AB与CD相交于点E,则三角形AEC相似于三角形BED。
- 性质:(AE)/(BE)=(CE)/(DE),并且AE× DE = BE× CE。
- 应用:在求解线段比例关系或者证明线段乘积相等时经常用到。
比如在一个几何图形中,已知AE = 3,BE = 4,CE = 6,求DE的长度。
根据AE× DE = BE×CE,可得DE=(BE× CE)/(AE)=(4×6)/(3)=8。
3. 母子相似三角形模型(射影定理模型)- 基本图形:在直角三角形ABC中,∠ ACB = 90^∘,CD垂直于AB于点D。
则三角形ACD相似于三角形ABC,三角形BCD相似于三角形BAC,三角形ACD相似于三角形CBD。
- 性质:- 在三角形ACD与三角形ABC中,AC^2=AD× AB。
- 在三角形BCD与三角形BAC中,BC^2=BD× AB。
- 在三角形ACD与三角形CBD中,CD^2=AD× BD。
- 应用:在涉及直角三角形中的线段长度计算和比例关系证明时非常有用。
例如,在直角三角形ABC中,∠ ACB = 90^∘,CD垂直于AB,AD = 2,DB = 8,求AC 的长度。
中考数学九大几何模型标准版
初中数学九大几何模型、手拉手模型 - 旋转型全等条件】:△ OAB 和△ OCD 均为等边三角形;条件】:△ OAB 和△ OCD 均为等腰直角三角形;结论】:①△ OAC ≌△ OBD ;②∠ AEB=90°;③ OE 平分∠ AEDD EAED 1)等边三角形D结论】:①△ OAC ≌△ OBD ;②∠ AEB=60°;③ OE 平分∠、模型二:手拉手模型 -- 旋转型相似(1)一般情况 【条件】:CD ∥AB , 将△ OCD 旋转至右图的位置 O OD EA A结论】:①右图中△ OCD ∽△ OAB →→→△ OAC ∽△ OBD ;②延长 AC 交 BD 于点 E ,必有∠ BEC=∠ BOA2)特殊情况 条件】:CD ∥ AB ,∠ AOB=90°将△ OCD 旋转至右图的位置 A 结论】:①右图中△ OCD ∽△ OAB →→→△ OAC ∽△ OBD ; ②延长 AC 交 BD 于点 E ,必有∠ BEC=∠ BOA ; ③ A BD C O O C D O O A B tan ∠OCD ;④BD ⊥AC ; ⑤连接 AD 、BC ,必有 AD 2 BC 2 AB 2三、模型三、对角互补模型1)全等型 -90 ° 条件】:①∠ AOB=∠ DCE=90°;② OC 平分∠ AOB结论】:① CD=CE ;② OD+OE= 2 OC ;③ S △DCE CD ;⑥S△BCD证明提示: ①作垂直,如图 2,证明△ CDM ≌△ CEN ②过点 C 作 CF ⊥ OC , 如图 3,证明△ ODC ≌△ FEC ※当∠ DCE 的一边交 AO 的延长线于 D 时(如图 4): S△OCDS以上三个结论:① CD=CE ;② OE-OD= 2 OC ; ③ S △ OCE S △ OCD2)全等型 -120 °条件】:①∠ AOB=2∠ DCE=120°;② OC 平分∠ AOB32 结论】:① CD=CE ;② OD+OE=O ;C ③ S △DCES △OCDS △OCEOC 2 4证明提示:①可参考“全等型 -90 °”证法一;②如右下图:在 OB 上取一点 F ,使 OF=OC ,证明△ OCF 为等边三角形。
初中几何十大模型 无水印
初中几何十大模型模型,可理解为数学定理(培训辅导机构总结归纳出来的定理)。
但是不是课本上出现的定理,故不能在证明题中直接使用其结论(需要证明一遍)。
模型主要作用还是简化图形,为证明或者添加辅助线提供思路。
一、 中位线模型 多个中点构造中位线【例】①在Rt △ABC 中,F 为斜边AB 的中点,D 、E 分别在边CA 、CB 上,且满足∠DFE=90°,AD=3,BE=4,求线段DE 长度.②如图,在五边形ABCDE 中,90ABC AED ∠=∠=°,BAC EAD ∠=∠,F 为CD 的中点.求证:BF EF =.EDFCBA二、 角平分线模型角平分线+垂线=等腰三角形角平分线+垂线=等腰三角形【例】如图所示,△ABC 中,∠A=60°,BD 、CE 是△ABC 的角平分线,交于F 点,求证:DF=EF三、 三垂直模型与弦图【例】在平面直角坐标系中,A (0,3),点B 的纵坐标为2,点C 的纵坐标为0,当A 、B 、C 三点围成的等腰直角三角形时,求B 、C 坐标。
四、 手拉手模型【例】在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC(3) AE 与DC 的夹角为60。
(4) △AGB ≌△DFB (5) △EGB ≌△CFB (6) BH 平分∠AHC (7) GF ∥AC五、 倍长中线与婆罗摩笈多模型倍长中线、倍长类中线、中点遇平行延长相交条件:1、两个等腰三角形2、顶角相等3、顶点重合结论:1、手相等2、三角形全等3、手的夹角相等4、顶点连手的交点得平分D【例】如图,向ABC ∆的外侧作正方形ABDE 、ACFG .AD 为ABC ∆中线.求证:AD EG ⊥.六、 弦图与婆罗摩笈多模型【例】如图,向ABC ∆的外侧作正方形ABDE 、ACFG .过A 作AH BC ⊥于H,AH 与EG 交于P .求证:①EP PG =,②2BC AP =.七、 将军饮马模型费马点“费马点”是指位于三角形内且到三角形三个顶点距离之和最短的点。
(完整版)初中数学九大几何模型
初中数学九大几何模型OD ECABAED DOECBABOC ECAEDD图2图 2、手拉手模型 - 旋转型全等D E③OE 平分∠ AED图 2图 1 OABD OAO ②∠ AEB=∠AOB ; 且∠ COD=∠AOB1)等边三角形3)顶角相等的两任意等腰三角形 2)等腰直角三角形图 1图 1C结论】:①△ OAC ≌△ OBD ;C条件】:△ OAB 和△ OCD 均为等边三角形条件】:△ OAB 和△ OCD 均为等腰直角三角形条件】:△ OAB 和△ OCD 均为等腰三角形 结论】:①△ OAC ≌△ OBD ;②∠ AEB=60°;③ OE 平分∠ 结论】:①△ OAC ≌△ OBD ;②∠ AEB=90°;③ OE 平分∠、模型二:手拉手模型 -- 旋转型相似(1)一般情况 【条件】:CD ∥AB , 将△ OCD 旋转至右图的位置 O OD EA A结论】:①右图中△ OCD ∽△ OAB →→→△ OAC ∽△ OBD ;②延长 AC 交 BD 于点 E ,必有∠ BEC=∠ BOA2)特殊情况 条件】:CD ∥ AB ,∠ AOB=90°将△ OCD 旋转至右图的位置 A 结论】:①右图中△ OCD ∽△ OAB →→→△ OAC ∽△ OBD ; ②延长 AC 交 BD 于点 E ,必有∠ BEC=∠ BOA ; ③ A BD C O O C D O O A B tan ∠OCD ;④BD ⊥AC ; ⑤连接 AD 、BC ,必有 AD 2 BC 2 AB 2三、模型三、对角互补模型1)全等型 -90 ° 条件】:①∠ AOB=∠ DCE=90°;② OC 平分∠ AOB结论】:① CD=CE ;② OD+OE= 2 OC ;③ S △DCE CD ;⑥S△BCD证明提示: ①作垂直,如图 2,证明△ CDM ≌△ CEN ②过点 C 作 CF ⊥ OC , 如图 3,证明△ ODC ≌△ FEC ※当∠ DCE 的一边交 AO 的延长线于 D 时(如图 4): S△OCDS以上三个结论:① CD=CE ;② OE-OD= 2 OC ; ③ S △ OCE S △ OCD2)全等型 -120 °条件】:①∠ AOB=2∠ DCE=120°;② OC 平分∠ AOB32 结论】:① CD=CE ;② OD+OE=O ;C ③ S △DCES △OCDS △OCEOC 2 4证明提示:①可参考“全等型 -90 °”证法一;②如右下图:在 OB 上取一点 F ,使 OF=OC ,证明△ OCF 为等边三角形。
(完整版)初中数学九大几何模型
初中数学九大几何模型一、手拉手模型----旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AEDOABC DE图 1OABC D E图 2OABCDE图 1OABCDE图 2OABC DEOABCD E图 1图 2二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD ∥AB , 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90°将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21S S =-OB CO ACDEOB CDEOA C DAO BCDE图 1A OBCDE M N 图 2A OBCDEF图 3A O BCDEMN 图 4(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。
完整版)初中数学——最全:初中数学几何模型
完整版)初中数学——最全:初中数学几何模型几何是初中数学中非常重要的内容,一般会在压轴题中进行考察。
掌握几何模型能够为考试节省不少时间。
下面是常用的各大模型,一定要认真掌握哦~全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型通过翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称。
旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型构造方法:遇60度旋60度,造等边三角形;遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等;遇中点旋180度,造中心对称共旋转模型旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
模型变形模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。
当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
中点旋转两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
初中数学几何模型大全(精心整理)
三线八角同位角找F型内错角找Z型同旁内角找U型拐角模型1.锯齿形∠2=∠1+∠3 ∠1+∠2=∠3+∠42.鹰嘴型鹰嘴+小=大∠2=∠1+∠3 ∠2=∠1+∠33.铅笔头型∠1+∠2+∠3=360° ∠1+∠2+∠3+∠4=540°180×(n-1)等积变换模型S△ACD=S△BCD 八字模型∠A+∠B=∠C+∠DAD+BC>AB+CD飞镖模型∠D=∠B+∠C+∠AAB+AC>BD+CD内内角平分线模型∠A∠D=90°+12内外角平分线模型∠D=1∠A2外外角平分线模型∠D=90°-1∠A2平行平分出等腰模型HG=HM等面积模型 D是BC的中点S△ABD= S△ACD 倍长中线模型:D是BC的中点S△FBD= S△ECD角平分线构造全等模型角平分线垂直两边角平分线垂直中间角平分线构造轴对称以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,垂直也可以做为轴进行对称全等。
三垂模型拉手模型大小等边三角形虚线相等且夹角为60°大小等腰三角形顶角为a,虚线相等,且夹角为a大小等腰直角三角形虚线相等且夹角为90°大小正方形虚线相等,且夹角为90°半角模型正方形ABCD ∠EDF=45°得:EF=AE+CFCD=AD,∠ADC=90°,∠EDF=45°,∠A+∠C=180°得:EF=AE+CF∠BADAB=AD,∠B+∠D=180°,∠EAF=12得:EF=BE+DFAB=AC,∠BAC=90°,∠DAE=45°得:DE2=BD2+CE2△CEF为直角三角形上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
初中几何常见九大模型解析(完美版)
初中几何常见九大模型解析(完美版)-CAL-FENGHAl-(2020YEAR-YICAl)」INGBIAN初中几何常见九大模型解析模型一:手拉手模型-旋转型全等(1)等边三角形A条件:AOABAoCD均为等边三兔形>结论:①'OAC鼻'OBD ;②LAEB = 60o Z③OE平分乙M£7)。
⑵等腰RTAA条件:A°M,AOCQ均为等腰直角三角形E A 结论:①、OACMM)BD;②Z^AEB= 90°.A③OE平分LAED Q(3)任意等腰三角形A条件:A°M,AOCD均为等腰三角形A 结论:①M)AC 以OBD ;②LAEB = LAOB.A③OE平分厶4ED模型二:手拉手模型-旋转型相似(1)一般情况A条件:CDMAB ,将'OCD旋转至右图位置A结论:A 右图中① 'OCDs∖oAB <=> Δ0∕4C 'OBD :A②延长AC交BD于点&必有LBEC = LBOA(2)特殊情况A条件:CDuAB i乙AoB = 90。
,将'OCD旋转至右图位置A结论:右图中①卜OCDSM)ABGhoAC WBD.②延长AC交BD于点£,必有LBEC = LBOA.BD OD ®ACOC OBOAtan LOCD④BD丄AC.⑤连接AD. BC,必有AD2 +BC2 = AB2 +CD2.S4RCn■ —AC× BD⑥ 2 (对角线互相垂直的四边形)模型三:对角互补模型A证明提示:①可参考“全等型・90中证法一;②如图:在OB 上取一点F,使0F=OC,证明AoCF为等边三角形。
(3)全等型•任意角αA 条件:①"OB = 2a,Z7)CE = 180・2a;②CD = CE i A 结论:①°C平分乙②OD + OE ≈ 20C∙COSa .A ③ SoDCE = ^NOCD + Sb oC E =,SilI(X ∙ COSaA 当乙DCE的一边交Ao的延长线于点D时(如右上图):原结论变成:①;③;可参考上述第②种方法进行证明。
初中数学九大几何模型.docx
初中数学九大几何模型一、手拉手模型----旋转型全等D(1)等边三角形OOCE DECA图 1B A图 2B【条件】:△ OAB和△ OCD均为等边三角形;【结论】:①△ OAC≌△ OBD;②∠ AEB=60°;③ OE平分∠ AEDD(2)等腰直角三角形DO C OEECA图 1B A B图 2【条件】:△ OAB和△ OCD均为等腰直角三角形;【结论】:①△ OAC≌△ OBD;②∠ AEB=90°;③ OE平分∠AED D(3)顶角相等的两任意等腰三角形OOCEDE【条件】:△ OAB和△ OCD均为等腰三角形;且∠ COD=∠AOB【结论】:①△ OAC≌△ OBD;②∠ AEB=∠AOB;③OE平分∠ AED二、模型二:手拉手模型 ----O O 旋转型相似(1)一般情况DC DE【条件】: CD∥ AB,CA BA B将△ OCD旋转至右图的位置【结论】:①右图中△ OCD∽△ OAB→→→△ OAC∽△ OBD;D②延长 AC交 BD于点 E,必有∠ BEC=∠ BOA O OCC DE (2)特殊情况AB A B【条件】:CD∥ AB,∠ AOB=90°将△ OCD旋转至右图的位置【结论】:①右图中△ OCD∽△ OAB→→→△ OAC∽△ OBD;②延长 AC交 BD于点 E,必有∠ BEC=∠ BOA;③ BD OD OB tan ∠ OCD;④ BD⊥AC;AC OC OA⑤连接 AD、 BC,必有AD2BC 222;⑥ S△BCD 1ABCD AC BD2 AC三、模型三、对角互补模型(1)全等型 -90 °DO E B图1【条件】:①∠ AOB=∠ DCE=90°;② OC平分∠ AOB【结论】:① CD=CE;② OD+OE= 2 OC;③S S S 12OC△DCE△OCD△OCE2AC 证明提示:M①作垂直,如图 2,证明△ CDM≌△ CEND②过点 C 作 CF⊥ OC,如图 3,证明△ ODC≌△ FEC O N E B图 2※当∠ DCE的一边交 AO的延长线于 D 时(如图4):以上三个结论:①CD=CE;② OE-OD= 2 OC;AM C1③ S S2OC△OCE△OCD2ACBOND EOD图 4图 3E F B(2)全等型 -120 °【条件】:①∠ AOB=2∠ DCE=120°;② OC平分∠ AOB【结论】:① CD=CE;② OD+OE=OC;③S S S 32△DCEOC △OCD△OCE4证明提示:①可参考“全等型-90 °”证法一;②如右下图:在OB上取一点F,使 OF=OC,证明△ OCF为等边三角形。