常量与变量函数ppt课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
活动一:创设情境
问 问题1:在上面问题(1)~(4)中,是否都存在两个变量?请
题
你用所学知识写出能表示同一个问题中的两个变量之间对应关 系的式子.
探 问题(1)~(4)中都存在两个变量,表示两个变量之间的关
系式分别为:
究
(1)s=60t;(2)y=10x;(3)S=πr²;(4)y= (110-2x)
八年级 数学
第十九章 函数
11.1 变量与函数
19.1.1 变 量
问题二
每张电影票的售价为10元,如果第一场售出票150张, 第二场售出205张,第三场售出310张,三场电影票的票房 收入各多少元?
第一场票房收入 = 10×150 = 1500 (元) 第二场票房收入 = 10×205 = 2050 (元) 第三场票房收入 = 10×310 = 3100 (元) 请说明道理: 票房收入 = 售价×售票张数
7
巩固练习
• 填空: • 1、计划购买50元的乒乓球,所能购买的总数
• n(个)与单价 a(元)的关系式为 n= 50/a 。
• 其中的变量是 n、a ,常量是 50
。
• 2、某位教师为学生购买数学辅导书,书的单价是4元,
• 则总金额y(元)与学生数n(个)的关系式是
。
其中y的=4变n量是
。常是 y、n 。 4
问
问题1:函数是反映一个变化过程中的两个变量之间的一种特殊对应
题 关系,请你根据上述6个问题中两个变量之间对应关系的共同特征,
用恰当的语言给函数下定义.
探
一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的
究 每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是
自变量(independent variable),y是x的函数(function).
1 2
(10-2×4)m
矩形一边长x为4.5m时y=
1 2
(10-2×4.5)m
5
剖析
S = 60t
y=
y = 10x
1 2
(10-2x)
S=∏r2
Y=
1 2
(10-2x)
变量:在一个变化过程中,数值发生变化的量为变量。
常量:在一个变化过程中,数值始终不变的量为常量。
请指出上面各个变化过程中的常量、变量。
6
11八.1年级变量数学与函数
第十章 函数
19.1.1 变 量
探究:指出下列关系式中的变量与常量:
(1) y = 5x -6
6
(2) y= x
(3) y= 4X2+5x-7 (4) S = Лr2
解:(1)5和-6是常量,x和y是变量。 (2)6是常量,x、y是变量。 (3)4、5、-7是常量,x、y是变量。 (4)兀是常量,s、r是变量。
2
问题2:在上面的4个问题中,是哪一个量随哪一个量的变化而
变化?当一个变量取定一个值时,另一个变量的值是唯一确定
的吗?
问题3:在上面的4个问题中,两个变量之间的对应关系有什么 共同特征?请你再举出一些对应关系具有这种共同特征的例子.
以上四个变化过程中,两个变量之间的对应关系都满足: 对于一个变量取定一个值时,另一个变量就有唯一确定的 值与其对应.
13
活动三:形成概念
问
题
问题3:如何理解“对于x的每一个确定的值,y都有唯一确定 的值与其对应”这句话?请举例说明.
探
指明了变量x与y的对应关系可以是:“一对一”“二对
究
一”或“多对一”,如果是“一对多”的情况就不是函
数了.
问题4:函数值由谁来确定?怎样求函数值?
八年级数学
人教版
1
Βιβλιοθήκη Baidu
八年级 数学
11.1 变量与函数
第十九章 函数
19.1.1 变 量
问题一
汽车以60千米/时的速度匀速行驶,行驶里程 为 s 千米,行驶时间为 t 小时,填下面的表:
60 120 180 240 300
请说明你的道理 路程 = 速度×时间
S = 60t 试用含的 t 式子表示 s
2
若设一场电影售出票 x 张,票房收入为 y 元,
y = 10x 怎样用含 x 的式子表示 y ? 3
问题三
你见过水中涟漪吗?圆形水波慢慢地扩大。在这一过 程中,当圆的半径r分别为10cm,20cm,30cm时,圆的面 积S的值随r的值的变化而变化吗?
分析:圆的半径10cm时面积S=∏×102(cm2) 圆的半径20cm时面积S=∏ × 202(cm2) 圆的半径30cm时面积S=∏ × 302(cm2) 圆的半径 r cm时面积S= ∏ r2 (cm2)
问题2:在这个定义中,前提条件是什么?对应关系是什么?如何理 解“x的每一个确定的值”中的“确定”?x的取值有限制范围吗?
前提条件是:一个变化过程中只有两个变量;两个变量之间的 对应关系是“x的每一个确定的值,y都有唯一确定的值与其对 应”. “x的每一个确定的值”中的“确定”是指x的取值要符合 变化过程的实际意义.
11
活动二:再设情境
问 题 探 究
问题:分别指出思考(1)~(2)中所涉及的两个变量,在这两个变量 中,是哪一个量随哪一个量的变化而变化?两个变量之间的对应关系是 否与上面4个思考中对应关系的共同特征一致?
这两个变化都满足y随x的变化而变化,且当x取定一个值时,y都有唯一确定 的值与其对应.
12
活动三:形成概念
小结 1、用一个变量表示另一个变量。
2、变量、常量的概念。
练习:
1、购买一些铅笔,单价为0.2元/枝,用铅笔数x,表示 总价y元,并指出哪些是常量?哪些是变量?
2、设路程为 s (km),速度为v(km/h)时间为 t(h),指出下列各式中的变量与常量。 (1) v = s/6
(2) t = 50/v (3) S =15t+t2
8
八年级 数学
第十二章 函数
19.1 变量与函数
19.1 变 量
快速抢答
1、如图1正方形的周长与边长为x的关系式为
C= 4x
变量是: C , X 常量是: 44 ;
2、如图2正方体的棱长为a,表面积S= 6a2 ,
体积V= a3 .
x
a
图1
图2 9
八年级 数学
19.1 变量与函数
第十九章 函数
19.1.1 变 量
S=∏r2
4
八年级 数学
变量与函数
题四
用10 m 长的绳子围一个矩形,当矩形的一边长x为 3m,3.5m 4m,4.5m时,它的邻边长y分别为多少?y的值随x的值的变化而 变化?
分析:矩形一边长x为3m时y=
1 2
(112 0-2×3)m
矩形一边长x为3.5m时y=
1 2
(10-2×3.5) m
矩形一边长x为4m时y=
活动一:创设情境
问 问题1:在上面问题(1)~(4)中,是否都存在两个变量?请
题
你用所学知识写出能表示同一个问题中的两个变量之间对应关 系的式子.
探 问题(1)~(4)中都存在两个变量,表示两个变量之间的关
系式分别为:
究
(1)s=60t;(2)y=10x;(3)S=πr²;(4)y= (110-2x)
八年级 数学
第十九章 函数
11.1 变量与函数
19.1.1 变 量
问题二
每张电影票的售价为10元,如果第一场售出票150张, 第二场售出205张,第三场售出310张,三场电影票的票房 收入各多少元?
第一场票房收入 = 10×150 = 1500 (元) 第二场票房收入 = 10×205 = 2050 (元) 第三场票房收入 = 10×310 = 3100 (元) 请说明道理: 票房收入 = 售价×售票张数
7
巩固练习
• 填空: • 1、计划购买50元的乒乓球,所能购买的总数
• n(个)与单价 a(元)的关系式为 n= 50/a 。
• 其中的变量是 n、a ,常量是 50
。
• 2、某位教师为学生购买数学辅导书,书的单价是4元,
• 则总金额y(元)与学生数n(个)的关系式是
。
其中y的=4变n量是
。常是 y、n 。 4
问
问题1:函数是反映一个变化过程中的两个变量之间的一种特殊对应
题 关系,请你根据上述6个问题中两个变量之间对应关系的共同特征,
用恰当的语言给函数下定义.
探
一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的
究 每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是
自变量(independent variable),y是x的函数(function).
1 2
(10-2×4)m
矩形一边长x为4.5m时y=
1 2
(10-2×4.5)m
5
剖析
S = 60t
y=
y = 10x
1 2
(10-2x)
S=∏r2
Y=
1 2
(10-2x)
变量:在一个变化过程中,数值发生变化的量为变量。
常量:在一个变化过程中,数值始终不变的量为常量。
请指出上面各个变化过程中的常量、变量。
6
11八.1年级变量数学与函数
第十章 函数
19.1.1 变 量
探究:指出下列关系式中的变量与常量:
(1) y = 5x -6
6
(2) y= x
(3) y= 4X2+5x-7 (4) S = Лr2
解:(1)5和-6是常量,x和y是变量。 (2)6是常量,x、y是变量。 (3)4、5、-7是常量,x、y是变量。 (4)兀是常量,s、r是变量。
2
问题2:在上面的4个问题中,是哪一个量随哪一个量的变化而
变化?当一个变量取定一个值时,另一个变量的值是唯一确定
的吗?
问题3:在上面的4个问题中,两个变量之间的对应关系有什么 共同特征?请你再举出一些对应关系具有这种共同特征的例子.
以上四个变化过程中,两个变量之间的对应关系都满足: 对于一个变量取定一个值时,另一个变量就有唯一确定的 值与其对应.
13
活动三:形成概念
问
题
问题3:如何理解“对于x的每一个确定的值,y都有唯一确定 的值与其对应”这句话?请举例说明.
探
指明了变量x与y的对应关系可以是:“一对一”“二对
究
一”或“多对一”,如果是“一对多”的情况就不是函
数了.
问题4:函数值由谁来确定?怎样求函数值?
八年级数学
人教版
1
Βιβλιοθήκη Baidu
八年级 数学
11.1 变量与函数
第十九章 函数
19.1.1 变 量
问题一
汽车以60千米/时的速度匀速行驶,行驶里程 为 s 千米,行驶时间为 t 小时,填下面的表:
60 120 180 240 300
请说明你的道理 路程 = 速度×时间
S = 60t 试用含的 t 式子表示 s
2
若设一场电影售出票 x 张,票房收入为 y 元,
y = 10x 怎样用含 x 的式子表示 y ? 3
问题三
你见过水中涟漪吗?圆形水波慢慢地扩大。在这一过 程中,当圆的半径r分别为10cm,20cm,30cm时,圆的面 积S的值随r的值的变化而变化吗?
分析:圆的半径10cm时面积S=∏×102(cm2) 圆的半径20cm时面积S=∏ × 202(cm2) 圆的半径30cm时面积S=∏ × 302(cm2) 圆的半径 r cm时面积S= ∏ r2 (cm2)
问题2:在这个定义中,前提条件是什么?对应关系是什么?如何理 解“x的每一个确定的值”中的“确定”?x的取值有限制范围吗?
前提条件是:一个变化过程中只有两个变量;两个变量之间的 对应关系是“x的每一个确定的值,y都有唯一确定的值与其对 应”. “x的每一个确定的值”中的“确定”是指x的取值要符合 变化过程的实际意义.
11
活动二:再设情境
问 题 探 究
问题:分别指出思考(1)~(2)中所涉及的两个变量,在这两个变量 中,是哪一个量随哪一个量的变化而变化?两个变量之间的对应关系是 否与上面4个思考中对应关系的共同特征一致?
这两个变化都满足y随x的变化而变化,且当x取定一个值时,y都有唯一确定 的值与其对应.
12
活动三:形成概念
小结 1、用一个变量表示另一个变量。
2、变量、常量的概念。
练习:
1、购买一些铅笔,单价为0.2元/枝,用铅笔数x,表示 总价y元,并指出哪些是常量?哪些是变量?
2、设路程为 s (km),速度为v(km/h)时间为 t(h),指出下列各式中的变量与常量。 (1) v = s/6
(2) t = 50/v (3) S =15t+t2
8
八年级 数学
第十二章 函数
19.1 变量与函数
19.1 变 量
快速抢答
1、如图1正方形的周长与边长为x的关系式为
C= 4x
变量是: C , X 常量是: 44 ;
2、如图2正方体的棱长为a,表面积S= 6a2 ,
体积V= a3 .
x
a
图1
图2 9
八年级 数学
19.1 变量与函数
第十九章 函数
19.1.1 变 量
S=∏r2
4
八年级 数学
变量与函数
题四
用10 m 长的绳子围一个矩形,当矩形的一边长x为 3m,3.5m 4m,4.5m时,它的邻边长y分别为多少?y的值随x的值的变化而 变化?
分析:矩形一边长x为3m时y=
1 2
(112 0-2×3)m
矩形一边长x为3.5m时y=
1 2
(10-2×3.5) m
矩形一边长x为4m时y=