导数及其应用复习小结完整版

合集下载

导数及其应用复习小结

导数及其应用复习小结
b a
∫ f (x)dx = F(b) − F(a)
a
b
或∫ f ( x)dx = F( x)|b = F(b) − F(a) a
(F(x)叫做f(x)的原函数, f(x)就是F(x)的导函数)
(1)匀变速运动的路程公式. (1)匀变速运动的路程公式. 匀变速运动的路程公式 做变速直线运动的物体所经过的路程s 做变速直线运动的物体所经过的路程s,等于其速度 函数v=v(t) (v(t)≥0)在时间区间 a,b]上的定积分, 在时间区间[ 函数v=v(t) (v(t)≥0)在时间区间[a,b]上的定积分, 即 s = ∫a v ( t ) dt.
割 线 T 切 线 x
返回
定理 一般地,函数y 在某个区间(a,b) (a,b)内 一般地,函数y=f(x)在某个区间(a,b)内 f′(x)>0, y=f( 1) 如果恒有 f′(x)>0,那么 y=f(x) 在这个区间(a,b)内单调递增 内单调递增; 在这个区间(a,b)内单调递增; 2) 如果恒有 f′(x)<0,那么 y=f(x) f′(x)<0, y=f( 在这个区间(a,b)内单调递减。 (a,b)内单调递减 在这个区间(a,b)内单调递减。
y
y=f(x) f '(x)>0
y
y=f(x) f '(x)<0
o a o a b x b x 为常数. 如果在某个区间内恒有 f ′(x) = 0 ,则 f (x)为常数 返回 则
函数的极值 1)如果 如果b (x)=0的一个根 (x)>0, 1)如果b是f’(x)=0的一个根,并且在b左侧附近f’(x)>0, (x)=0的一个根,并且在b左侧附近f (x)>0 右侧附近f (x)<0 那么f(b)是函数f(x) (x)<0, f(b)是函数f(x)的一个极大值 在b右侧附近f’(x)<0,那么f(b)是函数f(x)的一个极大值 如果a (x)=0 2) 如果 a 是 f’(x)=0 的一个根 , 并且在 a 的左侧附近 (x)= 的一个根, 并且在a (x)<0 (x)>0 f’(x)<0 , 在 a 右侧附近 f’(x)>0 , 那么是 f(a) 函数 (x)< (x)> f(x)的一个极小值 的一个极小值. f(x)的一个极小值. 导数等于零的点不一定是极值点. 注:导数等于零的点不一定是极值点. 函数的最大( 函数的最大(小)值与导数

(完整版)导数知识点总结及应用

(完整版)导数知识点总结及应用

《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。

2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ∆无限趋近于0时,比值00()()f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。

函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。

3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ∆=+∆-;(2)求平均变化率:00()()f x x f x x +∆-∆;(3)取极限,当x ∆无限趋近与0时,00()()f x x f x x+∆-∆无限趋近与一个常数A ,则0()f x A '=.4. 导数的几何意义:函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。

由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。

当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。

特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。

5. 导数的物理意义:质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。

导数知识点归纳及应用

导数知识点归纳及应用

导数知识点归纳及应用导数是微积分的基础知识之一,它描述了一个函数在其中一点的变化率。

导数的概念非常重要,广泛应用于科学和工程领域中的各种问题的建模和解决。

一、导数的定义及基本性质1.导数的定义:对于一个函数f(x),它的导数可以通过以下极限定义求得:f'(x) = lim ( h -> 0 ) [ f(x+h) - f(x) ] / h导数表示了函数f(x)在x点处的变化率。

如果导数存在,则称f(x)在该点可导。

2.导数的图像表示:导数可以表示为函数f(x)的图像上的斜率线,也就是切线的斜率。

3.导数的几何意义:a.函数图像在特定点的切线的斜率等于该点的导数。

b.导数为正,表示函数在该点上升;导数为负,表示函数在该点下降;导数为零,表示函数在该点取得极值。

4.基本导数公式:a.常数函数的导数为0。

b.幂函数f(x)=x^n的导数为f'(x)=n*x^(n-1)。

c. 指数函数 f(x) = a^x 的导数为 f'(x) = ln(a) * a^x。

d. 对数函数 f(x) = log_a(x) 的导数为 f'(x) = 1 / (x * ln(a))。

二、导数的计算方法1.导数的基本定义法:根据导数的定义,通过计算极限来求得导数。

2.导数的运算法则:a.和差法则:(f(x)±g(x))'=f'(x)±g'(x)。

b.乘法法则:(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。

c.商法则:(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/(g(x))^2d.复合函数法则:(f(g(x)))'=f'(g(x))*g'(x)。

3.链式法则:对于复合函数f(g(x)),可以利用链式法则求导数:(f(g(x)))'=f'(g(x))*g'(x)。

(完整版)导数知识点归纳及应用

(完整版)导数知识点归纳及应用

导数知识点归纳及应用●知识点归纳一、相关概念1.导数的概念函数y=f(x),如果自变量x 在x 处有增量,那么函数y 相应地有增量=f (x +0x ∆y ∆0)-f (x ),比值叫做函数y=f (x )在x 到x +之间的平均变化率,即x ∆0xy∆∆00x ∆=。

如果当时,有极限,我们就说函数y=f(x)在点x x y ∆∆xx f x x f ∆-∆+)()(000→∆x x y ∆∆处可导,并把这个极限叫做f (x )在点x 处的导数,记作f’(x )或y’|。

000x x =即f (x )==。

00lim →∆x x y∆∆0lim →∆x xx f x x f ∆-∆+)()(00说明:(1)函数f (x )在点x 处可导,是指时,有极限。

如果不存在极限,00→∆x x y ∆∆xy∆∆就说函数在点x 处不可导,或说无导数。

0(2)是自变量x 在x 处的改变量,时,而是函数值的改变量,可以是x ∆00≠∆x y ∆零。

由导数的定义可知,求函数y=f (x )在点x 处的导数的步骤:0① 求函数的增量=f (x +)-f (x );y ∆0x ∆0② 求平均变化率=;x y ∆∆xx f x x f ∆-∆+)()(00③ 取极限,得导数f’(x )=。

0xyx ∆∆→∆lim 例:设f(x)= x|x|, 则f ′( 0)= .[解析]:∵ ∴f ′( 0)=00||lim ||lim )(lim )0()0(lim0000=∆=∆∆∆=∆∆=∆-∆+→∆→∆→∆→∆x xxx x x f x f x f x x x x 2.导数的几何意义函数y=f (x )在点x 处的导数的几何意义是曲线y=f (x )在点p (x ,f (x ))000处的切线的斜率。

也就是说,曲线y=f (x )在点p (x ,f (x ))处的切线的斜率00是f’(x )。

0相应地,切线方程为y -y =f /(x )(x -x )。

导数及其应用复习小结

导数及其应用复习小结
4
o
2
x
的速度行驶, 8.汽车以 v 0 = 36 km / h 的速度行驶, 到达某处 时需要减速刹车, 时需要减速刹车 ,设汽车以等减速度 a = 5 m / s 2 刹车,问从开始刹车到停车,汽车走了多少 m ? 刹车, 问从开始刹车到停车,
答案:f ( x)在(0,1) 在( ,2) f ( x)极小值 = 1 ↓ 1 ↑
( 2 ) 求 g ( x )的值域 .
1 值域为: , )并作函数大致的图象 (−∞ e
函数的单调性
练习. 练习
求下列函数的单调区间:
x+2 (1) y = ; x (3) y =
x ; (2) y = 2 x −9
答案:m ≥ − 1 2
技巧:恒成立问题 技巧:恒成立问题——分离变量求值域法 分离变量求值域法
题型二:利用导数求单调区间极值、 题型二:利用导数求单调区间极值、值域
例题 2:已知函数
强调: 强调:定义域
ln x f ( x ) = x − ln x , g ( x ) = x (1) 求 f ( x ) 在( 0,2)上单调 区间和极值 .
f ′( x) ⋅ g ( x) + f ( x) ⋅ g ′( x)
f ( x) f ′( x) ⋅ g ( x) − f ( x) ⋅ g ′( x) (3)[ ]′ = 2 g ( x) g ( x)
3、复合函数的求导法则: 、复合函数的求导法则:
y = y •u
' x ' u
4、积分运算: 、积分运算:
1、常见的导数公式: 、常见的导数公式:
记牢是前提! 记牢是前提!
1.C ′ = o n n −1 2.( x )′ = nx

《导数和应用》知识点总结

《导数和应用》知识点总结

《导数和应用》知识点总结导数是微积分中的重要概念,它是用来描述函数变化率的工具。

本文将总结导数的定义、性质以及它在数学、物理和经济等领域中的应用。

一、导数的定义在数学中,导数是描述函数变化率的概念。

对于一个函数f(x),在x 点处的导数表示函数在这一点的变化率。

导数的定义如下:f'(x) = lim(h -> 0) [f(x+h) - f(x)] / h其中f'(x)表示f(x)在x点处的导数,h表示一个无限小的增量。

二、导数的性质1.导数的存在性:如果函数f(x)在x点处可导,则它在这一点的导数存在。

2.导数的基本运算法则:- 常数法则:如果c是一个常数,且f(x)是可导函数,则(cf(x))' = cf'(x)。

-和差法则:如果f(x)和g(x)是可导函数,则(f(x)±g(x))'=f'(x)±g'(x)。

-积法则:如果f(x)和g(x)是可导函数,则(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。

-商法则:如果f(x)和g(x)是可导函数,并且g(x)≠0,则(f(x)/g(x))'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]²。

3.链式法则:如果函数f(x)和g(x)分别是可导函数,则复合函数(f(g(x)))'=f'(g(x))g'(x)。

4.导数的求解法则:- 幂函数法则:对于f(x) = axⁿ,其中a是常数,n是自然数,有f'(x) = anxⁿ⁻¹。

-指数函数法则:对于f(x)=eˣ,有f'(x)=eˣ。

- 对数函数法则:对于f(x) = ln(x),有f'(x) = 1/x。

- 三角函数法则:对于f(x) = sin(x)和f(x) = cos(x),有f'(x) = cos(x)和f'(x) = -sin(x)。

导数知识点总结与应用

导数知识点总结与应用

导数知识点总结与应用一、导数的定义导数的定义是一个函数在某一点的变化率,通俗地说就是函数在某一点的斜率。

数学上我们用极限的概念来定义导数,设函数y=f(x),在点x0处的导数定义为:f'(x0) = lim (Δx→0) (f(x0+Δx)- f(x0))/Δx如果这个极限存在的话,我们就称这个导数为存在的。

导数在几何意义上就是函数在某一点的切线的斜率。

二、导数的意义导数不仅仅是一个数学概念,更是反映了函数在不同点的变化情况。

导数告诉我们了函数在某一点的变化率,也就是函数在该点上的速度。

导数在物理中也有广泛的应用,比如在求物体的速度、加速度等等。

在经济学中,导数也有广泛的应用,比如在边际收益、边际成本等等。

三、导数的常用性质1、导数的和差规则:设函数f(x)和g(x)都在点x0具有导数,那么它们的和、差的导数就可以用下面的关系式来表示:(f(x)±g(x))' = f'(x)±g'(x)2、导数的数乘规则:设函数f(x)在点x0具有导数,那么它的数乘k的导数可以用下面的关系式来表示:(k*f(x))' = k*f'(x)3、导数的积法则:设函数f(x)和g(x)都在点x0具有导数,那么它们的积的导数可以用下面的关系式来表示:(f(x)*g(x))' = f'(x)*g(x) + f(x)*g'(x)4、导数的商法则:设函数f(x)和g(x)都在点x0具有导数,并且g(x0)≠0,那么它们的商的导数可以用下面的关系式来表示:(f(x)/g(x))' = (f'(x)*g(x) - f(x)*g'(x))/[g(x)]^2四、高阶导数由导函数可以得到二阶导数,三阶导数···,n阶导数的定义分别为f''(x) = [f'(x)]'f'''(x) = [f''(x)]'···f^(n)(x) = [f^(n-1)(x)]'几何意义上就是函数在该点的曲率、弯曲程度。

导数小结与复习

导数小结与复习

3、求导法则 f x g x f x g x f x g x f xgx f xgx
cf x


cf x
f x g x f x g x f x g x 0 g x 2 g x
变式2:若曲线上一点Q处的切线恰好垂直于直 线y=11x-1,则P点坐标为 ____________, 切线方程为_____________________.
5.函数f x 2 x sin x在 , 上( A ) A.是增函数 B.是减函数 C.有最大值 D.有最小值 分析: y 2 cos x 1,3
2
3.已知
f x x 2xf
2
则 1,

f 1 ( -2
f 0 ( -4 )
)
4.已知曲线C:y=x3-x+2和点(1,2) 求在点A处的切线方程?
变式1:若曲线上一点Q处的切线恰好平行于直 或(- 1, 2) 线y=11x-1,则P点坐标为 (1,2) ____________, y=2x 或 y=2x+4 切线方程为_____________________ .
f x 3ax2 2bx c ,所以
m 3 m 3 3 2 a , b m, c 2m . f x x x 2mx , 由 3 2 3 2 m 3 f 1 5 ,即 2m 5 ,得 m 6 . 两年北京导 3 2
所以 a 2, b 9, c 12 .
数题,感想如 何?
• 解:由已知,函数f (x)过原点(0,0), ∴ f (0) =c=0 ∵ f (x)=3x2+2ax+b 且函数f (x)与y=0在原点相切, ∴ f (0)=b=0 即f (x)=x3+ax2 由f (x)=3x2+2ax=0,得x1=0,x2=(-2/3)a

导数的应用与求导法则知识点总结

导数的应用与求导法则知识点总结

导数的应用与求导法则知识点总结导数在数学和物理学中具有广泛的应用。

它是描述函数变化率的工具,可以用来解决许多实际问题。

在本文中,我们将讨论导数的应用以及一些常用的求导法则知识点。

一、导数的应用1. 切线与法线导数可以用来求解曲线上的切线和法线。

给定一个函数f(x),我们可以通过求解导数f'(x)来获得曲线上任意一点的切线斜率。

切线的斜率是导数的值。

与切线垂直的线被称为法线。

法线的斜率是切线斜率的负倒数。

2. 最值问题导数可以帮助我们找到函数的最值点。

在一个区间内,函数的最大值和最小值通常出现在导数为零或不存在的点。

因此,我们可以通过求解导数为零的方程来找到这些临界点,然后通过比较函数值来确定最值。

3. 凹凸性与拐点导数可以用来判断函数的凹凸性以及拐点的位置。

如果导数在某个区间内是递增的,那么函数在该区间内是凹的;如果导数是递减的,那么函数是凸的。

拐点发生在导数变化的方向改变的点。

4. 高阶导数导数的概念可以进一步推广到高阶导数。

高阶导数描述了函数变化的更高阶性质,比如曲率和弯曲程度。

通过求解导数的导数,我们可以计算出函数的高阶导数。

二、求导法则知识点1. 基本导数法则基本导数法则是求导的基础。

它包括了常数规则、幂函数规则、指数函数规则、对数函数规则和三角函数规则。

这些法则允许我们快速求解各种类型的函数导数。

2. 乘积法则乘积法则可以用来求解两个函数的乘积的导数。

假设有两个函数u(x)和v(x),它们的乘积为f(x) = u(x)v(x)。

那么,f'(x) = u'(x)v(x) +u(x)v'(x)。

3. 商积法则商积法则可以用来求解两个函数的商的导数。

假设有两个函数u(x)和v(x),它们的商为f(x) = u(x) / v(x)。

那么,f'(x) = [u'(x)v(x) - u(x)v'(x)] / v(x)^2。

4. 链式法则链式法则可以用来求解复合函数的导数。

《导数及其应用》知识点总结

《导数及其应用》知识点总结

《导数及其应用》知识点总结一、导数的定义与运算1.导数的定义:导数表示函数在其中一点上的变化率,定义为函数在该点处的极限值。

设函数y=f(x),则函数f(x)在点x=a处的导数记为f'(a),可以表示为以下三种形式:(1)f'(a) = lim(x→a) [f(a)-f(x)] / (a-x)(2)f'(a) = lim(h→0) [f(a+h)-f(a)] / h(3)f'(a) = dy / dx,_(x=a)2.导数的运算法则:(1)和差法则:(u±v)'=u'±v'(2)数乘法则:(ku)' = ku'(3)乘法法则:(uv)' = u'v+uv'(4)商法则:(u/v)' = (u'v-uv') / v²(5)复合函数求导法则:(f[g(x)])'=f'(g(x))*g'(x)二、导数的几何意义1.切线与法线:函数在其中一点处的导数就是函数在该点处的切线的斜率,切线方程为y-f(a)=f'(a)(x-a)。

函数在其中一点处的导数的倒数就是函数在该点处的法线的斜率,法线方程为y-f(a)=-(1/f'(a))(x-a)。

2.函数的单调性与极值:若函数在一段区间上的导数大于0,则函数在该区间上单调递增;若函数在一段区间上的导数小于0,则函数在该区间上单调递减。

函数在一个点处的导数为0,则该点为函数的驻点;函数在驻点上的导数为正,则该点为函数的极小值点;函数在驻点上的导数为负,则该点为函数的极大值点。

三、导数的应用1.函数的极值与最值:(1)求函数的极值点:将函数的导数等于0的解作为候选点,再通过计算二阶导数或进行导数的符号表来判断是否为极值点。

(2)求函数的最值:将函数的极值点和函数在定义域的两端计算的值进行比较,得出最大值或最小值。

导数的应用知识点总结

导数的应用知识点总结

导数的应用知识点总结一、导数的定义与几何意义。

1. 导数的定义。

- 函数y = f(x)在x = x_0处的导数f^′(x_0)定义为f^′(x_0)=limlimits_Δ x→0(Δ y)/(Δ x)=limlimits_Δ x→0frac{f(x_0+Δ x)-f(x_0)}{Δ x}。

- 如果函数y = f(x)在开区间(a,b)内的每一点都可导,就说f(x)在区间(a,b)内可导。

这时对于区间(a,b)内的每一个确定的x值,都对应着一个确定的导数f^′(x),这样就构成了一个新的函数f^′(x),称它为函数y = f(x)的导函数,简称导数,记作y^′或f^′(x)或(dy)/(dx)等。

2. 导数的几何意义。

- 函数y = f(x)在点x_0处的导数f^′(x_0)的几何意义是曲线y = f(x)在点(x_0,f(x_0))处的切线斜率。

- 曲线y = f(x)在点(x_0,f(x_0))处的切线方程为y - f(x_0)=f^′(x_0)(x - x_0)。

二、导数的基本公式与运算法则。

1. 基本公式。

- (C)^′ = 0(C为常数)- (x^n)^′ = nx^n - 1(n∈ Q)- (sin x)^′=cos x- (cos x)^′ =-sin x- (a^x)^′ = a^xln a(a>0,a≠1)- (e^x)^′ = e^x- (log_ax)^′=(1)/(xln a)(a>0,a≠1,x>0)- (ln x)^′=(1)/(x)2. 运算法则。

- (u± v)^′ = u^′± v^′- (uv)^′ = u^′ v + uv^′- ((u)/(v))^′=(u^′ v - uv^′)/(v^2)(v≠0)三、导数在函数单调性中的应用。

1. 函数单调性与导数的关系。

- 设函数y = f(x)在某个区间内可导,如果f^′(x)>0,那么函数y = f(x)在这个区间内单调递增;如果f^′(x)<0,那么函数y = f(x)在这个区间内单调递减。

完整版)高中数学导数知识点归纳总结

完整版)高中数学导数知识点归纳总结

完整版)高中数学导数知识点归纳总结导数的定义:对于函数y=f(x),在点x处的导数f'(x)定义为:f'(x)=\lim_{\Delta x\to 0}\frac{\Delta y}{\Deltax}=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}其中,$\Delta x$表示自变量的增量,$\Delta y$表示函数值的增量。

函数的连续性和可导性的关系:如果函数y=f(x)在点x处可导,则它在该点处必然连续。

但是,反过来并不成立,即函数在某点处连续并不一定可导。

导数的几何意义:函数y=f(x)在点x处的导数f'(x)表示曲线在该点处的切线的斜率。

因此,切线方程为:y-y_0=f'(x_0)(x-x_0)其中,$y_0=f(x_0)$表示曲线在点$(x_0,y_0)$处的纵坐标。

导数的四则运算法则:对于任意可导函数f(x)和g(x),有以下四则运算法则:1.$(f+g)'(x)=f'(x)+g'(x)$2.$(f-g)'(x)=f'(x)-g'(x)$3.$(fg)'(x)=f'(x)g(x)+f(x)g'(x)$4.$\left(\frac{f}{g}\right)'(x)=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}$其中,除法的分母$g(x)$不能为0.导数的应用:导数可以用来求函数的单调性、极值和最值。

函数单调递增的条件是导数大于0,函数单调递减的条件是导数小于0.函数在极值点处的导数为0,但反之不一定成立。

函数的最值可以通过求导数来确定。

注①:若点x是可导函数f(x)的极值点,则f'(x)=0.但反过来不一定成立。

对于可导函数,其一点x是极值点的必要条件是若函数在该点可导,则导数值为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际生活中的应用 (优化问题)
不等式恒成立 及不等式有解 等问题分析
练习一(切线问题):
1.已知函数 f (x) ln x a (x 0,3) ,若函数 f ( x) 图
x
象上任意一点的切线的斜率 k≥ 1 恒成立,则
2.
实数 曲线
a y
的 a取si值n 范x 在围是点_(_032_,,_0_)_处_ _的_.切2
导数及其应用复习小结
知识概括
练习一切线问题
练习二单调性问题
练习二 4 答案
练习三极值与最值
练习三2答案
练习三 3 答案
导数及其应用复习小结
速度、切线的斜率
导数是研究函数的有力工具:
导数
瞬时变化率 导数
用导数研究 函数的单调性、 极值、最值
记导数公式 及运算法则
单调性
图象
极值与最值 方程的根 的讨论
令 g(x) f (x) 4x ,则 g(x) a 1 2ax 4 x
= 2ax2 4x a 1 .于是 g(x) ≤ 4x2 4x 1 = (2x 1)2 ≤0.
x
x
x
从而 g(x) 在 (0, ) 单调递减,故 g( x1) ≤ g( x2 ) ,
即 f ( x1) 4x1 ≤ f ( x2 ) 4x2 ,
(0, ) 上没有极值点;当 a 0 时, f ( x) 0 得 0 x 1 , f ( x) 0
a
得 x 1 ,∴ f ( x) 在 (0, 1 ) 上递减,在 ( 1 , ) 上递增,即 f ( x) 在
a
a
a
x ቤተ መጻሕፍቲ ባይዱ 处有极小值.∴当 a ≤0时, f ( x) 在 (0, ) 上没有极值点, a
2a
2a
练习二 4. (Ⅱ) 不妨假设 x1 ≥ x2 . 由于 a ≤2,故由 (Ⅰ) 知 f ( x) 在 (0, ) 单调递减.
所以 f (x1) f (x2) ≥4 x1 x2 等价于 f ( x2 ) f ( x1)≥ 4x1 4x2 , 即 f ( x2 ) 4x2 ≥ f ( x1) 4x1 .
故对任意 x1、x2 (0, ), f (x1) f (x2) ≥4 x1 x2 .
练习三(极值与最值)
作业:课本 P110 A2, 8, 9
1.函数 y 4x x4 在1,2 上的最大值为___3___;
2.已知函数 f ( x) ax 1 ln x(a R) .
(Ⅰ) 讨论函数 f ( x) 在定义域内的极值点的个数;

g( x)min
g(e2) 1
1 e2
即b≤1
1 e2

练习三.3 解: (1) ∵函数 f ( x) 图象关于原点对称,
∴对任意实数 x有f (- x) = - f (x) , \ - ax3 - 2bx2 - cx+ 4d = - ax3 + 2bx2 - cx- 4d ,
即 bx2 - 2d = 0恒成立 \ b = 0,d = 0 \ f ( x) = ax3 + cx, f ¢( x) = 3ax2 + c ,
2.若函数 f ( x) ln x 1 x2 mx 存在单调递减区间, 2
实数 m 的取值范围为(_2__,____).
3.函数 f ( x) 的定义域为 R, f (2) 1,对任意 x R ,
f (x) 1 ,则 f (x) x 3 的解集为(___2_,_____)_.
4.已知函数 f ( x) (a 1) ln x ax2 1 . (Ⅰ) 讨论函数 f ( x) 的单调性; (Ⅱ) 设 a ≤ 2 ,证明:对任意 x1、x2 (0, ) , | f ( x1 ) f ( x2 ) |≥ 4 | x1 x2 | .
Q x = 1 时, f ( x) 取极小值- 2 ,\ 3a + c = 0且a + c = - 2 ,解得a = 1 ,c = - 1
1 ,b=
0,c= -
3
1,d = 0
3
(2) 若 x1 , x2 ? [
1,1] 时,求证:| f ( x1 )-
f
(
x2
)
|≤
4 3
.
练习三 2.解: (Ⅰ) f ( x) a 1 ax 1 ,当 a ≤0 时, f ( x) 0 在 xx
(0, ) 上 恒 成 立 , 函 数 f ( x) 在 (0, ) 单 调 递 减 , ∴ f ( x) 在
(Ⅱ) 若函数 f ( f ( x)≥bx 2
x恒) 成在立x , 1求处实取数得b极的值取,值对范x围.b(0≤, 1),e12
3.设函数 f ( x) = ax3 - 2bx2 + cx + 4d(a、b、c、d ? R)
图象关于原点对称,且 x 1时, f ( x) 取极小值- 2 .
(1) 求 a、b、c、d 的值;a =
当 a 0时, f ( x) 在 (0, ) 上有一个极大值点 1 ,无极小值点 a
(Ⅱ) ∵函数 f ( x) 在 x 1处取得极值,∴由 (Ⅰ) 知 a 1,
∴ f ( x)≥ bx 2 1 1 ln x ≥ b ,令 g(x) 1 1 ln x ,
xx
xx
可得 g( x) 在 0,e2 上递减,在 e2, 上递增,
练习二 4.
解: (Ⅰ) f (x) 的定义域为(0, ) , f (x) a 1 2ax 2ax2 a 1 .
x
x
(1) 当 a≥0 时, f (x) > 0 ; (2) 当 a ≤1时, f (x) < 0 ;
(3) 当 1 < a < 0时,令 f (x) 0 ,解得 x a 1 . 2a
线


线
x 2y 1 0 垂直,则 a __2 ___.
3.曲线 y ln x 上的点到直线 y x 3 的距离的
最小值为__2 ___2 __.
练习二(单调性问题): 作业:课本 P110 A2, 8, 9 3 1.函数 f ( x) x2 x 3 ln x 的增区间为_(_0_,_2__) ;
当 x (0, a 1 ))时, f (x) > 0 ; x ( a 1 , ) 时, f (x) < 0 ,
2a
2a
∴综上,当 a≥0 时, f ( x) 增区间为 (0, ) ,无减区间;
当 a ≤1时, f ( x) 减区间为(0, ) ,无增区间;
当 1< a < 0时, f ( x) 增区间为(0, a 1 ) ,减区间为 ( a 1 , ) .
相关文档
最新文档