Fluent 湍流模型小结

合集下载

湍流模型及其在FLUENT软件中的应用

湍流模型及其在FLUENT软件中的应用

湍流模型及其在FLUENT软件中的应用一、本文概述湍流,作为流体动力学中的一个核心概念,广泛存在于自然界和工程实践中,如大气流动、水流、管道输送等。

由于其高度的复杂性和非线性特性,湍流一直是流体力学领域的研究重点和难点。

随着计算流体力学(CFD)技术的快速发展,数值模拟已成为研究湍流问题的重要手段。

其中,湍流模型的选择和应用对于CFD模拟结果的准确性和可靠性具有决定性的影响。

本文旨在深入探讨湍流模型的基本理论及其在FLUENT软件中的应用。

我们将简要回顾湍流的基本概念、特性和分类,为后续的模型介绍和应用奠定基础。

接着,我们将详细介绍几种常用的湍流模型,包括雷诺平均模型(RANS)、大涡模拟(LES)和直接数值模拟(DNS)等,并重点分析它们的适用范围和优缺点。

在此基础上,我们将重点关注FLUENT软件在湍流模拟方面的应用。

FLUENT作为一款功能强大的CFD软件,提供了丰富的湍流模型供用户选择。

我们将通过具体案例,展示如何在FLUENT中设置和应用不同的湍流模型,以及如何通过参数调整和结果分析来优化模拟效果。

我们还将探讨湍流模型选择的影响因素和最佳实践,以帮助读者更好地理解和应用湍流模型。

本文将对湍流模型在FLUENT软件中的应用进行总结和展望,分析当前存在的问题和挑战,并探讨未来的发展趋势和应用前景。

通过本文的阅读,读者可以全面了解湍流模型的基本理论及其在FLUENT 软件中的应用方法,为实际工程问题的解决提供有力的理论支持和技术指导。

二、湍流基本理论湍流,亦被称为乱流或紊流,是一种流体动力学现象,其特点是流体质点做极不规则而又连续的随机运动,同时伴随有能量的传递和耗散。

湍流与层流相对应,是自然界和工程实践中广泛存在的流动状态。

湍流流动的基本特征是流体微团运动的随机性和脉动性,即流体微团除有沿平均运动方向的运动外,还有垂直于平均运动方向的脉动运动。

这种脉动运动使得流体微团在运动中不断混合,流速、压力等物理量在空间和时间上均呈现随机性质的脉动和涨落。

常用湍流模型及其在FLUENT软件中的应用

常用湍流模型及其在FLUENT软件中的应用

常用湍流模型及其在FLUENT软件中的应用常用湍流模型及其在FLUENT软件中的应用湍流是流体运动中不可避免的现象,它具有无规则、随机和混沌等特点,对于流体力学研究和工程应用具有重要影响。

为了更好地模拟流体运动中的湍流现象,并进行相关的工程计算和优化设计,科学家们提出了许多湍流模型。

本文将介绍一些常用的湍流模型,并探讨它们在流体动力学软件FLUENT中的应用。

1. 动力学湍流模型(k-ε模型)动力学湍流模型是最为经典和常用的湍流模型之一,主要通过求解湍流动能k和湍流耗散率ε来模拟湍流运动。

这一模型主要适用于较为简单的湍流流动,如外部流场和平稳湍流流动。

在FLUENT软件中,用户可以选择不同的k-ε模型进行计算,并对模型参数进行调整,以获得更准确的湍流模拟结果。

2. Reynolds应力传输方程模型(RSM模型)RSM模型是基于雷诺应力传输方程的湍流模型,它通过求解雷诺应力分量来描述湍流的速度脉动特性。

相比于动力学湍流模型,RSM模型适用于复杂的湍流流动,如边界层分离流动和不可压缩流动。

在FLUENT软件中,用户可以选择RSM模型,并对模型参数进行优化,以实现对湍流流动的更精确模拟。

3. 混合湍流模型混合湍流模型是将多个湍流模型相结合,以更好地模拟不同湍流流动。

常见的混合湍流模型有k-ε和k-ω模型的组合(k-ε/k-ω模型)和k-ε模型和RSM模型的组合(k-ε/RSM模型)等。

在FLUENT软件中,用户可以选择不同的混合模型,并根据具体的流动特征进行模型参数调整,以实现更准确的湍流模拟。

除了上述介绍的常用湍流模型外,FLUENT软件还提供了其他的湍流模型选择,如近壁函数模型(近壁k-ω模型、近壁k-ε模型)、湍流耗散模型(SD模型)、多场湍流模型(尺度能量模型)等。

这些模型针对不同的湍流现象和流动特性,提供了更加丰富和精确的模拟方法。

在FLUENT软件中,用户可以根据具体的工程问题和流动特性选择合适的湍流模型,并进行相应的设置和参数调整。

第3章,fluent湍流模型-1

第3章,fluent湍流模型-1

第三章,湍流模型第一节, 前言湍流流动模型很多,但大致可以归纳为以下三类: 第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。

即:U iU 1U 2 t3 — 1X 2 推广到三维问题,若用笛卡儿张量表示,即有:U iU j 2( …U i U j tk j3—2x jx i3模型的任务就是给出计算湍流粘性系数t 的方法。

根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。

第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。

第三类是大涡模拟。

前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。

大 涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。

实际求解中,选用什么模型要根据具体问题的特点来决定。

选择的一般原则是精度要高, 应用简单,节省计算时间,同时也具有通用性。

FLUENT 提供的湍流模型包括:单方程( Spalart-Allmaras )模型、双方程模型(标准K -&模型、重整化群K - &模型、可实现(Realizable) K - &模型)及雷诺应力模型和大涡模拟。

Direct Numerical Simulatio n湍流模型种类示意图包含更多 物理机理iZero-Equati on Models :: ----------------- : -------------------- h:0n e-Equation Models ::Spalart-Allmaras ;:Two-Equatio n Models : ; Sta ndard k- ; : RNG k - ;*1Realizable k- ,1;:Reynolds-Stress Model >: ______________________ :Large-Eddy Simulati onRANS-basedmodels' FLUENT 提供的模型选 择每次迭代 计算量增加第二节,平均量输运方程雷诺平均就是把Navier-Stokes方程中的瞬时变量分解成平均量和脉动量两部分。

fluent湍流模型对结果的影响

fluent湍流模型对结果的影响

一、概述湍流模型是流体力学中一个重要的研究对象,它描述了在流体运动中湍流对流动特性的影响。

湍流模型在工程领域的应用十分广泛,对于预测流动的结果具有重要意义。

本文将主要讨论湍流模型对流动结果的影响,以期为相关研究和工程实践提供一定的参考。

二、湍流模型的基本原理湍流是流体力学中一种复杂而难以预测的现象,它表现为流体在流动过程中产生的不规则变化和涡旋运动。

湍流模型的基本原理是通过对湍流运动进行建模和假设,从而简化流体运动的描述,使其能够被数学模型所描述和预测。

湍流模型一般包括雷诺平均湍流模型、拉格朗日湍流模型、欧拉湍流模型等不同类型。

三、湍流模型对结果的影响1. 增加模拟的准确性湍流模型的选择直接影响着流动结果的准确性。

合适的湍流模型可以更准确地描述流动的湍流特性,从而提高数值模拟的准确性。

相比较而言,湍流模型在描述层流流动时,模拟结果将受到更大的影响。

2. 提高计算的稳定性一些湍流模型在计算过程中具有更好的数值稳定性,能够保证数值模拟的收敛性和精确性。

通过合理选择湍流模型,可以有效提高计算的稳定性,减少计算中的数值振荡和发散现象,保证计算结果的可靠性。

3. 影响计算的耗时不同的湍流模型对计算的耗时也有不同的影响。

一些湍流模型对计算的精度和收敛性要求较高,因此需要更长的计算时间。

合理选择湍流模型能够在保证计算结果准确性的减少计算的耗时,提高计算效率。

4. 对后续分析的影响流动结果的准确性和可靠性,直接影响着后续的工程分析和设计。

合适的湍流模型能够提供更准确的流动结果,为后续的工程分析和设计提供可靠的基础。

而不合理的湍流模型选择可能会导致计算结果的不准确,从而影响后续分析的结果。

四、选择合适的湍流模型1. 考虑计算的要求在选择湍流模型时,需要充分考虑计算的要求,包括对计算结果准确性和稳定性的要求,以及对计算耗时的限制等因素。

根据具体的计算要求,选择合适的湍流模型,以满足工程实践的需要。

2. 结合实验数据验证在选择湍流模型时,需要结合实验数据对模型进行验证。

fluent中常见的湍流模型及各自应用场合

fluent中常见的湍流模型及各自应用场合

标题:深入探讨fluent中常见的湍流模型及各自应用场合在fluent中,湍流模型是模拟复杂湍流流动的重要工具,不同的湍流模型适用于不同的流动情况。

本文将深入探讨fluent中常见的湍流模型及它们各自的应用场合,以帮助读者更深入地理解这一主题。

1. 简介湍流模型是对湍流流动进行数值模拟的数学模型,通过对湍流运动的平均值和湍流运动的涡旋进行描述,以求解湍流运动的平均流场。

在fluent中,常见的湍流模型包括k-ε模型、k-ω模型、LES模型和DNS模型。

2. k-ε模型k-ε模型是最常用的湍流模型之一,在工程领域有着广泛的应用。

它通过求解两个方程来描述湍流场,即湍流能量方程和湍流耗散率方程。

k-ε模型适用于对流动场变化较为平缓的情况,如外流场和边界层内流动。

3. k-ω模型k-ω模型是另一种常见的湍流模型,在边界层内流动和逆压力梯度流动情况下有着良好的适用性。

与k-ε模型相比,k-ω模型对于边界层的模拟更加准确,能够更好地描述壁面效应和逆压力梯度情况下的流动。

4. LES模型LES(Large Ey Simulation)模型是一种计算密集型的湍流模拟方法,适用于对湍流细节结构和湍流的大尺度结构进行同时模拟的情况。

在fluent中,LES模型通常用于对湍流尾流、湍流燃烧和湍流涡流等复杂湍流流动进行模拟。

5. DNS模型DNS(Direct Numerical Simulation)模型是一种对湍流流动进行直接数值模拟的方法,适用于小尺度湍流结构的研究。

在fluent中,DNS模型常用于对湍流的微观结构和湍流的小尺度特征进行研究,如湍流能量谱和湍流的空间分布特性等。

总结与回顾通过本文的介绍,我们可以看到不同的湍流模型在fluent中各有其适用的场合。

从k-ε模型和k-ω模型适用于工程领域的实际流动情况,到LES模型和DNS模型适用于研究湍流细节结构和小尺度特征,每种湍流模型都有其独特的优势和局限性。

fluent湍流简述

fluent湍流简述

u y

一方程模型
/ t C k 1/ 2l
零方程模型和单方程模型适用于简单的流动;对于复杂流 动,系数很难给定,无通用性,故应用较少。
10

两方程模型
由求解湍流特征参数的微分方程来确定湍流粘性。包括k-ε 、 k-ω、 kτ、 k-l 模型等 。其中,应用最普遍的是 k-ε模型。
大尺度的涡旋
从主流获 得能量, 是引起低 频脉动的 原因。
5
2. 湍流的数值模拟方法 div ( v) 0
t
控制方程
dv F grad p v grad (divv ) dt 3
数值模拟方法 直接模拟(direct numerical simulation,DNS) 大涡模拟(large eddy simulation,LES)
代数应力模型
1.紊流粘性模型(Eddy-Viscosity Models ,EVM)
引入Boussinesq涡粘性假设,认为雷诺应力与平均速 度梯度成正比,即将Reynolds应力项表示为
U i U j ij u iu j t x xi j
Reynolds-Stress Model
Detached Eddy Simulation
Available in FLUENT 6.2
Large-Eddy Simulation
Direct Numerical Simulation
17
Fluent中湍流模型面板
Define Models Viscous...
湍流粘性系数
2 U k 2 t ij k ij 3 x k 3
9
根据确定紊流粘性系数 t 的微分方程数目,又分为

fluent零方程湍流模型

fluent零方程湍流模型

fluent零方程湍流模型标题:湍流的魅力:探索Fluent零方程湍流模型导语:湍流是自然界中普遍存在的现象,它的复杂性使得我们对其理解充满了好奇与挑战。

在工程领域中,湍流对流体流动的影响不可忽视。

而Fluent零方程湍流模型为我们提供了一种研究湍流现象的有效工具。

本文将以人类的视角,探索这一模型的魅力,展示湍流的奥秘。

第一部分:湍流的定义与特性湍流是一种随机、不规则的流动现象,它在自然界中广泛存在。

与层流相比,湍流的特点是流速和压力的空间和时间波动较大。

湍流的复杂性使得其研究变得困难,但也正是这种复杂性使湍流显示出了一些令人惊叹的特性,比如能量耗散和涡旋结构的形成。

第二部分:Fluent零方程湍流模型的原理与应用Fluent零方程湍流模型是一种简化的湍流模型,它基于湍流的能量耗散理论。

该模型通过假设湍流的能量耗散率与流体的速度梯度成正比,从而实现了对湍流的模拟。

这种模型在工程领域中得到广泛应用,可以帮助工程师预测湍流对流体流动的影响,从而优化设计和提高效率。

第三部分:探索湍流的奥秘湍流的复杂性使得我们对其理解充满了挑战,但也正是这种挑战使得湍流的研究变得更加有趣。

从大气中的湍流到海洋中的湍流,从飞机机翼上的湍流到燃烧过程中的湍流,湍流无处不在。

通过Fluent零方程湍流模型,我们可以更好地理解湍流的形成机制和特性,进而应用于实际工程中。

结语:湍流是自然界中一种复杂而神奇的现象,它的研究对我们理解流体动力学以及优化工程设计具有重要意义。

Fluent零方程湍流模型为我们提供了一种有效的工具,可以帮助我们模拟和预测湍流对流体流动的影响。

通过深入研究湍流的特性和应用,我们可以更好地掌握湍流的奥秘,为工程实践提供更优化的解决方案。

让我们一同探索湍流的魅力,感受科学与工程的交融之美。

FLUENT-第五节湍流模型

FLUENT-第五节湍流模型

N. Djilali and I. S. Gartshore (1991), “Turbulent Flow Around a Bluff Rectangular Plate, Part I: Experimental Investigation,” JFE, Vol. 113, pp. 51–59.
– SST k–ω 模型混合了 和模型的优势,在近壁面处使用k–ω模型, 而在边界层外采用 k–ε 模型
– 包含了修正的湍流粘性公式,考虑了湍流剪切应力的效应
– SST 一般能更精确的模拟反压力梯度引起的分离点和分离区大小
雷诺应力模型 (RSM)
回忆一下涡粘模型的局限性:
– 应力-应变的线性关系导致在应力输运重要的情况下预测不准, 如非平衡流动、分离流和回流等 – 不能考虑由于流线曲度引起的额外应力作用,如旋转、大的偏转 流动等 – 当湍流是高度各向异性、有三维效应时表现较差
为了克服上述缺点,通过平均速度脉动的乘积,导出六个独立的 雷诺应力分量输运方程
– RSM适合于高度各向异性流,三维流等,但计算代价大 – 目前 RSMs 并不总是优于涡粘模型
边界层一致性定律
Inner layer
Outer layer
Viscous sublayer
Buffer layer or blending region
– 对雷诺应力项施加了几个可实现的条件
– 优势:
• 精确预测平板和圆柱射流的传播
• 对包括旋转、有大反压力梯度的边界层、分离、回流等现象有更好 的预测结果
RNG k–ε (RNG) 模型:
– k–ε方程中的常数是通过重正规化群理论分析得到,而不是通过 试验得到的,修正了耗散率方程
– 在一些复杂的剪切流、有大应变率、旋涡、分离等流动问题比 SKE 表现更好

fluent湍流模型 总结

fluent湍流模型 总结

一般来说,DES和LES是最为精细的湍流模型,但是它们需要的网格数量大,计算量和内存需求都比较大,计算时间长,目前工程应用较少。

S-A模型适用于翼型计算、壁面边界层流动,不适合射流等自由剪切流问题。

标准K-Epsilon模型有较高的稳定性、经济性和计算精度,应用广泛,适用于高雷诺数湍流,不适合旋流等各相异性等较强的流动。

RNG K-Epsilon模型可以计算低雷诺数湍流,其考虑到旋转效应,对强旋流计算精度有所提供。

Realizable K-Epsilon模型较前两种模型的有点是可以保持雷诺应力与真实湍流一致,可以更加精确的模拟平面和圆形射流的扩散速度,同时在旋流计算、带方向压强梯度的边界层计算和分离流计算等问题中,计算结果更符合真实情况,同时在分离流计算和带二次流的复杂流动计算中也表现出色。

但是此模型在同时存在旋转和静止区的计算中,比如多重参考系、旋转滑移网格计算中,会产生非物理湍流粘性。

因此需要特别注意。

专用于射流计算的Realizable k-ε模型。

标准K-W模型包含了低雷诺数影响、可压缩性影响和剪切流扩散,适用于尾迹流动、混合层、射流、以及受壁面限制的流动附着边界层湍流和自由剪切流计算。

SST K-W模型综合了K-W模型在近壁区计算的优点和K-Epsilon模型在远场计算的优点,同时增加了横向耗散导数项,在湍流粘度定义中考虑了湍流剪切应力的输运过程,适用更广,可以用于带逆压梯度的流动计算、翼型计算、跨声速带激波计算等。

雷诺应力模型没有采用涡粘性各向同性假设,在理论上比前面的湍流模型要精确的多,直接求解雷诺应力分量(二维5个,三维7个)输运方程,适用于强旋流动,如龙卷风、旋流燃烧室计算等。

!!!!!所以在选择湍流模型时要注意各个模型是高雷诺数模型还是低雷诺数模型,前者采用壁面函数时,应该避免使用太好(对壁面函数方法)或太粗劣(对增强函数处理方法)的网格。

而对于低雷诺数模型,壁面应该有好的网格。

fluent零方程湍流模型

fluent零方程湍流模型

Fluent是一款广泛应用于流体动力学仿真模拟的软件,它支持多种湍流模型,其中零方程湍流模型是一种常用的模型。

零方程湍流模型基于湍流脉动守恒定律,通过直接求解湍流脉动输运方程组,避免了传统湍流模型中的复杂湍流输运偏微分方程,从而简化了湍流模拟的计算复杂度。

零方程湍流模型的核心思想是通过对湍动能和耗散率的独立处理,采用简单而又符合物理规律的输运方程来描述湍流的脉动特性。

其中,湍动能通过输运方程进行求解,耗散率则通过一个简单的输运方程进行描述。

在零方程湍流模型中,湍流粘度被定义为湍动能和耗散率的函数,从而可以通过求解控制容积中的输运方程来计算湍流的脉动速度和压力。

与标准k-ε模型相比,零方程湍流模型具有更简单的数学表达式和更高的计算效率。

然而,由于它没有充分利用湍流的复杂特性,因此有时无法准确模拟某些复杂的流动现象。

此外,零方程湍流模型还存在一些不足之处,例如对于不同雷诺应力之间的关系需要进行特殊处理,并且在某些情况下可能会表现出对网格的依赖性。

在实际应用中,零方程湍流模型常用于简单流动的模拟和验证。

对于复杂的流动现象,仍然需要采用标准k-ε模型等其他湍流模型进行更精确的模拟。

在选择湍流模型时,需要根据具体的流动情况和计算要求进行权衡和选择,以确保模拟结果的准确性和可靠性。

总之,零方程湍流模型是一种简化的湍流模拟方法,它通过直接求解湍流脉动输运方程组来描述湍流的脉动特性。

虽然它存在一些不足之处,但对于简单流动的模拟和验证具有较高的实用价值。

在实际应用中,需要根据具体的流动情况和计算要求进行选择和调整,以确保模拟结果的准确性和可靠性。

fluent湍流模型讲解

fluent湍流模型讲解


在FLUENT中可用的湍流模型
1-方程模型 Spalart-Allmaras 2-方程模型 标准 k–ε RNG k–ε realizable k–ε 标准 k–ω SST k–ω 雷诺德应力模型 分离涡模拟 大涡模拟
基于RANS的模 型
增加 每个计算迭代步 消耗
ห้องสมุดไป่ตู้

模型方程不包括在壁面上没有定义的项,例如不需要壁面函数可以 在壁面积分 对于有压力梯度的大范围边界层流动是精确稳定的 FLUENT 提供k–ω 模型下的两个子模型 标准k–ω (SKW) 模型

在航天和涡轮机械领域得到最广泛的应用 几个k–ω子模型选项:压缩效果,转錑,剪切流修正. SST k–ω 模型使用混合函数从壁面附近的标准k–ω 模型逐渐过渡到边 界层的外部的高雷诺数k–ε模型. 包含修正的湍流粘性公式来解决湍流剪应力引起的输运效果
© 2006 ANSYS, Inc. All rights reserved.
6-6
ANSYS, Inc. Proprietary
Introductory FLUENT Notes FLUENT v6.3 Augr 2008

RANS 模拟 – 时间平均

将N-S方程中的瞬时变量分解成平均量和脉动量:
湍流模型
Introductory FLUENT Training
© 2006 ANSYS, Inc. All rights reserved.
ANSYS, Inc. Proprietary
Introductory FLUENT Notes FLUENT v6.3 Augr 2008


计算湍流粘性

基于量纲分析, μT 能够由 湍流时间尺度 (或速度尺度) 和空间尺 度来决定

Fluent学习总结

Fluent学习总结

0 起因接触Fluent这款软件不到两年。

在此之前一直在使用CFX。

CFX的使用时间其实也不到三个月,伴随着项目的结束也自然的放下了。

再那之前,我甚至还不知道什么是CFX,什么是CFD。

研一的一整年基本上没去过实验室,整天就是在教室或寝室中度过,上课之余玩玩游戏,我以为研究生三年就会这么度过,日子过得很空虚。

我的真正导师并没有什么项目,说出来也许很好笑,在整个研一一年里,我都没有见过他,可以说是一个传奇中的人物,他将我委托给另外一个老师。

当时我不知道这些情况,是后来老师告诉我的我才明白。

先不讲这些无关的。

当时虽然每天上上课打打游戏,表面上看起来日子过得很惬意,其实玩过游戏的人都清楚,玩的时候感觉很过瘾,退出来感觉更无聊。

我当时也是那样,看到其他同学在学习之余跟着老师做项目,学习一些新的东西,其实心里也是蛮羡慕的。

08年4月的一天,老师(不是我的导师,是带我的那位老师)突然打电话让我去他办公室,想和我谈谈。

我当时心情有点紧张还有点期盼。

不到半个小时,我来到老师的办公室,老师五十多岁了,挺和蔼可亲的,几句话就让我放松下来了,然后他问我:“你这三年有什么打算?”。

我当时不知道如何回答,想了半天,说了一句:“老师,我不想像现在这样整天混下去了”。

老师说:“你该进实验室了!”。

那时候不像现在实验室的电脑多得找不到人使用,其实那时电脑还是勉强够研二研三的使用。

第二天,我去了实验室,看了下具体情况,由于我本人性格比较内向,不善于与别人交流,所以看到实验室的位置不够后,连老师的正牌研一的学生都没有位子,我觉得我还是等两个月后研三的毕业了腾出地方了再进实验室了。

其实老师和我谈话的时候问了一下我的基础怎么样,还说实验室现在基本上搞的都是流体,问我有没有兴趣往流体方向发展。

我现在都记不大清楚当初是怎么回答的了,大概意思好像是没问题。

我这个人平时喜欢挑战,可能是无知者无畏吧,当时我对流体模拟是什么都不知道,连流体力学都没有接触过。

fluent的空气湍流模型

fluent的空气湍流模型

fluent的空气湍流模型(实用版)目录一、引言二、Fluent 中的湍流模型概述1.湍流模型的种类2.湍流模型的选择三、Fluent 中的空气湍流模型1.k-模型2.sa 模型3.LES 模型四、Fluent 中湍流模型的应用1.边界层流动2.噪声模拟五、结论正文一、引言在计算机流体动力学(CFD)领域,湍流是一种常见的流动现象。

由于其复杂性,工程师们通常需要使用湍流模型来模拟这种流动。

Fluent 是一款广泛应用于 CFD 领域的软件,它提供了多种湍流模型供用户选择。

本文将介绍 Fluent 中的空气湍流模型。

二、Fluent 中的湍流模型概述1.湍流模型的种类在 Fluent 中,湍流模型主要分为以下几类:k-模型、sa 模型、LES 模型、RSM 模型等。

这些模型分别适用于不同的流动情况,具有各自的优缺点。

2.湍流模型的选择选择合适的湍流模型是模拟流体流动的关键。

在实际应用中,需要根据流体的性质、流动区域、流动速度等因素来选择合适的湍流模型。

三、Fluent 中的空气湍流模型1.k-模型k-模型是一种基于涡旋随机化的湍流模型,适用于高速、非粘性流体流动。

在 Fluent 中,k-模型可以通过设置湍流粘性系数来调整模型的性能。

2.sa 模型sa 模型,即 Smagorinsky 模型,是一种基于涡旋随机化和湍流扩散的混合模型。

它在高速、非粘性流体流动方面具有较好的性能。

在 Fluent 中,sa 模型可以通过设置涡旋随机化参数和湍流扩散参数来调整模型的性能。

3.LES 模型LES 模型,即大涡模拟,是一种基于湍流涡旋结构的湍流模型。

它适用于高速、非粘性流体流动以及具有较强湍流特性的流动。

在 Fluent 中,LES 模型可以通过设置湍流涡旋参数来调整模型的性能。

四、Fluent 中湍流模型的应用1.边界层流动在边界层流动模拟中,湍流模型的选择尤为重要。

一般来说,对于有压力梯度的大范围边界层流动,可以选择 k-模型或 sa 模型;而对于强旋流和旋转流动,可以选择 LES 模型或 RSM 模型。

fluent教程湍流模拟解析

fluent教程湍流模拟解析

Favre平均和雷诺平均方程完全相同。瞬时的动量方程 减去平均的动量方程得脉动速度的方程
t
(ui)
x j
( uiuj

uiu j

uiuj )

P xi

ij
x j

x j
(uiuj )
乘以 u i
并求平均,利用湍流动能的定义
k




~ ~
x j



cb2


~
x j
2





cw1
fw
~
d2
Generation
Diffusion
Destruction
The additional variables are functions of the modified turbulent viscosity and velocity gradients.
(eu j )

x j
[(

t e
)
e
x j
]
e
k
(Ce1 P
Ce2
e )
P uiujxuij
如果用湍流频率 代替湍流动能耗散率 e ,频率
的模型方程为:
( )
t

x j
(u j )

x j
[(

t
)

x j
]
t C k 2 / e
D14
热科学与能源工程系
计算流体与传热传质
涡旋粘性系数模型
辅助的量是湍流频率 ,
k 模型

Fluent湍流模型小结(5篇)

Fluent湍流模型小结(5篇)

Fluent湍流模型小结(5篇)第一篇:Fluent 湍流模型小结Fluent 湍流模型小结湍流模型目前计算流体力学常用的湍流的数值模拟方法主要有以下三种:⌝直接模拟(direct numerical simulation, DNS)直接数值模拟(DNS)特点在湍流尺度下的网格尺寸内不引入任何封闭模型的前提下对Navier-Stokes方程直接求解。

这种方法能对湍流流动中最小尺度涡进行求解,要对高度复杂的湍流运动进行直接的数值计算,必须采用很小的时间与空间步长,才能分辨出湍流中详细的空间结构及变化剧烈的时间特性。

基于这个原因,DNS目前仅限于相对低的雷诺数中湍流流动模型。

另外,利用DNS模型对湍流运动进行直接的数值模拟对计算工具有很高的要求,计算机的内存及计算速度要非常的高,目前DNS模型还无法应用于工程数值计算,还不能解决工程实际问题。

⌝大涡模拟(large eddy simulation, LES)大涡模拟(LES)是基于网格尺度封闭模型及对大尺度涡进行直接求解N-S方程,其网格尺度比湍流尺度大,可以模拟湍流发展过程的一些细节,但其计算量仍很大,也仅用于比较简单的剪切流运动及管流。

大涡模拟的基础是:湍流的脉动与混合主要是由大尺度的涡造成的,大尺度涡是高度的非各向同性,而且随流动的情形而异。

大尺度的涡通过相互作用把能量传递给小尺度的涡,而小尺度的涡旋主要起到耗散能量的作用,几乎是各向同性的。

这些对涡旋的认识基础就导致了大涡模拟方法的产生。

Les大涡模拟采用非稳态的N-S方程直接模拟大尺度涡,但不计算小尺度涡,小涡对大涡的影响通过近似的模拟来考虑,这种影响称为亚格子Reynolds应力模型。

大多数亚格子Reynolds模型都是将湍流脉动所造成的影响用一个湍流粘性系数,既粘涡性来描述。

LES对计算机的容量和CPU的要求虽然仍然很高,但是远远低于DNS方法对计算机的要求,因而近年来的研究与应用日趋广泛。

fluent的空气湍流模型

fluent的空气湍流模型

fluent的空气湍流模型摘要:一、Fluent 空气湍流模型的概述二、湍流模型的类型及选择三、设置湍流模型的步骤四、影响湍流模型的因素五、如何获取较好的湍流模型模拟结果正文:Fluent 是一款广泛应用于流体动力学模拟的软件,其中的空气湍流模型是解决实际工程问题的重要工具。

本文将详细介绍Fluent 中的空气湍流模型,包括模型的类型、设置方法以及影响模拟结果的因素。

一、Fluent 空气湍流模型的概述在Fluent 中,空气湍流模型主要分为以下几种:k-ε 模型、k-ω 模型、SST 模型、大涡模拟(LES)等。

这些模型都是基于实际湍流特性进行数学建模,用以预测和分析流体流动中的复杂现象。

二、湍流模型的类型及选择在选择湍流模型时,需要考虑流动特性、雷诺数、模拟精度等因素。

例如,k-ε 模型适用于广泛范围内的流动问题,但其精度相对较低;而k-ω 模型则适用于高速、大涡占主导的流动场合。

具体模型的选择可根据实际情况和需求进行。

三、设置湍流模型的步骤在Fluent 中设置湍流模型主要包括以下步骤:1.打开Fluent 软件,创建或导入计算模型。

2.在“Meshing”模块中,设置网格类型、尺寸和数量。

3.在“Boundary Conditions”模块中,设置进口、出口、壁面等边界条件。

4.在“Turbulence”模块中,选择合适的湍流模型,并设置模型参数。

5.设置其他物理参数,如压力、速度、密度等。

6.进行模拟计算。

四、影响湍流模型的因素湍流模型的选择和设置不仅取决于流动特性,还受到以下因素的影响:1.雷诺数:雷诺数是判断流动状态的重要参数,不同湍流模型适用于不同雷诺数的流动场合。

2.边界条件:边界条件的设置会影响湍流模型的表现,尤其是壁面边界层的影响。

3.网格质量:网格质量直接影响数值模拟的准确性和稳定性,选用合适的网格类型和尺寸至关重要。

五、如何获取较好的湍流模型模拟结果1.选择合适的湍流模型:根据实际流动特性和需求,选择适合的湍流模型。

fluent的空气湍流模型

fluent的空气湍流模型

fluent的空气湍流模型摘要:1.Fluent 软件概述2.湍流模型的概述3.Fluent 中的湍流模型分类4.各类湍流模型的特点及适用范围5.如何选择合适的湍流模型6.结论正文:一、Fluent 软件概述Fluent 是一款由美国CFD 公司(Computational Fluid Dynamics)开发的计算流体动力学(CFD)软件,广泛应用于工程领域,如航空航天、能源、化工、环境等。

Fluent 可以模拟流体的层流和湍流状态,为研究流体流动提供了强大的工具。

二、湍流模型的概述湍流是指流体在高速流动时,由于粘性力的不稳定性,产生的无规则、高度混合的流动状态。

在实际工程中,大部分流体流动都处于湍流状态。

为了模拟这种复杂的流动现象,Fluent 提供了多种湍流模型供用户选择。

三、Fluent 中的湍流模型分类Fluent 中的湍流模型主要分为以下几类:1.k-ε模型:基于k-ε两方程模型,其中k 为湍流动能耗散率,ε为湍流能量耗散率。

2.k-ω模型:基于k-ω两方程模型,其中k 为湍流动能耗散率,ω为湍流旋涡耗散率。

3.SST 模型:基于Spalart-Allmaras 三维湍流模型,考虑了流场中的旋涡和湍流扩散。

4.RSM 模型:基于大涡模拟(LES)的湍流模型,考虑了湍流尺度的空间分布。

5.VOF 模型:基于体积分数(Volume of Fluid)的湍流模型,适用于两相流问题。

6.Mixture 模型:基于混合长度理论的湍流模型,适用于多相流问题。

四、各类湍流模型的特点及适用范围1.k-ε模型:计算精度较高,适用于大部分工程问题。

特别适用于湍流强度较低、流动平稳的问题。

2.k-ω模型:考虑了湍流旋涡的耗散,适用于湍流强度较高、流动剧烈的问题。

例如,涡轮机、喷气发动机等。

3.SST 模型:计算精度较高,适用于考虑湍流旋涡耗散的问题。

例如,飞机翼型、汽车尾翼等。

4.RSM 模型:适用于湍流强度较高、流动剧烈的问题,特别是具有强旋流和旋转的流体。

Fluent学习的总结

Fluent学习的总结

Fluent学习总结报告学号:班级:姓名:指导老师:前言FLUENT是世界上流行的商用CFD软件包,包括基于压力的分离求解器、基于压力的耦合求解器、基于密度的隐式求解器、基于密度的显示求解器。

它具有丰富的物理模型、先进的数值方法和强大的前后处理功能,可对高超音速流场、传热与相变、化学与相变、化学反应与燃烧、多相流、旋转机械、变/动网络、噪声、材料加工复杂激励等流动问题进行精确的模拟,具有较高的可信度,。

用户自定义函数也为改进和完善模型,处理个性化问题和给出更合理的边界条件提供了可能。

经过这一个学期对 Fluent的初步入门学习,我对其有了初步的了解,通过练习一些例子,掌握了用 Fluent 求解分析的大概步骤和对鼠标的操作,也大概清楚这些分析有什么用。

由于软件和指导资料几乎全部都是英文书写,还没能完全地理解软件上各个选项的意义和选项之间的联系,目前仅仅是照着实例练操作,要想解决实际问题还远远不够,不过孰能生巧,我相信经过大量的练习,思考,感悟,我一定可以熟练掌握并运用 Fluent。

本学习报告将从Fluent的应用总结分析和几个算例的操作来叙述。

fluent 简单操作指南1.读入文件file--read--case找到.msh文件打开2.网格检查grid-check网格检查会报告有关网格的任何错误,特别make sure最小体积不能使负值;3.平滑和交换网格grid-smooth/swap---点击smooth再点击swap,重复多次;4.确定长度单位grid-scale----在units conversion中的grid was created in中选择相应的单位,点击change length units给出相应的范围,点击scal,然后关闭;5.显示网格display--grid建立求解模型1.define-models-solver(求解器)2.设置湍流模型define-models-viscous3.选择能量方程define-models-energy4 设置流体物理属性define-materials,进行设置,然后点击change/create,弹出的对话框点NO。

FLUENT常用的湍流模型及壁面函数处理

FLUENT常用的湍流模型及壁面函数处理

FLUENT常用的湍流模型及壁面函数处理本文内容摘自《精通CFD工程仿真与案例实战》。

实际上也是帮助文档的翻译,英文好的可直接参阅帮助文档。

FLUENT中的湍流模型很多,有单方程模型,双方程模型,雷诺应力模型,转捩模型等等。

这里只针对最常用的模型。

1、湍流模型描述2、湍流模型的选择有两种方法处理近壁面区域。

一种方法,不求解粘性影响内部区域(粘性子层及过渡层),使用一种称之为“wall function”的半经验方法去计算壁面与充分发展湍流区域之间的粘性影响区域。

采用壁面函数法,省去了为壁面的存在而修改湍流模型。

另一种方法,修改湍流模型以使其能够求解近壁粘性影响区域,包括粘性子层。

此处使用的方法即近壁模型。

(近壁模型不需要使用壁面函数,如一些低雷诺数模型,K-W湍流模型是一种典型的近壁湍流模型)。

所有壁面函数(除scalable壁面函数外)的最主要缺点在于:沿壁面法向细化网格时,会导致使数值结果恶化。

当y+小于15时,将会在壁面剪切力及热传递方面逐渐导致产生无界错误。

然而这是若干年前的工业标准,如今ANSYS FLUENT采取了措施提供了更高级的壁面格式,以允许网格细化而不产生结果恶化。

这些y+无关的格式是默认的基于w方程的湍流模型。

对于基于epsilon方程的模型,增强壁面函数(EWT)提供了相同的功能。

这一选项同样是SA模型所默认的,该选项允许用户使其模型与近壁面y+求解无关。

(实际上是这样的:K-W方程是低雷诺数模型,采用网格求解的方式计算近壁面粘性区域,所以加密网格降低y+值不会导致结果恶化。

k-e方程是高雷诺数模型,其要求第一层网格位于湍流充分发展区域,而此时若加密网格导致第一层网格处于粘性子层内,则会造成计算结果恶化。

这时候可以使用增强壁面函数以避免这类问题。

SA模型默认使用增强壁面函数)。

只有当所有的边界层求解都达到要求了才可能获得高质量的壁面边界层数值计算结果。

这一要求比单纯的几个Y+值达到要求更重要。

湍流模型fluent

湍流模型fluent

湍流模型,就是以雷诺平均运动方程与脉动运动方程为基础,依靠理论与经验的结合,引进一系列模型假设,而建立起的一组描写湍流平均量的封闭方程组。

湍流模型,是指确定湍流输运项的一组代数或微分方程,通过这组方程,Reynolds方程得以封闭.它基于对湍流过程的假设,借助经验常数或函数,建立高阶湍输运项与低阶湍输运项直至与平均流之间的某种关系。

k-ε模型①标准的k-ε模型:最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。

在FLUENT中,标准k-ε模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。

适用范围广、经济、合理的精度。

它是个半经验的公式,是从实验现象中总结出来的。

湍动能输运方程是通过精确的方程推导得到,耗散率方程是通过物理推理,数学上模拟相似原型方程得到的。

振动资讯应用范围:该模型假设流动为完全湍流,分子粘性的影响可以忽略,此标准κ-ε模型只适合完全湍流的流动过程模拟。

②RNG k-ε模型:RNG k-ε模型来源于严格的统计技术。

它和标准k-ε模型很相似,但是有以下改进:a、RNG模型在ε方程中加了一个条件,有效的改善了精度。

b、考虑到了湍流漩涡,提高了在这方面的精度。

c、RNG理论为湍流Prandtl数提供了一个解析公式,然而标准k-ε模型使用的是用户提供的常数。

d、标准k-ε模型是一种高雷诺数的模型,RNG理论提供了一个考虑低雷诺数流动粘性的解析公式。

这些公式的作用取决于正确的对待近壁区域。

这些特点使得RNG k-ε模型比标准k-ε模型在更广泛的流动中有更高的可信度和精度。

③可实现的k-ε模型:可实现的k-ε模型是近期才出现的,比起标准k-ε模型来有两个主要的不同点:·可实现的k-ε模型为湍流粘性增加了一个公式。

·为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。

术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fluent 湍流模型小结湍流模型目前计算流体力学常用的湍流的数值模拟方法主要有以下三种:⌝直接模拟(direct numerical simulation, DNS)直接数值模拟(DNS)特点在湍流尺度下的网格尺寸内不引入任何封闭模型的前提下对Navier-Stokes方程直接求解。

这种方法能对湍流流动中最小尺度涡进行求解,要对高度复杂的湍流运动进行直接的数值计算,必须采用很小的时间与空间步长,才能分辨出湍流中详细的空间结构及变化剧烈的时间特性。

基于这个原因,DNS目前仅限于相对低的雷诺数中湍流流动模型。

另外,利用DNS模型对湍流运动进行直接的数值模拟对计算工具有很高的要求,计算机的内存及计算速度要非常的高,目前DNS模型还无法应用于工程数值计算,还不能解决工程实际问题。

⌝大涡模拟(large eddy simulation, LES)大涡模拟(LES)是基于网格尺度封闭模型及对大尺度涡进行直接求解N-S方程,其网格尺度比湍流尺度大,可以模拟湍流发展过程的一些细节,但其计算量仍很大,也仅用于比较简单的剪切流运动及管流。

大涡模拟的基础是:湍流的脉动与混合主要是由大尺度的涡造成的,大尺度涡是高度的非各向同性,而且随流动的情形而异。

大尺度的涡通过相互作用把能量传递给小尺度的涡,而小尺度的涡旋主要起到耗散能量的作用,几乎是各向同性的。

这些对涡旋的认识基础就导致了大涡模拟方法的产生。

Les大涡模拟采用非稳态的N-S方程直接模拟大尺度涡,但不计算小尺度涡,小涡对大涡的影响通过近似的模拟来考虑,这种影响称为亚格子Reynolds应力模型。

大多数亚格子Reynolds模型都是将湍流脉动所造成的影响用一个湍流粘性系数,既粘涡性来描述。

LES对计算机的容量和CPU的要求虽然仍然很高,但是远远低于DNS方法对计算机的要求,因而近年来的研究与应用日趋广泛。

⌝应用Reynolds时均方程(Reynolds-averaging equations)的模拟方法许多流体力学的研究和数值模拟的结果表明,可用于工程上现实可行的湍流模拟方法仍然是基于求解Reynolds时均方程及关联量输运方程的湍流模拟方法,即湍流的统观模拟方法。

统观模拟方法的基本思想是用低阶关联量和平均流性质来模拟未知的高阶关联项,从而封闭平均方程组或关联项方程组。

虽然这种方法在湍流理论中是最简单的,但是对工程应用而言仍然是相当复杂的。

即便如此,在处理工程上的问题时,统观模拟方法仍然是最有效、最经济而且合理的方法。

在统观模型中,使用时间最长,积累经验最丰富的是混合长度模型和K-E 模型。

其中混合长度模型是最早期和最简单的湍流模型。

该模型是建立在层流粘性和湍流粘性的类比、平均运动与湍流的脉动的概念上的。

该模型的优点是简单直观、无须增加微分方程。

缺点是在模型中忽略了湍流的对流与扩散,对于复杂湍流流动混合长度难以确定。

到目前为止,工程中应用最广泛的是k-ε模型。

另外针对k-ε模型的不足之处,许多学者通过对K-E模型的修正和发展,开始采用雷诺应力模型(DSM)和代数应力模型(ASM)。

近年来,DSM模型已用来预报燃烧室及炉内的强旋及浮力流动。

很多情况下能够给出优于k-ε模型的结果。

但是该模型也有不足之处,首先它对工程预报来说太复杂,其次经验系数太多难以确定,此外,对压力应变项的模拟还有争议。

更主要的是,尽管这一模型考虑了各种应变效应,但是其总精度并不总是高于其它模型,这些缺点导致了DSM模型没有得到广泛的应用。

总之,虽然从本质上讲DSM模型和ASM模型比k-ε模型对湍流流场的模拟更加合理,但DSM和ASM中仍然采用精度不高的E方程,模型中常数的通用性还没有得到广泛的验证,边界条件不好给定,计算也比较复杂。

正因为如此,目前用计算解决湍流问题时仍然采用比较成熟的K-E模型。

需要注意的是:1、大涡模拟有自己的亚格子封闭模型,这和k-ε模型完全是两回事。

LES的亚格子模型表现的是过滤掉的小涡对大涡的影响(这种影响是相互的)。

而Reynolds时均方程的k-ε是建立在时间统计平均的基础上的,考虑的是湍动能和湍流耗散输运方程。

2、对于大涡模拟边界条件的设定,没有什么特别的要求。

FLUENT 提供的湍流模型:⌝Spalart-Allmaras 模型⌝k-ε 模型-标准k-ε 模型-Renormalization-group (RNG) k-ε模型-带旋流修正k-ε模型⌝k-ω模型-标准k-ω模型-压力修正k-ω模型-雷诺兹压力模型Spalart-Allmaras 模型The Spalart-Almares model is a one-equation model that it something in between an algebraic model like the Baldwin-Lomax model and a two-equation model like the k-epsilon model. Since it includes one transported turbulent quantity it has the potential to include at least some history effects (transportation of turbulent energy). It is a more modern model than the BL model, but that is of course not a guarantee that it always produces better results.The SA model is very robust and is easy to use. For attached flows it often produces good results. It is popular in aero-space applications and for quick design-iteration simulations in the turbo-machinery field. The SA model rarely produces the completely unphysical results that a k-epsilon model can produce sometimes. This has made the SA model quite popular in the last 5 years.Spalart has also developed a nice DES variant of the SA model, where the large eddies are resolved and the smaller edies are modeled using the SA model. This type of hybrid RANS/LES models have produced very good results for massively separated flows in aerospace applications - there is a very nice example of a SA DES simulation of a stalling F18 which you can probably find on the net if you google a bit.For heat transfer applications I'd not recommend SA. It often under-predicts heat-transfer.对于解决动力漩涡粘性,Spalart-Allmaras 模型是相对简单的方程。

它包含了一组新的方程,在这些方程里不必要去计算和剪应力层厚度相关的长度尺度。

Spalart-Allmaras 模型是设计用于航空领域的,主要是墙壁束缚流动,而且已经显示出和好的效果。

在透平机械中的应用也愈加广泛。

在原始形式中Spalart-Allmaras 模型对于低雷诺数模型是十分有效的,要求边界层中粘性影响的区域被适当的解决。

在FLUENT中,Spalart-Allmaras 模型用在网格划分的不是很好时。

这将是最好的选择,当精确的计算在湍流中并不是十分需要时。

再有,在模型中近壁的变量梯度比在k-e模型和k-ω模型中的要小的多。

这也许可以使模型对于数值的误差变得不敏感。

需要注意的是Spalart-Allmaras 模型是一种新出现的模型,现在不能断定它适用于所有的复杂的工程流体。

例如,不能依靠它去预测均匀衰退,各向同性湍流。

还有要注意的是,单方程的模型经常因为对长度的不敏感而受到批评,例如当流动墙壁束缚变为自由剪切流。

应用范围:Spalart-Allmaras 模型是设计用于航空领域的,主要是墙壁束缚(wall-bounded)流动,而且已经显示出很好的效果。

在透平机械中的应用也愈加广泛。

在湍流模型中利用Boussinesq逼近,中心问题是怎样计算漩涡粘度。

这个模型被Spalart-Allmaras提出,用来解决因湍流动粘滞率而修改的数量方程。

模型评价:Spalart-Allmaras模型是相对简单的单方程模型,只需求解湍流粘性的输运方程,不需要求解当地剪切层厚度的长度尺度;由于没有考虑长度尺度的变化,这对一些流动尺度变换比较大的流动问题不太适合;比如平板射流问题,从有壁面影响流动突然变化到自由剪切流,流场尺度变化明显等问题。

Spalart-Allmaras模型中的输运变量在近壁处的梯度要比k-ε中的小,这使得该模型对网格粗糙带来数值误差不太敏感。

Spalart-Allmaras模型不能断定它适用于所有的复杂的工程流体。

例如不能依靠它去预测均匀衰退,各向同性湍流。

k-ε模型⌝标准k-ε模型最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。

在FLUENT中,标准k-ε模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。

适用范围广、经济,有合理的精度,这就是为什么它在工业流场和热交换模拟中有如此广泛的应用了。

它是个半经验的公式,是从实验现象中总结出来的。

湍动能输运方程是通过精确的方程推导得到,耗散率方程是通过物理推理,数学上模拟相似原型方程得到的。

应用范围:该模型假设流动为完全湍流,分子粘性的影响可以忽略,此标准κ-ε模型只适合完全湍流的流动过程模拟。

由于人们已经知道了k-ε模型适用的范围,因此人们对它加以改造,出现了RNG k-ε模型和带旋流修正k-ε模型:⌝1.RNG k-ε模型RNG k-ε模型来源于严格的统计技术。

相关文档
最新文档