第4章-晶体缺陷
晶体中的点缺陷和面缺陷
(2)杂质缺陷(组成缺陷) ——外来原子进入晶格成为晶体中的杂质。 杂质原子进入晶体后,破坏了晶体中原子有规则的排列, 并且杂质原子周围的周期势场发生变化,而形成缺陷。 ※ 杂质原子可以取代原来的原子进入正常格点的位置, 形成置换型杂质;也可以进入晶格的间隙位置成为填隙 式杂质原子,即为间隙型杂质,如图。
热平衡态点缺陷:纯净和严格化学配比的晶体中,由于体系能量涨落而形
成的,浓度大小取决于温度和缺陷形成能。
非平衡态点缺陷:通过各种手段在晶体中引入额外的点缺陷,形态和数量
完全取决于产生点缺陷的方法,不受体系温度控制。
晶体中引入非平衡态点缺陷的方法:
快速冷却 低温,形成过饱和点缺陷 (1)淬火 :高温---------
1
缺陷分类
按作用范围和几何形状分:
1、点缺陷:零维缺陷,尺寸在一、二个原子大小的级别。 按点缺陷产生原因划分:热缺陷、杂质缺陷、非化学计 量结构缺陷:
2、线缺陷:一维缺陷,通常指位错。 3、面缺陷:二维缺陷,如:界面和表面等。
2
§4-1 热力学平衡态点缺陷
一.点缺陷及其分类
1、点缺陷 ——造成晶体结构的不完整性,仅局限在原子位置,称 为点缺陷。 如:理想晶体中的一些原子被外界原子所代替;晶格间隙中掺入 原子;结构中产生原子空位等都属点缺陷(缺陷尺寸在一两个原 子的大小范围)。
设:构成完整单质晶体的原子数为N;
TK时形成n个空位,每个空位的形成能为⊿h;
这个过程的自由能变化为⊿G,热焓变化为⊿H,熵变为 ⊿S; 则: ⊿G = ⊿H- T⊿S= n⊿h - T⊿S
11
其中熵变⊿S分为两部分:
①混合熵⊿Sc = klnw
(由微观状态数增加而造成),
k——波尔兹曼常数;w是热力学几率,指n个空位在 n+N个晶格位置不同分布时排列的总数目, w=(N+n)!/N!n! ②振动熵⊿S
第4章 晶体缺陷
刃位错的滑移
螺位错的滑移
刃、螺型位错的滑移特点
特征差异:
切应力方向不同 刃型:F⊥l;螺型:F∥l
位错运动方向与晶体滑移方向关系 刃型:运动方向与滑移 方向一致;螺型:运动方向与滑移方向垂直。 统一之处: 两者的滑移情况均与各自的b一致。
b) 位错环(混合型位错)的滑移
A、B处为刃型位错,C、D处为螺型位错,其余各处为 混合型位错。 位错环可以沿法线方向向外扩张而离开晶体;也可以反 向缩小而消失。
透射电镜下观察到的位错线
第三节 位错的能量及交互作用
位错线周围的原子偏离平衡位置,处于较高的能量状 态,高出的这部分能量称为位错的应变能(位错能)
一、位错的应变能
位错的应变能可分为:位错中心畸变能Ec和位错应 力场引起的弹性应变能Ee。 Ec:位错中心点阵畸变较大,需借助点阵模型直接考虑晶体
结构和原子间的相互作用,其能量约为总应变能的1/10~ 1/15,常予以忽略。
和间隙原子的“间隙-空位”对。
Frenkel defect
化合物离子晶体中的两种点缺陷 金属晶体:弗兰克尔缺陷比肖脱基缺陷少得多 离子晶体:结构配位数低-弗兰克尔缺陷较常见
结构配位数高-肖脱基缺陷较重要
间隙原子
定义:晶体中的原子进入晶格的间隙位置而形成 的缺陷。
Interstitial defect
b 2 r
Gb 2 r
b 2 r dr L L Gb
位错线
半原子面
刃型位错的特点
滑移面
a、属于线型位错,但在晶体中为狭长的管道畸变区;
b、是晶体中滑移区与未滑移区的分界线,不一定是 直线,也可以是折线或曲线; c、不能中断于晶体内部
材料科学基础 第4章 点缺陷和扩散
化、烧结等都产生了重要的影响。
30
二、离子晶体中的空位及间隙原子
肖脱基缺陷:为了保持晶体的电的中性,空位只能 以与晶体相同的正离子:负离子的空位比率小组的 方式产生。这些电中性的正离子-负离子-空位丛簇 称为。 弗兰克缺陷:以空位/间隙对形式存在的缺陷群。
29
关于空位的总结
空位是热力学上稳定的点缺陷,一定的温度对应一定的 平衡浓度,偏高或偏低都不稳定。
不同金属的空位形成能是不同的,一般高熔点金属的形 成能大于低熔点金属的形成能。
空位浓度、空位形成能和加热温度之间的关系密切。在 相同的条件下,空位形成能越大,则空位浓度越低;加 热温度越高,则空位浓度越大。 C平=exp[-Ev/kT+Sc/k]
23
空位迁移也要克服一定的“势垒”,也即空位迁移能Qfv。 迁移速率为: j=zexp(Sc/k)exp(-Qfv/kT)
金属熔点越高,空位形成能和迁移能越大。所以,在相 同条件下,高熔点金属形成的空位数比低熔点金属少。
24
5.材料中空位的实际意义
空位迁移是许多材料加工工艺的基础。
晶体中原子的扩散就是依靠空位迁移而实现的。 在常温下空位迁移所引起的原子热振动动能显著提高,再加上高 温下空位浓度的增多,因此高温下原子的扩散速度十分迅速。
53扩散分类1根据?c?t分类稳态扩散和非稳态扩散2根据?c?x分类?c?x0自扩散在纯金属和均匀合金中进行?c?x?0互扩散上坡扩散和下坡扩散3根据扩散途径分类体扩散晶界扩散表面扩散短程扩散沿位错进行的扩散4根据合金组织分类单相扩散多相扩散54二扩散的物理描述fick第一扩散定律影响原子移动的速率即扩散速率的因素
固体物理第四章_晶体的缺陷
习题测试1.设晶体只有弗仑克尔缺陷, 填隙原子的振动频率、空位附近原子的振动频率与无缺陷时原子的振动频率有什么差异?2.热膨胀引起的晶体尺寸的相对变化量与X射线衍射测定的晶格常数相对变化量存在差异,是何原因?3.KCl晶体生长时,在KCl溶液中加入适量的CaCl溶液,生长的KCl晶体的质量密度比理2论值小,是何原因?4.为什么形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量低?5.金属淬火后为什么变硬?6.在位错滑移时, 刃位错上原子受的力和螺位错上原子受的力各有什么特点?7.试指出立方密积和六角密积晶体滑移面的面指数.8.离子晶体中正负离子空位数目、填隙原子数目都相等, 在外电场作用下, 它们对导电的贡献完全相同吗?9.晶体结构对缺陷扩散有何影响?10.填隙原子机构的自扩散系数与空位机构自扩散系数, 哪一个大? 为什么?11.一个填隙原子平均花费多长时间才被复合掉? 该时间与一个正常格点上的原子变成间隙原子所需等待的时间相比, 哪个长?12.一个空位花费多长时间才被复合掉?13.自扩散系数的大小与哪些因素有关?14.替位式杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?15.填隙杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?16.你认为自扩散系数的理论值比实验值小很多的主要原因是什么?17.离子晶体的导电机构有几种?习题解答1.设晶体只有弗仑克尔缺陷, 填隙原子的振动频率、空位附近原子的振动频率与无缺陷时原子的振动频率有什么差异?[解答]正常格点的原子脱离晶格位置变成填隙原子, 同时原格点成为空位, 这种产生一个填隙原子将伴随产生一个空位的缺陷称为弗仑克尔缺陷. 填隙原子与相邻原子的距离要比正常格点原子间的距离小,填隙原子与相邻原子的力系数要比正常格点原子间的力系数大. 因为原子的振动频率与原子间力系数的开根近似成正比, 所以填隙原子的振动频率比正常格点原子的振动频率要高. 空位附近原子与空位另一边原子的距离, 比正常格点原子间的距离大得多, 它们之间的力系数比正常格点原子间的力系数小得多, 所以空位附近原子的振动频率比正常格点原子的振动频率要低.2.热膨胀引起的晶体尺寸的相对变化量与X射线衍射测定的晶格常数相对变化量存在差异,是何原因?[解答]肖特基缺陷指的是晶体内产生空位缺陷但不伴随出现填隙原子缺陷, 原空位处的原子跑到晶体表面层上去了. 也就是说, 肖特基缺陷将引起晶体体积的增大. 当温度不是太高时, 肖特基缺陷的数目要比弗仑克尔缺陷的数目大得多. X射线衍射测定的晶格常数相对变化量, 只是热膨胀引起的晶格常数相对变化量. 但晶体尺寸的相对变化量不仅包括了热膨胀引起的晶格常数相对变化量, 也包括了肖特基缺陷引起的晶体体积的增大. 因此, 当温度不是太高时, 一般有关系式>.溶液,生长的KCl晶体的质量密度比理3.KCl晶体生长时,在KCl溶液中加入适量的CaCl2论值小,是何原因?[解答]由于离子的半径(0.99)比离子的半径(1.33)小得不是太多, 所以离子难以进入KCl晶体的间隙位置, 而只能取代占据离子的位置. 但比高一价, 为了保持电中性(最小能量的约束), 占据离子的一个将引起相邻的一个变成空位. 也就是说, 加入的CaCl越多, 空位就越多. 又因为的原子量(40.08)与的2溶液引起空位, 将导致KCl 原子量(39.102)相近, 所以在KCl溶液中加入适量的CaCl2晶体的质量密度比理论值小.4.为什么形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量低?[解答]形成一个肖特基缺陷时,晶体内留下一个空位,晶体表面多一个原子. 因此形成形成一个肖特基缺陷所需的能量, 可以看成晶体表面一个原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子的相互作用能的差值. 形成一个弗仑克尔缺陷时,晶体内留下一个空位,多一个填隙原子. 因此形成一个弗仑克尔缺陷所需的能量, 可以看成晶体内部一个填隙原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子相互作用能的差值. 填隙原子与相邻原子的距离非常小, 它与其它原子的排斥能比正常原子间的排斥能大得多. 由于排斥能是正值, 包括吸引能和排斥能的相互作用能是负值, 所以填隙原子与其它原子相互作用能的绝对值, 比晶体表面一个原子与其它原子相互作用能的绝对值要小. 也就是说, 形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量要低.5.金属淬火后为什么变硬?[解答]我们已经知道晶体的一部分相对于另一部分的滑移, 实际是位错线的滑移, 位错线的移动是逐步进行的, 使得滑移的切应力最小. 这就是金属一般较软的原因之一. 显然, 要提高金属的强度和硬度, 似乎可以通过消除位错的办法来实现. 但事实上位错是很难消除的. 相反, 要提高金属的强度和硬度, 通常采用增加位错的办法来实现. 金属淬火就是增加位错的有效办法. 将金属加热到一定高温, 原子振动的幅度比常温时的幅度大得多, 原子脱离正常格点的几率比常温时大得多, 晶体中产生大量的空位、填隙缺陷. 这些点缺陷容易形成位错. 也就是说, 在高温时, 晶体内的位错缺陷比常温时多得多. 高温的晶体在适宜的液体中急冷, 高温时新产生的位错来不及恢复和消退, 大部分被存留了下来. 数目众多的位错相互交织在一起, 某一方向的位错的滑移, 会受到其它方向位错的牵制, 使位错滑移的阻力大大增加, 使得金属变硬.6.在位错滑移时, 刃位错上原子受的力和螺位错上原子受的力各有什么特点?[解答]在位错滑移时, 刃位错上原子受力的方向就是位错滑移的方向. 但螺位错滑移时, 螺位错上原子受力的方向与位错滑移的方向相垂直.7.试指出立方密积和六角密积晶体滑移面的面指数.[解答]滑移面一定是密积面, 因为密积面上的原子密度最大, 面与面的间距最大, 面与面之间原子的相互作用力最小. 对于立方密积, {111}是密积面. 对于六角密积, (001)是密积面. 因此, 立方密积和六角密积晶体滑移面的面指数分别为{111}和(001).8.离子晶体中正负离子空位数目、填隙原子数目都相等, 在外电场作用下, 它们对导电的贡献完全相同吗?[解答]由(4.48)式可知, 在正负离子空位数目、填隙离子数目都相等情况下, 离子晶体的热缺陷对导电的贡献只取决于它们的迁移率. 设正离子空位附近的离子和填隙离子的振动频率分别为和, 正离子空位附近的离子和填隙离子跳过的势垒高度分别为和, 负离子空位附近的离子和填隙离子的振动频率分别为和, 负离子空位附近的离子和填隙离子跳过的势垒高度分别为, 则由(4.47)矢可得,,,.由空位附近的离子跳到空位上的几率, 比填隙离子跳到相邻间隙位置上的几率大得多, 可以推断出空位附近的离子跳过的势垒高度, 比填隙离子跳过的势垒高度要低, 即<,<. 由问题1.已知, 所以有<, <. 另外, 由于和的离子半径不同, 质量不同, 所以一般, .也就是说, 一般. 因此, 即使离子晶体中正负离子空位数目、填隙离子数目都相等, 在外电场作用下, 它们对导电的贡献一般也不会相同.9.晶体结构对缺陷扩散有何影响?[解答]扩散是自然界中普遍存在的现象, 它的本质是离子作无规则的布郎运动. 通过扩散可实现质量的输运. 晶体中缺陷的扩散现象与气体分子的扩散相似, 不同之处是缺陷在晶体中运动要受到晶格周期性的限制, 要克服势垒的阻挡, 对于简单晶格, 缺陷每跳一步的间距等于跳跃方向上的周期.10.填隙原子机构的自扩散系数与空位机构自扩散系数, 哪一个大? 为什么?[解答]填隙原子机构的自扩散系数,空位机构自扩散系数.自扩散系数主要决定于指数因子, 由问题4.和8.已知, <,<, 所以填隙原子机构的自扩散系数小于空位机构的自扩散系数.11.一个填隙原子平均花费多长时间才被复合掉? 该时间与一个正常格点上的原子变成间隙原子所需等待的时间相比, 哪个长?[解答]与填隙原子相邻的一个格点是空位的几率是, 平均来说, 填隙原子要跳步才遇到一个空位并与之复合. 所以一个填隙原子平均花费的时间才被空位复合掉.由(4.5)式可得一个正常格点上的原子变成间隙原子所需等待的时间.由以上两式得>>1.这说明, 一个正常格点上的原子变成间隙原子所需等待的时间, 比一个填隙原子从出现到被空位复合掉所需要的时间要长得多.12.一个空位花费多长时间才被复合掉?[解答]对于借助于空位进行扩散的正常晶格上的原子, 只有它相邻的一个原子成为空位时, 它才扩散一步, 所需等待的时间是. 但它相邻的一个原子成为空位的几率是, 所以它等待到这个相邻原子成为空位, 并跳到此空位上所花费的时间.13.自扩散系数的大小与哪些因素有关?[解答]填隙原子机构的自扩散系数与空位机构自扩散系数可统一写成.可以看出, 自扩散系数与原子的振动频率, 晶体结构(晶格常数), 激活能()三因素有关.14.替位式杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]占据正常晶格位置的替位式杂质原子, 它的原子半径和电荷量都或多或少与母体原子半径和电荷量不同. 这种不同就会引起杂质原子附近的晶格发生畸变, 使得畸变区出现空位的几率大大增加, 进而使得杂质原子跳向空位的等待时间大为减少, 加大了杂质原子的扩散速度.15.填隙杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]正常晶格位置上的一个原子等待了时间后变成填隙原子, 又平均花费时间后被空位复合重新进入正常晶格位置, 其中是填隙原子从一个间隙位置跳到相邻间隙位置所要等待的平均时间. 填隙原子自扩散系数反比于时间.因为>>,所以填隙原子自扩散系数近似反比于. 填隙杂质原子不存在由正常晶格位置变成填隙原子的漫长等待时间, 所以填隙杂质原子的扩散系数比母体填隙原子自扩散系数要大得多.16.你认为自扩散系数的理论值比实验值小很多的主要原因是什么?[解答]目前固体物理教科书对自扩散的分析, 是基于点缺陷的模型, 这一模型过于简单, 与晶体缺陷的实际情况可能有较大差别. 实际晶体中, 不仅存在点缺陷, 还存在线缺陷和面缺陷,这些线度更大的缺陷可能对扩散起到重要影响. 也许没有考虑线缺陷和面缺陷对自扩散系数的贡献是理论值比实验值小很多的主要原因.17.离子晶体的导电机构有几种?[解答]离子晶体导电是离子晶体中的热缺陷在外电场中的定向飘移引起的. 离子晶体中有4种缺陷: 填隙离子, 填隙离子, 空位, 空位. 也就是说, 离子晶体的导电机构有4种. 空位的扩散实际是空位附近离子跳到空位位置, 原来离子的位置变成了空位. 离子晶体中, 空位附近都是负离子, 空位附近都是正离子. 由此可知,空位的移动实际是负离子的移动, 空位的移动实际是正离子的移动. 因此, 在外电场作用下, 填隙离子和空位的漂移方向与外电场方向一致, 而填隙离子和空位的漂移方向与外电场方向相反.。
《材料科学基础》课件之第四章----04晶体缺陷
41
刃位错:插入半原子面,位错上方,原子间距变小, 产生压应变,下方原子间距变大,拉应变。过渡处 切应变,滑移面处有最大切应力,正应力为0。x NhomakorabeaGb
2 (1 )
y(3x2 (x2
y2) y2 )2
y
Gb
2 (1
)
y(x2 y2) (x2 y2)2
z ( x y )
x
xy
Gb
2 (1 )
21
刃位错b与位错线 垂直
螺位错b与位错线 平行
bb
l
l
正
负
b
b
右旋
左旋
任意一根位错线上各点b相同,同一位错只有一个b。
有大小的晶向指数表示
b a [uvw] 模 n
b a u2 v2 w2 n
22
Burgers矢量合成与分解:如果几条位错线在晶体内
部相交(交点称为节点),则指向节点的各位错的伯氏矢量 之和,必然等于离开节点的各位错的伯氏矢量之和 。
不可能中断于晶体内部(表面露头,终止与 晶界和相界,与其他位错相交,位错环)
半原子面及周围区域统称为位错
18
2. 螺位错
晶体在大于屈服值的切应力作用下,以某晶面为滑移面发生滑移。由于位错线周围 的一组原子面形成了一个连续的螺旋形坡面,故称为螺位错。
几何特征:位错线与原子滑移方向相平行;位错线周围原子的配置是螺旋状的。
d
34
六、位错应变能
位错原子偏移正常位置,产生畸变应力, 处于高能量状态,但偏移量很小,晶格为弹 性应变。
位错心部应变较大,超出弹性范围, 但这部分能量所占比例较小, <10%,可以近似忽略。
35
1. 理论基础:连续弹性介质模型
第四章晶体中的点缺陷与线缺陷作业题答案
Al O
'
Al2 O3 2MgO 2Mg 'Al VO 2OO CaF2 '' 2YF3 2YCa VCa 6FF
(2) (4)
CaF2 YF3 YCa Fi' 2FF
CaF
'
2 B、 2YF3 2YCa VCa 6FF
CaF
"
A 可能性较大。因萤石晶体中存较多的八面体空隙,F-离子半径较小,形成填隙型固溶体比较稳定。 6、CeO2 为萤石结构,其中加入 15mol%CaO 形成固溶体,测得固溶体密度 D=7.01g/cm3,晶胞参数 a0= 0.5417nm,试通过计算判断生成的是哪一种类型固溶体。(已知原子量 Ce 140.12,Ca 40.08,O 16.00) 解:对于 CaO-CeO2 固溶体来说,从满足电中性来看,可以形成氧离子空位的固溶体也可形成 Ca2+嵌入阴 离子间隙中的固溶体,其固溶方程为:
当 CaCl2 中 Ca2+置换 KCl 中 K+而出现点缺陷,其缺陷反应式如下:
KCl ' CaCl2 Ca K 2ClCl +VK
CaCl2 中 Ca2+进入到 KCl 间隙中而形成点缺陷的反应式为:
KCl ' CaCl2 Ca i 2ClCl +2VK
5. 试写出以下缺陷方程(每组写出二种),并判断是否可以成立,同时简单说明理由。
CeO 2 CaO Ca " Ce VO O O CeO 2 2CaO Ca " Ce Ca i 2O O
晶体的缺陷
原子绝对严格按晶格的周期性排列的晶体是不存 在的,实际晶体中或多或少都存在缺陷,至少晶 体不可能是无穷大的。晶体缺陷按几何形态划分 为点缺陷、线缺陷和面缺陷。
点缺陷是原子热运动造成的,在平衡时,这些热 缺陷的数目是一定的。缺陷的扩散不仅受到晶格 周期性的约束,还会发生复合现象。杂质原子的 扩散系数比晶体原子自扩散系数大。离子沿外电 场方向的扩散便构成了离子导电。
-e
Na+ Cl- Na+
用X射线或 射线辐照、用中子或电子轰击晶体。
色心是指晶体中存在的能对特定波长的光产生吸 收的点缺陷。在特定的条件下,很多材料中都可 观察到色心。容易产生色心的材料有碱金属卤化 物、碱土金属氟化物和部分金属氧化物。色心可 以在电离辐射的照射下产生,也可以在一定的氧 化或还原性气氛中加热晶体得到,还可以用电化 学方法产生出一些特定的色心。最常见并研究的 最充分的是碱金属或碱土金属卤化物中的F色心, F色心是俘获了电子的负离子空位。正离子空位 缺陷俘获空穴形成的色心称做V色心。另外,还 有其他类型的色心,如H色心、M色心和R色心 等。BaFBr:Eu中的F色心有F(F)和F(Br) 两种,分别对应于材料中俘获了电子的两种阴离 子空位。
替位式杂质在晶体中的溶解度也决定于原子的 几何尺寸和化学因素。如果杂质和基质具有相近的 原子尺寸和电负性,可以有较大的溶解度。但也只有 在二者化学性质相近的情况下,才能得到高的固溶 度。 元素半导体、氧化物及化合物半导体晶体中的 替位式杂质,通常引起并存的电子缺陷,从而明显 的改变材料的导电性。例如:Si晶体中含有As5+时, 由于金刚石四面体键仅需4个电子,所以每个As多 了一个电子;如果Si晶体中含有三价原子时,由于 共价键中缺少一个电子而形成电子空位即空穴,这 种掺杂的Si晶体都因杂质原子的存在而是电导率有 很大提高。
固体物理-第4章-晶体中的缺陷和扩散-4
(成对出现)
4、杂质原子 在材料制备中,有控制地在晶体中引入杂质原子
A、杂质原子取代基质原子而占据格点位置,称替代式杂质。
(二者相接近或前者大一些)
B、杂质原子占据格点间的间隙位置,称填隙式杂质。
(杂质原子比基质原子小)
点缺陷的运动 1、空位的运动
空位运动势场示意图
原子结合成晶体的源动力:原子间的吸引力. 理想晶体的生长
问题4:当初如何提出位错概念?位错滑移如何理解?
Ax A d
a
x a 2
xa 2
弹性形变
范性形变 原子不能回到原来位置,易到A
即发生滑移
Ax A
d a
?有问题
最初认为: 滑移是相邻两晶面整体的相对刚性滑移
则可计算:使其滑移的最小切应力: c
第四章 晶体中的缺陷和扩散
原子绝对严格按晶格的周期性排列的晶体不存在
缺陷举例: 如晶体表面、晶粒间界、人为掺杂等
如金刚石
空位
点缺陷 填隙原子 (0维)
杂质原子
刃位错
线缺陷
晶体缺陷的基本类型 (1维)
(按维度或尺寸分类)
螺位错
大角晶界
晶粒间界
面缺陷
小角晶界
(2维) 堆垛间界(层错)
问题1:点缺陷的定义、分类、运动及其对晶体性能影响?
若某一晶面A丢失,则原子面排列: ABCABCBCABC………..
问题7:一定温度下,系统达统计平衡时,
热缺陷(空位.间隙原子)数目?
热力学平衡条件
平衡状态下晶体内的热缺陷数目
系统自由能F U TS 最小
F n T
0
热缺陷的数目
1、肖脱基缺陷(或空位)浓度
第四章 晶体结构缺陷习题与解答
第四章晶体结构缺陷习题与解答4.1 名词解释(a)弗伦克尔缺陷与肖特基缺陷;(b)刃型位错和螺型位错解:(a)当晶体热振动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗伦克尔缺陷。
如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,在原正常格点上留下空位,这种缺陷称为肖特基缺陷。
(b)滑移方向与位错线垂直的位错称为刃型位错。
位错线与滑移方向相互平行的位错称为螺型位错。
4.2试述晶体结构中点缺陷的类型。
以通用的表示法写出晶体中各种点缺陷的表示符号。
试举例写出CaCl2中Ca2+置换KCl中K+或进入到KCl间隙中去的两种点缺陷反应表示式。
解:晶体结构中的点缺陷类型共分:间隙原子、空位和杂质原子等三种。
在MX 晶体中,间隙原子的表示符号为MI或XI;空位缺陷的表示符号为:VM或VX。
如果进入MX晶体的杂质原子是A,则其表示符号可写成:AM或AX(取代式)以及Ai(间隙式)。
当CaCl2中Ca2+置换KCl中K+而出现点缺陷,其缺陷反应式如下:CaCl2++2Cl ClCaCl2中Ca2+进入到KCl间隙中而形成点缺陷的反应式为:CaCl2+2+2Cl Cl4.3在缺陷反应方程式中,所谓位置平衡、电中性、质量平衡是指什么?解:位置平衡是指在化合物MaXb中,M格点数与X格点数保持正确的比例关系,即M:X=a:b。
电中性是指在方程式两边应具有相同的有效电荷。
质量平衡是指方程式两边应保持物质质量的守恒。
4.4(a)在MgO晶体中,肖特基缺陷的生成能为6ev,计算在25℃和1600℃时热缺陷的浓度。
(b)如果MgO晶体中,含有百万分之一mol的Al2O3杂质,则在1600℃时,MgO晶体中是热缺陷占优势还是杂质缺陷占优势?说明原因。
解:(a)根据热缺陷浓度公式:exp(-)由题意△G=6ev=6×1.602×10-19=9.612×10-19JK=1.38×10-23 J/KT1=25+273=298K T2=1600+273=1873K298K:exp=1.92×10-511873K:exp=8×10-9(b)在MgO中加入百万分之一的Al2O3杂质,缺陷反应方程为:此时产生的缺陷为[ ]杂质。
晶体结构缺陷(陈春华)
“完美晶体”只是一种想象,缺陷晶体则是绝对的。
结构缺陷显著影响材料的各种物理、化学性质: 力学性质、扩散特性、反应活性、烧结活性、光电 特性等。 结构缺陷的调控是材料科学的“焦点”。
References: 1. “Basic Solid State Chemistry” Anthony R. West, 2th
vacancy pair
interstitial anion
Anion vacancy
第二节:结构缺陷形成热力学和 缺陷结构的绝对性
Perfect crystals are built up of regular arrangements of atoms in three dimensions; in a perfect crystal, all the atoms at rest on their correct lattice positions.
ΔH ≈ const. and ΔSvib ≈ const. Not true!
ΔSconf
= k lnW
= k ln (N + nV )! N !nV !
⎛ ⎜W ⎝
=
(
N + nV ) N !nV !
!
⎞ ⎟ ⎠
considering N >> 1 and nV >> 1 (N >> nV ) and applying Stirling ' s Approximation : ln x! = x ln x + x (x >> 1)
Cl Na Cl Na Cl Na Na Cl Na Cl Na Cl Cl Na e’ Na Cl Na Na Cl Na Cl Na Cl Cl Na Cl Na Cl Na
4. 晶体缺陷
螺型位错的滑移:在图示的晶体上施加一切应力,当应力足够大 时,有使晶体的左右部分发生上下移动的趋势。假如晶体中有一 螺型位错,显然位错在晶体中向后发生移动,移动过的区间右边 晶体向下移动一柏氏矢量。因此,①螺位错也是在外加切应力的 作用下发生运动;②位错移动的方向总是和位错线垂直;③运动 位错扫过的区域晶体的两部分发生了柏氏矢量大小的相对运动 (滑移);④位错移过部分在表面留下部分台阶,全部移出晶体 的表面上产生柏氏矢量大小的完整台阶。这四点同刃型位错。
第二节 位错的基本概念
一.位错概念的引入
★1926年 Frank计算了理论剪切强度,与实际剪切 强度相比,相差3~4个数量级,当时无法解释, 此矛盾持续了很长时间 。
★1934年 Taylor在晶体中引入位错概念,将位错与 晶体结构、晶体的滑移联系起来解释了这种差异 。
★ 1939年 Burgers提出柏氏矢量b以表征位错的特征, 阐述了位错弹性应力场理论。
例题
Cu晶体的空位形成能uv=0.9ev/atom或 1.44*10-19J/atom材料常数A取作1,k=1.38*10-23. 计算:
1)在500℃下,每立方米中的空位数目; 2)500 ℃下的平衡空位浓度 。
解:首先确定1m3体积内原子Cu原子总数 (已知Cu的摩尔质量MCu=63.54g/mol,500 ℃
螺型位错
τb
晶体的局部滑移
螺型位错的原子组态
混合型位错: 晶体的局部滑移
τ∧ b
混合型位错的原子组态
线缺陷:在三维空间的一个方向上的尺寸很大(晶粒数量级),
另外两个方向上的尺寸很小(原子尺寸大小)的晶体缺陷。其 具体形式就是晶体中的位错Dislocation
一、位错的原子模型
材料基础-第四章固体材料的缺陷
例如,Fe的剪切模量大约100GPa,则理论剪切 模量应为3000MPa。但是,单晶体Fe的实际强度仅 为1-10MPa,晶面之间的滑移用相当小剪力就能移 动。理论值与实际值相差巨大。因而,人们就猜测 晶体中存在着象位错这样的线缺陷。 当时仅是理论上的一种推测,没有真正看到。 直到50年代,透射电镜(TEM)的研发成功,才从 实验中观察到实际的位错形貌。 当晶体的一部分相对于另一部分进行局部滑移 时,晶体的已滑移部分与未滑移部分的交界线形成 分界线,即位错,用TEM可观察到(见图4-4)。 位错主要分两种类型:刃型位错和螺型位错。
按晶体缺陷的几何特征,可以分成四种 基本类型:点缺陷、线缺陷(位错)、面缺陷 和体缺陷,如图4-1所示。 但需记住,这些缺陷只代表理想原子排 列中的缺陷。而实用上,为了获得所要求的 材料性能如强度、硬度、塑性等,有时要有 意地制造一些缺陷,即通过合金化、扩散、 热处理和表面处理,设计和控制这些缺陷。 因此,设计和控制晶体缺陷是改进产品 质量的关键,特别是对晶体生长以及使用过 程中控制缺陷的形成、类型以及变化,都是 极为重要的。
图4-3 晶格节点的置换原子
4. 点缺陷对材料性能的影响 在一般情况下,点缺陷主要影响晶体的物 理性质,如比容、比热容、电阻率等。 (1)比容 为了在晶体内部产生一个空位,需将该处 的原子移到晶体表面上,这就导致体积的增加。
(2)比热容 由于形成点缺陷,需向晶体提供附加的能 量(空位生成焓),因而引起附加的比热容。
断裂,而不会沿垂直截面的方向断裂,原因在于 材料在变形过程中发生了滑移,如图4-10所示。
图4-10 单晶体的拉伸断裂 及晶面滑移形貌
这是因为,材料的塑性变形通常会沿着晶体原子 的密排方向滑移,见图4-11 外加拉应力、滑移方向和滑移面的关系
第四章 缺陷
混合位错:在实际晶体中可能同时产生刃错位和螺位错
┴
4.2.3 面缺陷
面缺陷的特征: 指二维尺度很大而第三维尺度
很小的缺陷。面缺陷的取向及分布与材料的断裂韧 性有关 ,如解理性。
面缺陷类型:
表面(surface) 内界面(interface):层错、孪晶界、晶界
肖特基缺陷
弗仑克尔缺陷
(2)间隙原子:
在晶体中总是有少部分原子离开正常格点,跳到间隙 位置,形成间隙原子,或者说,间隙原子就是进入点阵间隙 中的原子。间隙原子可以是晶体中的正常原子离位产生,也 可以是外来杂质原子。
间隙原子
空位
图4-4 空位和间隙原子周围的弹性畸变
(3)杂质原子:
取代晶格中的原子,进入正常格点位置或进入间隙位置 的杂质原子。 如氧原子,在硅中主要占据间隙位置;特意掺入的B、 Al、Ga、P、As等杂质,则为替位原子,它们在硅中占据晶 格格点位置。原子半径较硅原子半径大的原子使晶格膨胀, 而原子半径比硅原子半径小的则使晶格收缩,造成晶格缺陷。
第四章 晶体缺陷
4.1 概述 4.2 晶体缺陷
第四章内容提要
1、点缺陷及点缺陷的运动:空位、间隙原子、替 位原子 2、线缺陷及位错运动:刃型位错、螺型位错、混 合型位错; 3、面缺陷:层错、表面、晶界和孪晶缺陷;
4、体缺陷:空隙与析出物。
概 述
前面章节都是就理想状态的完整晶体而 言,即晶体中所有的原子都在各自的平衡位 置,处于能量最低状态。然而在实际晶体中 原子的排列不可能这样规则和完整,而是或 多或少地存在离开理想的区域,出现不完整 性。正如我们日常生活中见到玉米棒上玉米 粒的分布。通常把这种偏离完整性的区域称 为晶体缺陷。
晶体缺陷
固溶体是以某一组元为溶剂,在其晶体点阵中溶 入其他组元原子(溶质原子)所形成的均匀混合 的固态溶体,它保持着溶剂的晶体结构类型。
固溶度:硅中能容纳杂质的最大数目 影响固溶度的因素有很多,主要有以下几个因素: ①杂质的种类。硅与杂质原子的晶体结构相同时, 杂质原子就可以连续不断地置换硅原子。如果两 种原子的晶体结构类型不同,固溶度是有限的。
一般把多出的半原子面在滑移面上边的称为正刃 型位错,记为“┻”;而把多出在下边的称为负 刃型位错,记为“┳”。正、负之分只具相对意 义而无本质的区别。
刃位错的几何特征:
位错线与原子滑移方向相垂直;
滑移面上部分位错线周围原子受压应力作用,原 子间距小于正常晶格间距; 滑移面下部分位错线周围原子受张应力作用,原 子间距大于正常晶格间距。
根据晶体缺陷的几何特征,可以分为四类:
点缺陷:其特征是在三维空间的各个方面上尺寸都很小, 尺寸范围约为一个或几个原子尺度, 故称零维缺陷,包 括空位、间隙原子、杂质或溶质原子等; 线缺陷:其特征是在两个方向上尺寸很小,另外一个方向 上延伸较长,也称一维缺陷,如各类位错;
面缺陷:其特征是在一个方向上尺寸很小,另外两个方向 上扩展很大,也称二维缺陷.晶界、相界、孪晶界和堆垛 层错等都属于面缺陷。
位错的爬升
位错爬升是靠原子或空位的转移来实现的。当原 子从多余半原子面下端转移到别处,或空位从别 处转移到半原子面下端时,位错线便向上爬升, 即正爬升;反之,当原子从别处转移到多余半原 子面下端时,或空位从这里转移到别处去时,位 错线就向下爬升,即负爬升。
刃位错爬升的实质就是构成刃位错的多余半原子 面的扩大或缩小。
位错运动不引起晶体体积的变化,这类运动称为位错的守 恒运动(滑移) 位错运动引起晶体体积的变化,这类运动称为位错的非守 恒运动(爬升)
第四章 晶体缺陷与缺陷运动
第四章晶体缺陷与缺陷运动§4.1 晶体缺陷的基本类型§4.2 位错缺陷的性质、晶体滑移的本质§4.3 热缺陷数目的统计平衡理论§4.4 热缺陷的运动、产生和复合§4.5 晶体中的扩散过程§4.6 离子晶体中的点缺陷与导电性前言理想晶体的主要特征是原子(或分子)的严格规则排列、周期性实际晶体中的原子排列会由于各种原因或多或少地偏离严格的周期性,存在着偏离了理想晶体结构的区域,于是就形成了晶体的缺陷。
晶体中虽然存在各种各样的缺陷,但实际在晶体中偏离平衡位置的原子数目很少(相对于晶体原子总数),在最严重的情况下,一般不会超过原子总数的万分之一,因而实际晶体结构从整体上看还是比较完整的。
缺陷——偏离了晶体周期性排列的局部区域。
前言(续)晶体中缺陷的种类很多,它们分别影响着晶体的力学、热学、电学、光学等各方面的性质。
然而,尽管在晶体中缺陷的数目很少,它们的产生和发展、运动和相互作用、以及合并和消失,对晶体的性能有重要的影响。
因此,晶体缺陷是固体物理中一个重要的研究领域,它对于研究和理解一些不能用完整晶体理论解释和理解的现象具有重要的意义。
例如:塑性与强度、扩散、相变、再结晶、离子电导以及半导体的缺陷导电等现象。
§4.1 晶体缺陷的基本类型一、点缺陷点缺陷——发生在一个或几个晶格常数范围内的缺陷。
如:空位、填隙原子、杂质原子等。
这些空位、填隙原子是由热起伏原因而产生的,所以又称为热缺陷。
晶体中存在的缺陷种类很多,但由于晶体中的晶体结构具有规律性,因此晶体中实际出现缺陷的类型也不是无限制的。
根据晶体缺陷在空间延伸的线度,晶体缺陷可分为点缺陷、线缺陷、面缺陷和体缺陷。
几种重要的点缺陷:1)弗仑克尔缺陷和肖脱基缺陷原子(或离子)在格点平衡位置附近振动,由于存在这样的热振动的能量涨落,使得当某一原子能量大到某一程度时,原子就会克服平衡位置势阱的束缚,脱离格点,而到达邻近的原子空隙中,当它失去多余动能后,就会被束缚在那里,这样产生一个暂时的空位和一个暂时的填隙原子,当又经过一段时间后,填隙原子会与空位相遇,并同空位复合;也有可能跳到较远的间隙中去或跳到晶体边界上去。
第4章晶体缺陷-位错3.15
根据原子的滑移方向和位错线取向的几何 特征,位错可分为:
刃位错 螺位错 混合位错
返回 15:07
GARREY
机电工程学院
4.0 概述
4.1 点缺陷
4.2 位错的 基本概念
4.3 位错的 能量及交互 作用
4.4晶体中 的界面
Foundation of Materials Science
二.位错类型
4.2 位错基本概念
的b矢量之和为零。
GARREY
机电工程学院
Foundation of Materials Science
柏氏矢量与位错线
1. 刃位错柏氏矢量⊥位错线,可以为任何形状;
2. 螺位错柏氏矢量∥位错线,只能为直线;
3. b∥t则为螺位错,同向为右螺,反向为左螺;b⊥t为刃位错; 任意角度φ为混合位错,刃位错分量:bsin φ,螺位错分量: bcosφ
4. 同一根位错线上各处柏氏矢量一定相同;
5. 位错线只能终止在晶界或表面,不能终止在晶体内部,在内 部只能形成封闭环或空间网络。(位错是滑移区的边界)
15:07
GARREY
机电工程学院
4.0 概述 4.1 点缺陷 4.2 位错的 基本概念 4.3 位错的 能量及交互 作用 4.4晶体中 的界面
返回 15:07
★1934年 Taylor在晶体中引入位错概念,将位错与 晶体结构、晶体的滑移联系起来解释了这种差异 。
★1939年 Burgers提出柏氏矢量b以表征位错的特征, 阐述了位错弹性应力场理论。
★1947年 Cottrell发表了溶质原子与位错间交互作用 的研究报告 。
返回 15:07
GARREY
机电工程学院
返回 15:07
材料物理化学-第四章 晶体的点缺陷与线缺陷
第四章晶体结构缺陷晶体缺陷的产生与晶体的生长条件,晶体中原子的热运动以及对晶体的加工工艺等有关。
事实上,任何晶体即使在绝对零度都含有缺陷,自然界中理想晶体是不存在的。
既然存在着对称性的缺陷,平移操作不能复制全部格点,那么空间点阵的概念似乎不能用到含有缺陷的晶体中,亦即晶体理论的基石不再牢固。
但缺陷的存在只是晶体中局部的破坏。
作为一种统计,一种近似,一种几何模型,缺陷存在的比例毕竟只是一个很小的量(这指的是通常的情况),从占有原子百分数来说,晶体中的缺陷在数量上是微不足道的。
因此,整体上看,可以认为一般晶体是近乎完整的。
因而对于实际晶体中存在的缺陷可以用确切的几何图形来描述,这一点非常重要。
它是我们今后讨论缺陷形态的基本出发点。
事实上,把晶体看成近乎完整的并不是一种凭空的假设,大量的实验事实(X射线及电子衍射实验提供了足够的实验证据)都支持这种近乎理想的对称性。
当然不能否认,当缺陷比例过高以致于这种“完整性”无论从实验或从理论上都不复存在时,此时的固体便不能用空间点阵来描述,也不能被称之为晶体。
这便是材料中的另一大类别:非晶态固体。
对非晶固体和晶体,无论在原子结构理论上或是材料学家对它们完美性追求的哲学思想上都存在着很大差异,有兴趣的同学可以对此作进一步的理解。
缺陷是晶体理论中最重要的内容之一。
晶体的生长、性能以及加工等无一不与缺陷紧密相关。
因为正是这千分之一、万分之一的缺陷,对晶体的性能产生了不容小视的作用。
这种影响无论在微观或宏观上都具有相当的重要性。
4.1热力学平衡态点缺陷4.1.1 热缺陷的基本类型点缺陷形成的热力学平衡当晶体的温度高于绝对零度时,晶格内原子吸收能量,在其平衡位置附近温度越高,热振动幅度加大,原子的平均动能随之增加。
热振动的原子在某一瞬间可以获得较大的能量,挣脱周围质点的作用,离开平衡位置,进入到晶格内的其它位置,而在原来的平衡格点位置上留下空位。
这种由于晶体内部质点热运动而形成的缺陷称为热缺陷。
第4章 结构缺陷及固溶体
′ 子空位成对产生,晶体体积增大。 NaCl ⇔VNa +VCl 空位成对产生,晶体体积增大。
•
B 杂质缺陷 概念——杂质原子进入晶体而产生的缺陷。 杂质原子进入晶体而产生的缺陷。 概念 杂质原子进入晶体而产生的缺陷 种类——间隙杂质 种类 间隙杂质 置换杂质 特点——杂质缺陷的浓度与温度无关,只决定 杂质缺陷的浓度与温度无关, 特点 杂质缺陷的浓度与温度无关 于溶解度。杂质原子(离子)其量 于溶解度。杂质原子(离子)其量— 般小于0.1%。 般小于 %。 存在的原因——本身存在 存在的原因 本身存在 有目的加入(改善晶体的性能 有目的加入 改善晶体的性能) 改善晶体的性能
“×”表示有效零电荷。 表示有效零电荷。 表示有效零电荷
+ - 离子晶体为例 用MX离子晶体为例( M2+ ;X2- ): 离子晶体为例(
z A b
用一个主要符号表明缺陷的种类 用一个下标表示缺陷位置 用一个上标表示缺陷的有效 有效电荷 用一个上标表示缺陷的有效电荷
空位V: ①空位 : VM 表示:M原子占有的位置,在M原子移走后出现的空位; 表示 原子占有的位置, 原子移走后出现的空位; 原子占有的位置 原子移走后出现的空位 VX 表示 原子占有的位置,在X原子移走后出现的空位。 表示:X原子占有的位置, 原子移走后出现的空位。 原子占有的位置 原子移走后出现的空位
V + h =V Cl
•
• Cl
填隙原子:用下标“ 表示 ②填隙原子:用下标“i”表示 Mi 表示 原子进入间隙位置; Mi ”表示 2+离子进入间隙位置。 表示M原子进入间隙位置; 表示M 离子进入间隙位置。 原子进入间隙位置 表示X原子进入间隙位置; Xi 表示 原子进入间隙位置; Xi ‥表示 2-离子进入间隙位置。 表示X 离子进入间隙位置。 原子进入间隙位置 错放位置(错位原子): ③错放位置(错位原子): MX 表示 原子占据了应是X原子正常所处的平衡位置。 表示M原子占据了应是 原子正常所处的平衡位置 原子占据了应是 原子正常所处的平衡位置。 XM 类似。 类似。 溶质原子(杂质原子): ④溶质原子(杂质原子): LM 表示 溶质占据了 的位置。如:KNa 表示L溶质占据了 的位置。 溶质占据了M的位置 SX 表示 溶质占据了X位置。 表示S溶质占据了 位置 溶质占据了 位置。 自由电子及电子空穴: ⑤自由电子及电子空穴:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杂质,在晶体中的固溶度不同,影响其含量;杂 质在晶体结晶过程中的分凝系数不同,影响杂 质在晶体中的分布。
由杂质引起的点缺陷,引出另一个重要概念:固溶体 固溶度(杂质在晶体中的溶解度) 外来的杂质进入晶体便形成点缺陷,如果外来物质: 在一定范围内量不变;不与原来的质点发生化学反应形 成化合物;不改变原来晶体结构,则可将所形成的固体 物质称为固溶体,或固态溶液。由固体溶质和溶剂所组 成的均匀固体溶液。
置换型固溶体(杂质占据晶格位置)和间隙型固溶体(杂 质分布在晶格间隙中)。
特点:不改变晶体结构,但改变晶胞常数
连续固溶体:溶剂和溶质任意比例相混溶,分不清溶剂和 溶质,是相对的。
有限固溶体:溶质只能以一定限量溶入溶剂中,超过这一 限量(固溶度),就会出现第二相
影响置换型固溶体的因素主要有:
(1)结构类型:结构相同的,容易固溶,否则,难
第4章 晶体缺陷
晶体缺陷的分类 晶体缺陷的特征
质点严格按照空间点阵排列的晶体称为理 想晶体。温度处于绝对零度时,才可能出现理想 晶体。
温度升高时,质点排列总会或多或少地偏离 理想晶体中的周期性、规则性排列,实际晶体中 存在着各种尺度上的结构不完整性。
了解和掌握各种缺陷的成因、特点及其变化 规律,对于材料工艺过程的控制,材料性能的改 善,新型结构和功能材料的设计、研究与开发具 有非常重要意义。
由于热运动,新缺陷不断产生,原缺陷不断消失, 从而处于一定的平衡状态,即在一定温度下,缺陷有对 应的平衡浓度。
一般正负离子半径相差较大或或结构中有较大空隙 存在时易形成弗伦克尔缺陷,如CaF2结构中存在立方 体空隙,易形成弗伦克尔缺陷。
(2)肖特基(Schottky)缺陷 正常晶格结点上的质点迁移到晶体的表面,在晶体
内部正常格点上留下空位,称之为肖特基缺陷。特点: ① 为介稳态; ② 在晶体中只形成空位而没有间隙质点; ③ 在离子晶体中,正、负离子空位成对产生; ④ 晶体体积增大,晶格常数改变; ⑤ 缺陷的形成与消失是动态平衡,在一定温度下有确定
的平衡浓度; ⑥ 晶体中当正、负离子半径相差较小或结构比较紧密时
较易形成。
肖特基缺陷的形成,是晶体表面上的质点迁 移至表面外新的结点位置上,内部正常晶格结点 位置上的质点依次往外移,而不是从内部一下子 移到表面去,因为这样需要的能量大。
2.杂质缺陷 由于外来杂质质点进入晶体结构中而产生的缺陷,称为杂质
缺陷,又称为组成缺陷。固溶体即是一种组成缺陷。
杂质质点又可分为置换杂质质点及间隙杂质质点两种。前者 是杂质质点替代了原有晶格质点,由此形成的固溶体称为置换型 固溶体;后者是杂质质点进入正常晶格的间隙中,由此形成的固 溶体称为间隙型固溶体。
成为间隙质点,原来的结点位置留下了空位,称之为弗 伦克尔缺陷。特点: ① 为介稳态; ② 空位与间隙质点成对出现; ③ 晶体体积不变,晶格常数不发生变化; ④ 缺陷的形成与复合(即间隙质点回到原来结点位置, 使缺陷消失)是动态平衡,在一定温度下有确定的平衡 浓度; ⑤ 晶体结构中当正、负离子半径相差较大或有较大空隙 存在时较易形成。
1926年,弗伦克尔首先提出这种缺陷的存在,所以以其 名来命名。
由于离开正常晶格结点位置的质点是挤进了正常晶 格的结点间隙,所以间隙周围晶体结构便产生畸变。
(1)质点进入间隙位置,要回到平衡位置并不容易,需 克服一定的势垒才能到平衡位置,所以是处于介稳状态;
(2)间隙质点可能越过其周围的势垒回到原来的位置或 进入附近的其他空位中,也可能再进入另一个间隙中去。
这是在1934年由肖特基提出的一种晶体缺陷。
在离子晶体中,为了保持电中性和不同离子 间的位置关系,在形成肖特基缺陷时,新的正、 负离子空位是同时产生的。在一般结构比较紧密, 没有较大空隙的晶体中或在正、负离子半径相差 较小的晶体中比较容易形成肖特基缺陷,如 NaCl结构中,只存在四面体空隙,则产生的缺 陷以肖特基缺陷为主。
杂质缺陷的浓度不受温度的影响,只与杂质的含量有关,这 与热缺陷不同。
在固态条件下,一种组分内“溶解”了其他组分而而形成的 单一、均匀的晶态固体。
自然界的纯是相对的,不纯是绝对的。不管用什么方法,怎 样细心的制备,都会有杂质存在,最纯的锗也含有10个/m3的杂 质。
杂质质点(掺杂质点)进入晶体后,因杂质 质点和原有的的质点性质不同,故它不仅破坏 了质点有规则的排列,而且在杂质质点周围的 周期势场一起改变,因此形成一种缺陷。
晶体的缺陷主要有
点缺陷,线缺陷(位错),面缺陷(晶界)
体缺陷(夹杂,沉淀)
• 4.1 点缺陷 根据点缺陷在晶格中分布方式,其存在形式分为如下三种:
1.空位 在晶体正常晶格结点位置上,某个质点跑掉了,即
正常晶格结点Байду номын сангаас有被质点所占据,成为空结点,形成空 位。
弗伦克尔(Frenker)缺陷 晶体中正常晶格结点位置上的质点进入间隙位置,
性质和压力的大小的变化而发生组成偏离化学计量的现 象,称为非化学计量化合物,由此而产生的缺陷,称为 非化学计量缺陷。
非化学计量缺陷,可能某种原子不够而形成空位, 或某种原子过量而出现间隙原子,形成非化学计量化合 物。
位,生成置换型固溶体。 固溶体的性质和作用 (1) 在固溶体中,晶胞的尺寸随着组成连续地变化。 (2) 固溶体的电性随着杂质浓度的变化往往出现线性或
连续的变化。 (3) 固溶体的物理性能可以利用加入的杂质离子进行调
节和改变。 (4) 固溶体的机械强度可以通过杂质的加入量进行调
节。
3.非化学计量结构缺陷 有些化合物,其化学组成会明显的随着周围气氛的
(2)离子尺寸:占据相同位置的质点的尺寸相近,容易 固溶置换
(3)离子类型:类型相同的质点,容易置换
(4)电价是都相同:要保持电荷平衡,等价离子容易置 换
(5)电负性:相近的离子,容易置换固溶
影响间隙型固溶体的因素主要有: (1)添加原子的大小,与晶体结构密切相关,要小于空
隙的大小,容易进入空隙 (2)为保持电荷平衡,进入杂质进入间隙,可能造成空