2016年第8届全国大学生数学竞赛(非数学类)预赛题和参考答案

合集下载

第8届全国大学生数学竞赛(非数学类)预赛参考解答

第8届全国大学生数学竞赛(非数学类)预赛参考解答

第8届全国大学生数学竞赛(非数学类)预赛参考解答 (2016年10月)一 填空题(满分30分,每小题5分)1. 若()f x 在点x a =可导,且()0f a ≠,则1()lim ()nn f a n f a →+∞⎛⎫+ ⎪ ⎪ ⎪⎝⎭= 。

解: 1()lim ()nn f a n f a →+∞⎛⎫+ ⎪ ⎪ ⎪⎝⎭=()()11()()()lim ()nf a f a n f a f a n n e f a ο'→+∞⎛⎫'++ ⎪= ⎪ ⎪⎝⎭。

2. 若(1)=0f ,'(1)f 存在,求极限220(sin cos )tan 3lim (1)sin x x f x x xI e x→+=- .解: 222200(sin cos )3(sin cos )lim 3lim x x f x x x f x x x x x →→+⋅+=⋅I= 所以2222022''22200'(sin cos )(1)sin cos 1=3lim sin cos 1sin cos 1sin 1cos 3(1)lim 3(1)lim()133(1)(1)='(1)22x x x f x x f x x x x x x x x x f f x x x f f →→→+-+-⋅+-+--==-=-I3. 设)(x f 有连续导数,且2)1(=f .记)(2y e f z x=,若z xz=∂∂,求)(x f 在0>x 的表达式. 解: 由题设得)()('222y e f y e y e f xzx x x ==∂∂. 令2y e u x =,得到当0>u 有 )()('u f u u f =, 即uu f u f 1)()('=, 从而())'(ln ')(ln u u f =. 所以有1ln )(ln c u u f +=,cu u f =)(. 再而由初始条件得u u f 2)(=. 故当0>x 有x x f 2)(=.4. 设()sin 2x f x e x =,求(4)(0)f 。

全国大学生数学竞赛(非数学类)大纲及历年预赛试卷

全国大学生数学竞赛(非数学类)大纲及历年预赛试卷
—1—
余弦函数,以及它们的和与积 7. 欧拉(Euler)方程. 8. 微分方程的简单应用 五、向量代数和空间解析几何 1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积. 2. 两向量垂直、平行的条件、两向量的夹角. 3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦. 4. 曲面方程和空间曲线方程的概念、平面方程、直线方程. 5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和
f ( y) x2[1 f ( y)]3
1 x2 (1 f ( y))
f ( y) [1 f ( y)]2 x2[1 f ( y)]3
解法 2 方程 xe f (y) ey ln 29 取对数,得 f ( y) ln x y ln ln 29
(1)
方程(1)的两边对 x 求导,得 f ( y) y 1 y x
4.设函数 y y(x) 由方程 xe f ( y) ey ln 29 确定,其中 f 具有二阶导数,且 f 1 ,

d2 y dx 2
________________.
解法 1 方程 xe f ( y) ey ln 29 的两边对 x 求导,得
e f ( y) xf ( y) ye f ( y) e y y ln 29

[ 1 f ( y) y]xe f ( y) ye y ln 29 x
因 e y ln 29 xe f ( y) 0 ,故 1 f ( y) y y,即 y
1
,因此
x
x(1 f ( y))
d2 y dx 2
y
1 x2 (1 f
( y))
f ( y) y x[1 f ( y)]2
点到直线的距离. 6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次

2016年非数学类答案

2016年非数学类答案

10 分
1 1 an (n 1,2,) . 证明 七、 (本题满分 10 分)设 a1 2, an1 2 an
1.极限 lim an 存在;
n
a n 1 2.级数 收敛. n 1 a n 1
1 1 1 an an 1 ,故 an 有下界. 证 1. 因为 an1 2 an an
解法二 由解的结构知此为线性方程,其齐次方程为 10 分
y " 4y ' 4y 0
4y f(x ) 设所求方程为 y " 4y '
而 x 2e 2x 是所求方程的解,代入上式得 f(x ) 2e 2x
5分
4y 2e 2x 可得所求方程为 y " 4y '
xy , 若( x,y) (0, 0) 六、 (本题满分 10 分)已知 f ( x, y ) x 2 y 2 0, 若( x,y) (0, 0)
x [1,1].
由于 max
1 x 2 (1 x) 2
8
1 x 1
7分
2. 令 F x f ( x) x ,x [1,1]. 则 F 1 f 1 1
3 1 ,F 1 f 1 1 . 2 2
但 F x 在 [1,1] 上连续,由介值定理知, F x 在 [1,1] 上至少有一个零点. 又由 1 可知 F ' x f ' ( x) 1 0 ,故 F x 在 [1,1] 上严格单调,从而至多有一个 零点. 这样 F x 在 [1,1] 上有且只有一个零点,即 f ( x) x 在 [1,1] 上有且只 有一个实根. 10 分

2009-16大学生数学竞赛真题(非数学类)--整理20171002

2009-16大学生数学竞赛真题(非数学类)--整理20171002

n=1
n=1
9
2013 年 第五届全国大学生数学竞赛预赛试卷
一、 解答下列各题(每小题 6 分共 24 分,要求写出重要步骤)
( )n
1.求极限 lim 1+ sin π 1+ 4n2 . n→∞
∫ 2.证明广义积分 +∞ sin x dx 不是绝对收敛的 0x
3.设函数 y = y ( x) 由 x3 + 3x2 y − 2 y3 = 2 确定,求 y ( x) 的极值。
二、(5
分)求极限 lim( ex
+
e2x
+"+
e nx
e
)x
,其中 n 是给定的正整数.
x→0
n
∫ 三、(15 分)设函数 f (x) 连续,g(x) = 1 f (xt)dt ,且 lim f (x) = A ,A 为常数,求 g′(x)
0
x→0 x
并讨论 g′(x) 在 x = 0 处的连续性.
(1)
∫∫
S
ρ
(
z x, y,
z
)
dS
;(2)
∫∫
S
z
(
λ
x
+

y

z
)
dS
( ) ( ) ( ) 六.(本题 12 分)设 f(x)是在 −∞, +∞ 内的可微函数,且 f 、 x < mf x ,其 ( ) 中 0 < m < 1 , 任 取 实 数 a0 , 定 义 an = ln f an−1 , n = 1, 2,..., 证 明 :
平面与路径3 x x+1 sin t dt

全国大学生数学竞赛试题解答及评分标准(非数学类)

全国大学生数学竞赛试题解答及评分标准(非数学类)

全国大学生竞赛历年试题名师精讲(非数学类)(2009——2013)第五届全国大学生数学竞赛预赛试卷(非数学类)一、 解答下列各题(每小题6分共24分,要求写出重要步骤)1.求极限(lim 1sin nn →∞+.解因为()sin sin 2n π==……(2分);原式lim 1exp lim ln 1nn n n →∞→∞⎡⎤⎛⎫⎛⎫=+=+⎢⎥ ⎢⎥⎝⎝⎣⎦=2.证明广义积分0sin xdx x ⎰不是绝对收敛的解 记()1sin n n nx a dx xππ+=⎰,只要证明0n n a ∞=∑发散即可。

……………………(2分)因为()()()()10112sin sin 111n n n a x dx xdx n n n ππππππ+≥==+++⎰⎰。

…………(2分) 而()021n n π∞=+∑发散,故由比较判别法0n n a ∞=∑发散。

……………………………………(2分)3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值。

解 方程两边对x 求导,得22236360x xy x y y y ''++-= ………………(1分)故()2222x x y y y x +'=-,令0y '=,得()200x x y x +=⇒=或2x y =-………(2分) 将2x y =-代入所给方程得2,1x y =-=,将0x =代入所给方程得0,1x y ==-,…………………………………(2分)又()()()()()2222222222422x xy y y x x x y yy x y y x ''++--+-''=-()()()0,1,02,1,0200220010,1020x y y x y y y y ''====-==+---''''==-<=>-,故()01y=-为极大值,()21y-=为极小值。

历届全国大学生数学竞赛预赛历年考试

历届全国大学生数学竞赛预赛历年考试

全国大学生数学竞赛预赛试卷(非数学类)2009年 第一届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题5分,共20分)1.计算()ln(1)d yx y x y ++=⎰⎰,其中区域D 由直线1=+y x 及两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足220()3()d 2f x x f x x =--⎰,则()f x =.3.曲面2222x z y =+-平行平面022=-+z y x 地切平面方程是.4.设函数)(x y y =由方程29ln )(yy f e xe=确定,其中f具有二阶导数,且1≠'f ,则=22d d xy.二、(5分)求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定地正整数. 三、(15分)设函数)(x f 连续,10()()g x f xt dt =⎰,且A xx f x =→)(lim 0,A 为常数,求()g x '并讨论)(x g '在0=x 处地连续性. 四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 地正向边界,试证:(1)⎰⎰-=---Lx y Lx yx ye y xe x ye y xed d d d sin sin sin sin ;(2)2sin sin 25d d π⎰≥--Lyy x ye y xe . 五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程地三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线及x 轴及直线1=x 所围图形地面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成地旋转体地体积V 最小5E2七、(15分)已知)(x u n 满足1()()1,2,n xnn u x u x x e n -'=+=,且n eu n =)1(,求函数项级数∑∞=1)(n n x u 之和.八、(10分)求-→1x时,及∑∞=02n n x等价地无穷大量.2010年 第二届全国大学生数学竞赛预赛试卷(非数学类)一、(25分,每小题5分)(1)设22(1)(1)(1)nnx a a a =+++,其中||1,a <求lim .n n x →∞(2)求21lim 1x xx ex -→∞⎛⎫+ ⎪⎝⎭.(3)设0s >,求0(1,2,)sx n nI e x dx n ∞-==⎰.(4)设函数()f t有二阶连续导数,1(,)r g x y f r ⎛⎫== ⎪⎝⎭,求2222g g x y ∂∂+∂∂.(5)求直线10:0x y l z -=⎧⎨=⎩及直线2213:421x y z l ---==--地距离. 二、(15分)设函数()f x 在(,)-∞+∞上具有二阶导数,并且()0f x ''>,lim ()0x f x α→+∞'=>,lim ()0x f x β→-∞'=<,且存在一点0x ,使得0()0f x <.证明:方程()0f x =在(,)-∞+∞恰有两个实根.三、(15分)设函数()y f x =由参数方程22(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,且22d 3d 4(1)y x t =+,其中()t ψ具有二阶导数,曲线()y t ψ=及22132t u y e du e-=+⎰在1t =出相切,求函数()t ψ. 四、(15分)设10,nnn kk a S a =>=∑,证明:(1)当1α>时,级数1nn na S α+∞=∑收敛;(2)当1α≤且()n s n →∞→∞时,级数1n n na S α+∞=∑发散.五、(15分)设l 是过原点、方向为(,,)αβγ,(其中2221)αβγ++=地直线,均匀椭球2222221x y z a b c++≤(其中0c b a <<<,密度为1)绕l 旋转. (1)求其转动惯量;(2)求其转动惯量关于方向(,,)αβγ地最大值和最小值.六、(15分)设函数()x ϕ具有连续地导数,在围绕原点地任意光滑地简单闭曲线C 上,曲线积分422d ()d 0L xy x x yx y ϕ+=+⎰地值为常数.(1)设L 为正向闭曲线22(2)1x y -+=,证明422d ()d 0L xy x x yx y ϕ+=+⎰;(2)求函数()x ϕ;(3)设C 是围绕原点地光滑简单正向闭曲线,求422d ()d C xy x x y x y ϕ++⎰.2011年 第三届全国大学生数学竞赛预赛试卷(非数学类)一、计算下列各题(本题共3小题,每小题各5分,共15分)(1)求11cos 0sin lim xx x x -→⎛⎫⎪⎝⎭;(2).求111lim ...12n n n n n →∞⎛⎫+++⎪+++⎝⎭; (3)已知()2ln 1arctan tt x e y t e⎧=+⎪⎨=-⎪⎩,求22d d y x . 二、(本题10分)求方程()()24d 1d 0x y x x y y +-++-=地通解.三、(本题15分)设函数()f x 在0x =地某邻域内具有二阶连续导数,且()()()0,0,0f f f '''均不为0,证明:存在唯一一组实数123,,k k k ,使得四、(本题17分)设2221222:1x y z a b c∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑及2∑地交线,求椭球面1∑在Γ上各点地切平面到原点距离地最大值和最小值.五、(本题16分)已知S 是空间曲线22310x y z ⎧+=⎨=⎩绕y 轴旋转形成地椭球面地上半部分(0z ≥)(取上侧),∏是S 在(,,)P x y z 点处地切平面,(,,)x y z ρ是原点到切平面∏地距离,,,λμν表示S 地正法向地方向余弦.计算:p1(1)()d ,,SzS x y z ρ⎰⎰;(2)()3d S z x y z S λμν++⎰⎰ 六、(本题12分)设()f x 是在(,)-∞+∞内地可微函数,且()()f x mf x '<,其中01m <<,任取实数0a ,定义1ln (),1,2,...n n a f a n -==,证明:11()nn n aa ∞-=-∑绝对收敛.七、(本题15分)是否存在区间[]0,2上地连续可微函数()f x ,满足(0)(2)1f f ==,()1f x '≤,2()d 1f x x ≤⎰?请说明理由.2012年 第四届全国大学生数学竞赛预赛试卷(非数学类)一、(本大题共5小题,每小题6分,共30分)解答下列各题(要求写出重要步骤).(1)求极限21lim(!)n n n →∞.(2)求通过直线2320:55430x y z l x y z +-+=⎧⎨+-+=⎩地两个互相垂直地平面1π和2π,使其中一个平面过点(4,3,1)-.(3)已知函数(,)ax byz u x y e+=,且20ux y∂=∂∂. 确定常数a 和b ,使函数(,)z z x y =满足方程20z z zz x y x y∂∂∂--+=∂∂∂∂. (4)设函数()u u x =连续可微,(2)1u =,且3(2)d ()d Lx y u x x u u y +++⎰在右半平面及路径无关,求(,)u x y .(5)求极限1limx xx t +. 二、(本题10分)计算20sin d x e x x +∞-⎰.三、(本题10分)求方程21sin2501x x x=-地近似解,精确到0.001. 四、(本题12分)设函数()y f x =二阶可导,且()0f x ''>,(0)0f =,(0)0f '=,求330()lim ()sin x x f u f x u→,其中u 是曲线()y f x =上点(,())P x f x 处地切线在x 轴上地截距.五、(本题12分)求最小实数C ,使得满足10()d 1f x x =⎰地连续函数()f x都有10f dx C ≤⎰.六、(本题12分)设()f x 为连续函数,0t >. 区域Ω是由抛物面22z x y =+和球面2222x y z t ++=(0)z >所围起来地部分. 定义三重积分222()()d F t f x y z v Ω=++⎰⎰⎰,求()F t 地导数()F t ''.七、(本题14分)设1nn a∞=∑及1nn b∞=∑为正项级数,证明:(1)若()111lim 0n n n n n a a b b →∞++->,则级数1n n a ∞=∑收敛; (2)若()111lim 0n n n n n a a b b →∞++-<,且级数1n n b ∞=∑发散,则级数1n n a ∞=∑发散.2013年 第五届全国大学生数学竞赛预赛试卷(非数学类)一、解答下列各题(每小题6分,共24分,要求写出重要步骤) 1.求极限(lim 1sin nn →∞+.2.证明广义积分sin d xx x+∞⎰不是绝对收敛地. 3.设函数()y y x =由323322x x y y +-=确定,求()y x 地极值. 4.过曲线0)y x =≥上地点A 作切线,使该切线及曲线及x 轴所围成地平面图形地面积为34,求点A 地坐标.二、(满分12分)计算定积分2sin arctan d 1cos xx x e I x xππ-⋅=+⎰.三、(满分12分)设()f x 在0x =处存在二阶导数(0)f '',且()0lim0x f x x →=.证明:级数11n f n ∞=⎛⎫⎪⎝⎭∑收敛.四、(满分12分)设(),()0()f x f x m a x b π'≤≥>≤≤,证明2sin ()d baf x x m≤⎰. 五、(满分14分)设∑是一个光滑封闭曲面,方向朝外.给定第二型地曲面积分()()()333d d 2d d 3d d I x x y z y y z x z z x y ∑=-+-+-⎰⎰.试确定曲面∑,使积分I 地值最小,并求该最小值9E3d 六、(满分14分)设22d d ()()a a C y x x y I r x y -=+⎰,其中a 为常数,曲线C 为椭圆222x xy y r ++=,取正向.求极限lim ()a r I r →+∞.七、(满分14分)判断级数()()1111212n n n n ∞=+++++∑地敛散性,若收敛,求其和. 2014年 第六届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(共有5小题,每题6分,共30分)1.已知1xy e =和1xy xe =是齐次二阶常系数线性微分方程地解,则该方程是. 2.设有曲面22:2S z x y =+和平面022:=++z y x L . 则及L 平行地S 地切平面方程是.3.设函数()y y x =由方程21sin d 4y xt x t π-⎛⎫=⎪⎝⎭⎰所确定.求d d x y x ==.4.设1(1)!nn k kx k ==+∑,则=∞→n n x lim .5.已知13()lim 1xx f x x e x →⎛⎫++= ⎪⎝⎭,则=→20)(lim x x f x . 二、(本题12分)设n 为正整数,计算21d 1cos ln d d n eI x x x π-⎛⎫=⎪⎝⎭⎰. 三、(本题14分)设函数()f x 在]1,0[上有二阶导数,且有正常数,A B 使得()f x A ≤,|"()|f x B ≤. 证明:对任意]1,0[∈x ,有22|)('|B A x f +≤. 四、(本题14分)(1)设一球缺高为h ,所在球半径为R . 证明该球缺体积为2)3(3h h R -π,球冠面积为Rh π2;(2)设球体12)1()1()1(222≤-+-+-z y x 被平面6:=++z y x P 所截地小球缺为Ω,记球缺上地球冠为∑,方向指向球外,求第二型曲面积分五、(本题15分)设f在],[b a 上非负连续,严格单增,且存在],[b a x n ∈,使得⎰-=b a nn n dx x f ab x f )]([1)]([.求n n x ∞→lim . 六、(本题15分)设2222212n n nnA n n n n =++++++,求⎪⎭⎫ ⎝⎛-∞→n n A n 4lim π. 2015年 第七届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题6分,共5小题,满分30分)(1)极限2222sin sin sin lim 12n n nn n n n n πππ→∞⎛⎫ ⎪+++= ⎪+++ ⎪⎝⎭. (2)设函数(),zz x y =由方程,0z z F x y y x ⎛⎫++= ⎪⎝⎭所决定,其中(),F u v 具有连续偏导数,且0u v xF yF +≠则z zxy x y∂∂+=∂∂. (3)曲面221zx y =++在点()1,1,3M -地切平面及曲面所围区域地体积是.(4)函数()[)[)3,5,00,0,5x f x x ⎧∈-⎪=⎨∈⎪⎩在(]5,5-地傅立叶级数在0x =收敛地是. (5)设区间()0,+∞上地函数()u x 定义域为()20xt u x e dt +∞-=⎰,则()u x 地初等函数表达式是.二、(12分)设M 是以三个正半轴为母线地半圆锥面,求其方程.三、(12分)设()f x 在(),a b 内二次可导,且存在常数,αβ,使得对于(),x a b ∀∈,有()()()f x f x f x αβ'=+,则()f x 在(),a b 内无穷次可导.四、(14分)求幂级数()()30211!n n n x n ∞=+-+∑地收敛域及其和函数.五、(16分)设函数()f x 在[]0,1上连续,且()()11000,1f x dx xf x dx ==⎰⎰. 试证:(1)[]00,1x ∃∈使()04f x >;(2)[]10,1x ∃∈使()14f x =.五、(16分)设(),f x y 在221x y +≤上有连续地二阶偏导数,且2222xx xy yy f f f M ++≤. 若()()()0,00,0,00,00x y f f f ===,证明:()221,4x y f x y dxdy +≤≤⎰⎰.2016年 第八届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题5分,满分30分)1、若()f x 在点x a =可导,且()0f a ≠,则()1lim nn f a n f a →∞⎛⎫⎛⎫+ ⎪ ⎪⎝⎭ ⎪= ⎪⎪⎝⎭. 2、若()10f =,()1f '存在,求极限()()220sin cos tan3lim1sin x x f x x xI ex→+=-.3、设()f x 有连续导数,且()12f =,记()2x z f e y =,若zz x∂=∂,求()f x 在0x >地表达式. 4、设()sin 2xf x ex =,求02n a π<<,()()40f.5、求曲面22 2x z y =+平行于平面220x y z +-=地切平面方程.二、(14分)设()f x 在[]0,1上可导,()00f =,且当()0,1x ∈,()01f x '<<,试证当()0,1a ∈,()()()230d d aaf x xf x x >⎰⎰.三、(14分)某物体所在地空间区域为222:22x y z x y z Ω++≤++,密度函数为222x y z ++,求质量()222d d d M xy z x y z Ω=++⎰⎰⎰.四、(14分)设函数()f x 在闭区间[]0,1上具有连续导数,()00f =,()11f =,证明:()10111lim 2nn k k n f x dx fn n →∞=⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭∑⎰. 五、(14分)设函数()f x 在闭区间[]0,1上连续,且()1d 0I f x x =≠⎰,证明:在()0,1内存在不同地两点12,x x ,使得()()12112f x f x I+=. 六、(14分)设()f x 在(),-∞+∞可导,且()()()23f x f x f x =+=+.用级数理论证明()f x 为常数.2017年 第九届全国大学生数学竞赛预赛试卷(非数学类)一、1. 已知可导函数满足⎰+=+xx tdt t f x xf 01sin )(2)(cos ,则()f x .572.求⎪⎭⎫ ⎝⎛+∞→n n n 22sin lim π.3. 设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c为非零常数. 则21xx yy w w c -. 4. 设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则240(sin )limx f x x →. 5. 不定积分sin 2sin 2(1sin )x e xI dx x -=-⎰. 6. 记曲面222zx y =+和224z x y =--围成空间区域为V ,则三重积分Vzdxdydz ⎰⎰⎰.二、(本题满分14分) 设二元函数(,)f x y 在平面上有连续地二阶偏导数. 对任何角度α,定义一元函数若对任何α都有(0)0dg dtα=且22(0)0d g dt α>. 证明)0,0(f 是(,)f x y 地极小值. 三、(本题满分14分)设曲线Γ为在上从(1,0,0)A 到(0,0,1)B 地一段.求曲线积分⎰Γ++=xdz zdy ydx I .四、(本题满分15分) 设函数()0f x >且在实轴上连续,若对任意实数t ,有||()1t x e f x dx +∞---∞≤⎰,则,()a b a b ∀<,2()2bab a f x dx -+≤⎰.五、(本题满分15分)设{}n a 为一个数列,p 为固定地正整数.若其中λ为常数,证明limn n a n pλ→∞=. 版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬74J0X转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任62. , 1。

历届全国大学生数学竞赛预赛试卷(精编文档).doc

历届全国大学生数学竞赛预赛试卷(精编文档).doc

【最新整理,下载后即可编辑】全国大学生数学竞赛预赛试卷(非数学类)2009年 第一届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题5分,共20分) 1.计算()ln(1)d yx y x y ++=⎰⎰____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.2.设)(x f 是连续函数,且满足220()3()d 2f x x f x x =--⎰,则()f x =____________.3.曲面2222x z y =+-平行平面22=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy________________.二、(5分)求极限x enx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数. 三、(15分)设函数)(xf 连续,10()()g x f xt dt =⎰,且A x x f x =→)(lim 0,A 为常数,求()g x '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y Lx y x ye y xe x ye y xe d d d d sin sin sin sin ;(2)2sin sin 25d d π⎰≥--Ly y x ye y xe .五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积V 最小.七、(15分)已知)(x u n 满足1()()1,2,n xnnu x u x xe n -'=+=,且ne u n =)1(,求函数项级数∑∞=1)(n n x u 之和.八、(10分)求-→1x 时,与∑∞=02n n x 等价的无穷大量.2010年 第二届全国大学生数学竞赛预赛试卷(非数学类) 一、(25分,每小题5分)(1)设22(1)(1)(1)nn x a a a =+++,其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x -→∞⎛⎫+ ⎪⎝⎭. (3)设0s >,求0(1,2,)sx n n I e x dx n ∞-==⎰.(4)设函数()f t 有二阶连续导数,1(,)r g x y f r ⎛⎫== ⎪⎝⎭,求2222g gx y∂∂+∂∂. (5)求直线10:0x y l z -=⎧⎨=⎩与直线2213:421x y z l ---==--的距离.二、(15分)设函数()f x 在(,)-∞+∞上具有二阶导数,并且()0f x ''>,lim ()0x f x α→+∞'=>, lim ()0x f x β→-∞'=<,且存在一点0x ,使得0()0f x <.证明:方程()0f x =在(,)-∞+∞恰有两个实根.三、(15分)设函数()y f x =由参数方程22(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,且22d 3d 4(1)y x t =+, 其中()t ψ具有二阶导数,曲线()y t ψ=与22132t u y e du e-=+⎰在1t =出相切,求函数()t ψ.四、(15分)设10,nn n k k a S a =>=∑,证明:(1)当1α>时,级数1n n na S α+∞=∑收敛;(2)当1α≤且()n s n →∞→∞时,级数1n n na S α+∞=∑发散.五、(15分)设l 是过原点、方向为(,,)αβγ,(其中2221)αβγ++=的直线,均匀椭球2222221x y z a b c++≤(其中0c b a <<<,密度为1)绕l 旋转.(1)求其转动惯量;(2)求其转动惯量关于方向(,,)αβγ的最大值和最小值.六、(15分)设函数()x ϕ具有连续的导数,在围绕原点的任意光滑的简单闭曲线C 上,曲线积分422d ()d 0Lxy x x yx yϕ+=+⎰的值为常数. (1)设L 为正向闭曲线22(2)1x y -+=,证明422d ()d 0Lxy x x yx y ϕ+=+⎰; (2)求函数()x ϕ;(3)设C 是围绕原点的光滑简单正向闭曲线,求422d ()d C xy x x yx y ϕ++⎰.2011年 第三届全国大学生数学竞赛预赛试卷(非数学类) 一、计算下列各题(本题共3小题,每小题各5分,共15分)(1)求11cos 0sin lim xx x x -→⎛⎫ ⎪⎝⎭; (2).求111lim (12)n n n n n →∞⎛⎫+++ ⎪+++⎝⎭; (3)已知()2ln 1arctan ttx e y t e⎧=+⎪⎨=-⎪⎩,求22d d yx.二、(本题10分)求方程()()24d 1d 0x y x x y y +-++-=的通解. 三、(本题15分)设函数()f x 在0x =的某邻域内具有二阶连续导数,且()()()0,0,0f f f '''均不为0,证明:存在唯一一组实数123,,k k k ,使得()()()()12320230lim0h k f h k f h k f h f h →++-=. 四、(本题17分)设2221222:1x y z a b c∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值. 五、(本题16分)已知S 是空间曲线22310x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分(0z ≥)(取上侧),∏是S 在(,,)P x y z 点处的切平面,(,,)x y z ρ是原点到切平面∏的距离,,,λμν表示S 的正法向的方向余弦. 计算: (1)()d ,,SzS x y z ρ⎰⎰;(2)()3d Sz x y z S λμν++⎰⎰ 六、(本题12分)设()f x 是在(,)-∞+∞内的可微函数,且()()f x mf x '<,其中01m <<,任取实数0a ,定义1ln (),1,2,...n n a f a n -==,证明:11()n n n a a ∞-=-∑绝对收敛.七、(本题15分)是否存在区间[]0,2上的连续可微函数()f x ,满足(0)(2)1f f ==,()1f x '≤,2()d 1f x x ≤⎰?请说明理由.2012年 第四届全国大学生数学竞赛预赛试卷(非数学类) 一、(本大题共5小题,每小题6分,共30分)解答下列各题(要求写出重要步骤). (1)求极限21lim(!)n n n →∞. (2)求通过直线2320:55430x y z l x y z +-+=⎧⎨+-+=⎩的两个互相垂直的平面1π和2π,使其中一个平面过点(4,3,1)-. (3)已知函数(,)ax byz u x y e+=,且20ux y∂=∂∂. 确定常数a 和b ,使函数(,)z z x y =满足方程20z z zz x y x y∂∂∂--+=∂∂∂∂. (4)设函数()u u x =连续可微,(2)1u =,且3(2)d ()d L x y u x x u u y +++⎰在右半平面与路径无关,求(,)u x y .(5)求极限1lim x x x t +. 二、(本题1020sin d x e x x +∞-⎰.三、(本题10分)求方程21sin 2501x x x=-的近似解,精确到0.001.四、(本题12分)设函数()y f x =二阶可导,且()0f x ''>,(0)0f =,(0)0f '=,求330()lim ()sin x x f u f x u→,其中u 是曲线()y f x =上点(,())P x f x 处的切线在x 轴上的截距.五、(本题12分)求最小实数C ,使得满足1()d 1f x x =⎰的连续函数()f x都有10f dx C ≤⎰.六、(本题12分)设()f x 为连续函数,0t >. 区域Ω是由抛物面22z x y =+和球面2222x y z t ++=(0)z >所围起来的部分. 定义三重积分222()()d F t f x y z v Ω=++⎰⎰⎰, 求()F t 的导数()F t ''.七、(本题14分)设1n n a ∞=∑与1n n b ∞=∑为正项级数,证明:(1)若()111lim 0n n n n n a a b b →∞++->,则级数1n n a ∞=∑收敛; (2)若()111lim 0n n n n n a a b b →∞++-<,且级数1n n b ∞=∑发散,则级数1n n a ∞=∑发散.2013年 第五届全国大学生数学竞赛预赛试卷(非数学类) 一、解答下列各题(每小题6分,共24分,要求写出重要步骤) 1.求极限(lim 1sin nn →∞+.2.证明广义积分0sin d xx x+∞⎰不是绝对收敛的. 3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值. 4.过曲线0)y x =≥上的点A 作切线,使该切线与曲线及x 轴所围成的平面图形的面积为34,求点A 的坐标.二、(满分12分)计算定积分2sin arctan d 1cos xx x e I x xππ-⋅=+⎰.三、(满分12分)设()f x 在0x =处存在二阶导数(0)f '',且()lim 0x f x x→=.证明:级数11n f n ∞=⎛⎫⎪⎝⎭∑收敛.四、(满分12分)设(),()0()f x f x m a x b π'≤≥>≤≤,证明2sin ()d baf x x m≤⎰. 五、(满分14分)设∑是一个光滑封闭曲面,方向朝外.给定第二型的曲面积分()()()333d d 2d d 3d d I x x y z y y z x z z x y ∑=-+-+-⎰⎰.试确定曲面∑,使积分I 的值最小,并求该最小值.六、(满分14分)设22d d ()()a aC y x x y I r x y -=+⎰,其中a 为常数,曲线C 为椭圆222x xy y r ++=,取正向.求极限lim ()a r I r →+∞.七、(满分14分)判断级数()()1111212n n n n ∞=+++++∑的敛散性,若收敛,求其和.2014年 第六届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(共有5小题,每题6分,共30分)1.已知1x y e =和1x y xe =是齐次二阶常系数线性微分方程的解,则该方程是 .2.设有曲面22:2S z x y =+和平面022:=++z y x L . 则与L 平行的S 的切平面方程是 .3.设函数()y y x =由方程21sin d 4y xt x tπ-⎛⎫= ⎪⎝⎭⎰所确定.求d d x y x==.4.设1(1)!nn k kx k ==+∑,则=∞→n n x lim .5.已知13()lim 1xx f x x e x →⎛⎫++= ⎪⎝⎭,则=→20)(lim xx f x .二、(本题12分)设n 为正整数,计算21d 1cos ln d d ne I x x x π-⎛⎫= ⎪⎝⎭⎰. 三、(本题14分)设函数()f x 在]1,0[上有二阶导数,且有正常数,A B使得()f x A ≤,|"()|f x B ≤.证明:对任意]1,0[∈x ,有22|)('|BA x f +≤. 四、(本题14分)(1)设一球缺高为h ,所在球半径为R . 证明该球缺体积为2)3(3h h R -π,球冠面积为Rh π2;(2)设球体12)1()1()1(222≤-+-+-z y x 被平面6:=++z y x P 所截的小球缺为Ω,记球缺上的球冠为∑,方向指向球外,求第二型曲面积分d d d d d d I x y z y z x z x y ∑=++⎰⎰.五、(本题15分)设f 在],[b a 上非负连续,严格单增,且存在],[b a x n ∈,使得⎰-=b an nn dx x f a b x f )]([1)]([.求n n x ∞→lim . 六、(本题15分)设2222212n n nn A n n n n =++++++,求⎪⎭⎫ ⎝⎛-∞→n n A n 4lim π.2015年 第七届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题6分,共5小题,满分30分)(1)极限2222sin sin sin lim 12n n n n n n n n πππ→∞⎛⎫⎪+++= ⎪+++ ⎪⎝⎭.(2)设函数(),z z x y =由方程,0z z F x y yx ⎛⎫++= ⎪⎝⎭所决定,其中(),F u v 具有连续偏导数,且0u v xF yF +≠则z z x y xy∂∂+=∂∂ .(3)曲面221z x y =++在点()1,1,3M -的切平面与曲面所围区域的体积是 .(4)函数()[)[)3,5,00,0,5x f x x ⎧∈-⎪=⎨∈⎪⎩在(]5,5-的傅立叶级数在0x =收敛的是 .(5)设区间()0,+∞上的函数()u x 定义域为()2xt u x e dt +∞-=⎰,则()u x 的初等函数表达式是 . 二、(12分)设M 是以三个正半轴为母线的半圆锥面,求其方程. 三、(12分)设()f x 在(),a b 内二次可导,且存在常数,αβ,使得对于(),x a b ∀∈,有()()()f x f x f x αβ'=+,则()f x 在(),a b 内无穷次可导. 四、(14分)求幂级数()()30211!nn n x n ∞=+-+∑的收敛域及其和函数.五、(16分)设函数()f x 在[]0,1上连续,且()()11000,1f x dx xf x dx ==⎰⎰. 试证:(1)[]00,1x ∃∈使()04f x >; (2)[]10,1x ∃∈使()14f x =.五、(16分)设(),f x y 在221x y +≤上有连续的二阶偏导数,且2222xx xy yy f ff M ++≤. 若()()()0,00,0,00,00x y f f f ===,证明:()221,x y f x y dxdy +≤≤⎰⎰.2016年 第八届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题5分,满分30分) 1、若()f x 在点x a =可导,且()0f a ≠,则()1lim nn f a n f a →∞⎛⎫⎛⎫+ ⎪ ⎪⎝⎭ ⎪= ⎪ ⎪⎝⎭__________. 2、若()10f =,()1f '存在,求极限()()220sin cos tan3lim 1sin x x f x x xI e x→+=-. 3、设()f x 有连续导数,且()12f =,记()2x z f e y =,若z z x∂=∂,求()f x 在0x >的表达式.4、设()sin 2xf x ex =,求02n a π<<,()()40f .5、求曲面22 2x z y =+平行于平面220x y z +-=的切平面方程.二、(14分)设()f x 在[]0,1上可导,()00f =,且当()0,1x ∈,()01f x '<<,试证当()0,1a ∈,()()()2300d d aa f x xf x x >⎰⎰.三、(14分)某物体所在的空间区域为222:22x y z x y z Ω++≤++,密度函数为222x y z ++,求质量()222d d d M x y z x y z Ω=++⎰⎰⎰.四、(14分)设函数()f x 在闭区间[]0,1上具有连续导数,()00f =,()11f =,证明:()10111lim 2n n k k n f x dx f n n →∞=⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭∑⎰.五、(14分)设函数()f x 在闭区间[]0,1上连续,且()10d 0I f x x =≠⎰,证明:在()0,1内存在不同的两点12,x x ,使得()()12112f x f x I+=.六、(14分)设()f x 在(),-∞+∞可导,且()()(2f x f x f x =+=.用Fourier 级数理论证明()f x 为常数.2017年 第九届全国大学生数学竞赛预赛试卷(非数学类) 一、1. 已知可导函数满足⎰+=+x x tdt t f x xf 01sin )(2)(cos ,则()f x =_________.2. 求⎪⎭⎫ ⎝⎛+∞→n n n 22sin lim π. 3. 设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c 为非零常数. 则21xx yy w w c-=_________. 4. 设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则240(sin )lim x f x x →=____. 5. 不定积分sin 2sin 2(1sin )x e x I dx x -=-⎰=________. 6. 记曲面222z x y =+和224z x y =--围成空间区域为V ,则三重积分Vzdxdydz ⎰⎰⎰=___________.二、(本题满分14分) 设二元函数(,)f x y 在平面上有连续的二阶偏导数. 对任何角度α,定义一元函数()(cos ,sin )g t f t t =ααα.若对任何α都有(0)0dg dt α=且22(0)0d g dt α>. 证明)0,0(f 是(,)f x y 的极小值.三、(本题满分14分) 设曲线Γ为在2221x y z ++=,1x z +=,0,0,0x y z ≥≥≥上从(1,0,0)A 到(0,0,1)B 的一段. 求曲线积分⎰Γ++=xdz zdy ydx I .四、(本题满分15分) 设函数()0f x >且在实轴上连续,若对任意实数t ,有||()1t x e f x dx +∞---∞≤⎰,则,()a b a b ∀<,2()2b ab a f x dx -+≤⎰. 五、(本题满分15分) 设{}n a 为一个数列,p 为固定的正整数。

09-16大学生数学竞赛真题(非数学类)

09-16大学生数学竞赛真题(非数学类)
1 证明 :级数 f 收敛。 n n =1
f ( 0) , f ' ( 0) , f " ( 0) 均 不 为
0 , 证 明 : 存 在 唯 一 一 组 实 数 k1 , k2 , k3 , 使 得
lim
k1 f ( h ) + k2 f ( 2h ) + k3 f ( 3h ) − f ( 0 ) = 0。 h→0 h2
四 . ( 本 题 17 分 ) 设
四、(15 分)设 an 0, S n =
+
a , 证明:
k =1 k
n
(1)当 1 时,级数
S 收敛;
n =1 n
an
(2)当 1 且 sn → (n → ) 时,级数
S 发散。
n =1 n
+
an
五、(15 分)设 l 是过原点、方向为 ( , , ) ,(其中 + + = 1) 的直线,均匀椭
二、(本题 10 分)计算
+ 0
e − 2 x sin x dx
三、求方程 x 2 sin
1 = 2 x − 501 的近似解,精确到 0.001. x
四、 (本题 12 分) 设函数 y = f ( x ) 二阶可导, 且 f ( x ) 0 , f (0) = 0 , f (0) = 0 , 3 x f ( u) 求 lim ,其中 u 是曲线 y = f ( x ) 上点 P( x , f ( x )) 处的切线在 x 轴 x → 0 f ( x ) sin 3 u 上的截距。
(1)若 lim(
2013 年 第五届全国大学生数学竞赛预赛试卷
一、 解答下列各题(每小题 6 分共 24 分,要求写出重要步骤)

第8届全国大学生数学竞赛(非数学类)预赛试卷及答案

第8届全国大学生数学竞赛(非数学类)预赛试卷及答案
2 2 −1
从而
x0
=
2
,
y0
=
1
,

z0
=
x20 2
+ y02
=
3
,
从而所求切平面为
2(x − 2) + 2(y − 1) − (z − 3) = 0
即 二 (本题满分 14 分)
2x + 2y − z = 3
设 f (x) 在 [0, 1] 可导, f (0) = 0, 且当 x ∈ (0, 1) , 0 < f ′(x) < 1 .
座位号
考场号
姓名
第八届全国大学生数学竞赛预赛试卷参考答案
(非数学类, 2016 年 10 月)
绝密 ⋆ 启用前
(14 金融工程-白兔兔)
考试形式: 闭卷 考试时间: 150 分钟 满分: 100 分
题号 一





总分
满 分 30
14
14
14
14
14
100
得分
注意:1.所有答题都须写在试卷密封线右边, 写在其他纸上一律无效. 2.密封线左边请勿答题, 密封线外不得有姓名及相关标记. 3.如答题空白不够, 可写在当页背面, 并标明题号.
(∫ a
)2 ∫ a
试证当 a ∈ (0, 1) ,
f (x) dx > f 3(x) dx .
0
0
(∫ x
)2 ∫ x
证明 设 F (x) =
f (t) dt − f 3(t) dt , 则 F (0) = 0 且要证明 F ′(x) > 0
0
0
∫x
设 g(x) = 2 f (t) dt − f 2(x) , 则 F ′(x) = f (x)g(x)

历届全国大学生数学竞赛预赛试卷

历届全国大学生数学竞赛预赛试卷

全国大学生数学竞赛预赛试卷(非数学类)2009年第一届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题5分,共20分)1.计算()ln(1)d d 1Dyx y x x y x y++=--⎰⎰____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.2.设)(x f 是连续函数,且满足220()3()d 2f x x f x x =--⎰,则()f x =____________.3.曲面2222x z y =+-平行平面022=-+z y x 的切平面方程是__________.4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy________________.二、(5分)求极限xenx x x x ne e e )(lim 20+++→Λ,其中n 是给定的正整数. 三、(15分)设函数)(x f 连续,10()()g x f xt dt =⎰,且A xx f x =→)(lim 0,A 为常数,求()g x '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y Lx y x ye y xe x ye y xe d d d d sin sin sin sin ;(2)2sin sin 25d d π⎰≥--Ly y x ye y xe .五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积V 最小.七、(15分)已知)(x u n 满足1()()1,2,n x nn u x u x x e n -'=+=L,且neu n =)1(,求函数项级数∑∞=1)(n n x u 之和.八、(10分)求-→1x 时,与∑∞=02n n x 等价的无穷大量.2010年第二届全国大学生数学竞赛预赛试卷(非数学类)一、(25分,每小题5分)(1)设22(1)(1)(1)nn x a a a =+++L ,其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x-→∞⎛⎫+ ⎪⎝⎭.(3)设0s >,求0(1,2,)sx n n I e x dx n ∞-==⎰L .(4)设函数()f t 有二阶连续导数,221,(,)r x y g x y f r ⎛⎫=+= ⎪⎝⎭,求2222g g x y ∂∂+∂∂.(5)求直线10:0x y l z -=⎧⎨=⎩与直线2213:421x y z l ---==--的距离. 二、(15分)设函数()f x 在(,)-∞+∞上具有二阶导数,并且()0f x ''>,lim ()0x f x α→+∞'=>,lim ()0x f x β→-∞'=<,且存在一点0x ,使得0()0f x <.证明:方程()0f x =在(,)-∞+∞恰有两个实根. 三、(15分)设函数()y f x =由参数方程22(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,且22d 3d 4(1)y x t =+,其中()t ψ具有二阶导数,曲线()y t ψ=与22132t u y e du e-=+⎰在1t =出相切,求函数()t ψ.四、(15分)设10,nn n k k a S a =>=∑,证明:(1)当1α>时,级数1nn na S α+∞=∑收敛; (2)当1α≤且()n s n →∞→∞时,级数1nn na S α+∞=∑发散. 五、(15分)设l 是过原点、方向为(,,)αβγ,(其中2221)αβγ++=的直线,均匀椭球2222221x y z a b c ++≤(其中0c b a <<<,密度为1)绕l 旋转. (1)求其转动惯量;(2)求其转动惯量关于方向(,,)αβγ的最大值和最小值.六、(15分)设函数()x ϕ具有连续的导数,在围绕原点的任意光滑的简单闭曲线C 上,曲线积分422d ()d 0L xy x x yx yϕ+=+⎰Ñ的值为常数. (1)设L 为正向闭曲线22(2)1x y -+=,证明422d ()d 0L xy x x yx yϕ+=+⎰Ñ; (2)求函数()x ϕ;(3)设C 是围绕原点的光滑简单正向闭曲线,求422d ()d Cxy x x yx yϕ++⎰Ñ. 2011年第三届全国大学生数学竞赛预赛试卷(非数学类) 一、计算下列各题(本题共3小题,每小题各5分,共15分)(1)求11cos 0sin lim xx x x -→⎛⎫⎪⎝⎭;(2).求111lim (12)n n n n n →∞⎛⎫+++ ⎪+++⎝⎭; (3)已知()2ln 1arctan ttx e y t e⎧=+⎪⎨=-⎪⎩,求22d d yx.二、(本题10分)求方程()()24d 1d 0x y x x y y +-++-=的通解.三、(本题15分)设函数()f x 在0x =的某邻域内具有二阶连续导数,且()()()0,0,0f f f '''均不为0,证明:存在唯一一组实数123,,k k k ,使得()()()()12320230lim0h k f h k f h k f h f h →++-=. 四、(本题17分)设2221222:1x y z a b c∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值.五、(本题16分)已知S 是空间曲线22310x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分(0z ≥)(取上侧),∏是S 在(,,)P x y z 点处的切平面,(,,)x y z ρ是原点到切平面∏的距离,,,λμν表示S 的正法向的方向余弦.计算: (1)()d ,,SzS x y z ρ⎰⎰;(2)()3d Sz x y z S λμν++⎰⎰六、(本题12分)设()f x 是在(,)-∞+∞内的可微函数,且()()f x mf x '<,其中01m <<,任取实数0a ,定义1ln (),1,2,...n n a f a n -==,证明:11()n n n a a ∞-=-∑绝对收敛.七、(本题15分)是否存在区间[]0,2上的连续可微函数()f x ,满足(0)(2)1f f ==,()1f x '≤,2()d 1f x x ≤⎰?请说明理由.2012年第四届全国大学生数学竞赛预赛试卷(非数学类)一、(本大题共5小题,每小题6分,共30分)解答下列各题(要求写出重要步骤).(1)求极限21lim(!)n n n →∞. (2)求通过直线2320:55430x y z l x y z +-+=⎧⎨+-+=⎩的两个互相垂直的平面1π和2π,使其中一个平面过点(4,3,1)-. (3)已知函数(,)ax byz u x y e+=,且20ux y∂=∂∂.确定常数a 和b ,使函数(,)z z x y =满足方程20z z zz x y x y∂∂∂--+=∂∂∂∂. (4)设函数()u u x =连续可微,(2)1u =,且3(2)d ()d L x y u x x u u y +++⎰在右半平面与路径无关,求(,)u x y .(5)求极限13sin lim d cos x x x tx t t t+→+∞+⎰. 二、(本题10分)计算20sin d x e x x +∞-⎰.三、(本题10分)求方程21sin 2501x x x=-的近似解,精确到0.001.四、(本题12分)设函数()y f x =二阶可导,且()0f x ''>,(0)0f =,(0)0f '=,求330()lim ()sin x x f u f x u→,其中u 是曲线()y f x =上点(,())P x f x 处的切线在x 轴上的截距. 五、(本题12分)求最小实数C ,使得满足10()d 1f x x =⎰的连续函数()f x 都有10()f x dx C ≤⎰.六、(本题12分)设()f x 为连续函数,0t >.区域Ω是由抛物面22z x y =+和球面2222x y z t ++=(0)z >所围起来的部分.定义三重积分222()()d F t f x y z v Ω=++⎰⎰⎰,求()F t 的导数()F t ''.七、(本题14分)设1n n a ∞=∑与1n n b ∞=∑为正项级数,证明:(1)若()111lim 0n n n n n a a b b →∞++->,则级数1n n a ∞=∑收敛; (2)若()111lim 0n n n n n a a b b →∞++-<,且级数1n n b ∞=∑发散,则级数1n n a ∞=∑发散. 2013年第五届全国大学生数学竞赛预赛试卷(非数学类)一、解答下列各题(每小题6分,共24分,要求写出重要步骤) 1.求极限()2lim 1sin 14nn n π→∞++.2.证明广义积分0sin d xx x+∞⎰不是绝对收敛的. 3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值.4.过曲线3(0)y x x =≥上的点A 作切线,使该切线与曲线及x 轴所围成的平面图形的面积为34,求点A 的坐标.二、(满分12分)计算定积分2sin arctan d 1cos xx x e I x xππ-⋅=+⎰.三、(满分12分)设()f x 在0x =处存在二阶导数(0)f '',且()0lim 0x f x x →=.证明:级数11n f n ∞=⎛⎫⎪⎝⎭∑收敛.四、(满分12分)设(),()0()f x f x m a x b π'≤≥>≤≤,证明2sin ()d baf x x m≤⎰. 五、(满分14分)设∑是一个光滑封闭曲面,方向朝外.给定第二型的曲面积分()()()333d d 2d d 3d d I x x y z y y z x z z x y ∑=-+-+-⎰⎰.试确定曲面∑,使积分I 的值最小,并求该最小值.六、(满分14分)设22d d ()()a aC y x x y I r x y -=+⎰,其中a 为常数,曲线C为椭圆222x xy y r ++=,取正向.求极限lim ()a r I r →+∞.七、(满分14分)判断级数()()1111212n n n n ∞=+++++∑L 的敛散性,若收敛,求其和. 2014年第六届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(共有5小题,每题6分,共30分)1.已知1x y e =和1x y xe =是齐次二阶常系数线性微分方程的解,则该方程是.2.设有曲面22:2S z x y =+和平面022:=++z y x L .则与L 平行的S 的切平面方程是.3.设函数()y y x =由方程21sin d 4y xt x t π-⎛⎫= ⎪⎝⎭⎰所确定.求d d x y x ==.4.设1(1)!nn k kx k ==+∑,则=∞→n n x lim .5.已知130()lim 1x x f x x e x →⎛⎫++= ⎪⎝⎭,则=→20)(lim x x f x . 二、(本题12分)设n 为正整数,计算21d 1cos ln d d ne I x x x π-⎛⎫= ⎪⎝⎭⎰. 三、(本题14分)设函数()f x 在]1,0[上有二阶导数,且有正常数,A B 使得()f x A ≤,|"()|f x B ≤.证明:对任意]1,0[∈x ,有22|)('|B A x f +≤. 四、(本题14分)(1)设一球缺高为h ,所在球半径为R .证明该球缺体积为2)3(3h h R -π,球冠面积为Rh π2;(2)设球体12)1()1()1(222≤-+-+-z y x 被平面6:=++z y x P 所截的小球缺为Ω,记球缺上的球冠为∑,方向指向球外,求第二型曲面积分d d d d d d I x y z y z x z x y ∑=++⎰⎰.五、(本题15分)设f 在],[b a 上非负连续,严格单增,且存在],[b a x n ∈,使得⎰-=ban nn dx x f a b x f )]([1)]([.求n n x ∞→lim . 六、(本题15分)设2222212n n n nA n n n n =++++++L ,求⎪⎭⎫ ⎝⎛-∞→n n A n 4lim π. 2015年第七届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题6分,共5小题,满分30分)(1)极限2222sin sin sin lim 12n n n n n n n n πππ→∞⎛⎫⎪+++= ⎪+++ ⎪⎝⎭L . (2)设函数(),z z x y =由方程,0z z F x y y x⎛⎫++= ⎪⎝⎭所决定,其中(),F u v 具有连续偏导数,且0u v xF yF +≠则z zx y xy∂∂+=∂∂.(3)曲面221z x y =++在点()1,1,3M -的切平面与曲面所围区域的体积是. (4)函数()[)[)3,5,00,0,5x f x x ⎧∈-⎪=⎨∈⎪⎩在(]5,5-的傅立叶级数在0x =收敛的是.(5)设区间()0,+∞上的函数()u x 定义域为()20xt u x e dt +∞-=⎰,则()u x 的初等函数表达式是.二、(12分)设M 是以三个正半轴为母线的半圆锥面,求其方程.三、(12分)设()f x 在(),a b 内二次可导,且存在常数,αβ,使得对于(),x a b ∀∈,有()()()f x f x f x αβ'=+,则()f x 在(),a b 内无穷次可导. 四、(14分)求幂级数()()30211!n n n x n ∞=+-+∑的收敛域及其和函数.五、(16分)设函数()f x 在[]0,1上连续,且()()11000,1f x dx xf x dx ==⎰⎰.试证:(1)[]00,1x ∃∈使()04f x >;(2)[]10,1x ∃∈使()14f x =.五、(16分)设(),f x y 在221x y +≤上有连续的二阶偏导数,且2222xx xy yy f f f M ++≤.若()()()0,00,0,00,00x y f f f ===,证明:()221,4x y Mf x y dxdy π+≤≤⎰⎰.2016年第八届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题5分,满分30分)1、若()f x 在点x a =可导,且()0f a ≠,则()1lim nn f a n f a →∞⎛⎫⎛⎫+ ⎪ ⎪⎝⎭ ⎪= ⎪⎪⎝⎭__________. 2、若()10f =,()1f '存在,求极限()()220sin cos tan3lim1sin x x f x x xI ex→+=-.3、设()f x 有连续导数,且()12f =,记()2x z f e y =,若zz x∂=∂,求()f x 在0x >的表达式.4、设()sin 2x f x e x =,求02n a π<<,()()40f .5、求曲面22 2x z y =+平行于平面220x y z +-=的切平面方程.二、(14分)设()f x 在[]0,1上可导,()00f =,且当()0,1x ∈,()01f x '<<,试证当()0,1a ∈,()()()230d d aaf x xf x x >⎰⎰.三、(14分)某物体所在的空间区域为222:22x y z x y z Ω++≤++,密度函数为222x y z ++,求质量()222d d d M x y z x y z Ω=++⎰⎰⎰.四、(14分)设函数()f x 在闭区间[]0,1上具有连续导数,()00f =,()11f =,证明:()10111lim 2nn k k n f x dx f n n →∞=⎛⎫⎛⎫-=-⎪ ⎪⎝⎭⎝⎭∑⎰.五、(14分)设函数()f x 在闭区间[]0,1上连续,且()10d 0I f x x =≠⎰,证明:在()0,1内存在不同的两点12,x x ,使得()()12112f x f x I+=. 六、(14分)设()f x 在(),-∞+∞可导,且()()()23f x f x f x =+=+.用Fourier 级数理论证明()f x 为常数.2017年第九届全国大学生数学竞赛预赛试卷(非数学类)一、1.已知可导函数f (x )满足⎰+=+x x tdt t f x xf 01sin )(2)(cos ,则()f x =_________.2.求⎪⎭⎫ ⎝⎛+∞→n n n 22sin lim π.3.设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c 为非零常数.则21xx yy w w c -=_________. 4.设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则240(sin )lim x f x x →=____.5.不定积分sin 2sin 2(1sin )x e xI dx x -=-⎰=________. 6.记曲面222z x y =+和224z x y =--围成空间区域为V ,则三重积分Vzdxdydz ⎰⎰⎰=___________.二、(本题满分14分)设二元函数(,)f x y 在平面上有连续的二阶偏导数.对任何角度α,定义一元函数()(cos ,sin )g t f t t =ααα.若对任何α都有(0)0dg dtα=且22(0)0d g dt α>.证明)0,0(f 是(,)f x y 的极小值. 三、(本题满分14分)设曲线Γ为在2221x y z ++=,1x z +=,0,0,0x y z ≥≥≥上从(1,0,0)A 到(0,0,1)B 的一段.求曲线积分⎰Γ++=xdz zdy ydx I .四、(本题满分15分)设函数()0f x >且在实轴上连续,若对任意实数t ,有||()1t x e f x dx +∞---∞≤⎰,则,()a b a b ∀<,2()2bab a f x dx -+≤⎰. 五、(本题满分15分)设{}n a 为一个数列,p 为固定的正整数。

全国大学生数学竞赛初赛2016年第八届《非数学专业》竞赛题目及答案解析高清无水印版

全国大学生数学竞赛初赛2016年第八届《非数学专业》竞赛题目及答案解析高清无水印版

2016年第八届全国大学生数学竞赛初赛(非数学类)试卷及参考答案一、填空题(满分30分,每小题5分)1.若()f x 在点x a =处可导,且()0f a ≠,则()()1/lim n n f a n f a →+∞⎡⎤+⎢⎥=⎢⎥⎢⎥⎣⎦.【参考解答】:由于 101lim limxx x x f a f a x x f a f a , 由已知条件: f x 在点x a 处可导,且 0f a ,由带皮亚诺余项的泰勒公式,有()()()()()f x f a f a x a o x a '=+-+-可得()()()()f a x f a f a x o x '+=++,将其代入极限式,则有111011lim1lim lim lim 1lim 1.n xxxn n x f a x o x x f a f a o x f a f a x o x f a x f a f a n f a x f a f a x o x f a x o x f a f a f a f a x o x ee f a2.若()()10,1f f '=存在,则极限()220sin cos tan 3lim1sin x x f x x xI e x →+==⎛⎫⎪- ⎪⎪ ⎝⎭.【参考解答】:22220sin cos 3sin cos lim3limx x f x x xf x x I x x x 22220sin cos 1sin cos 13lim sin cos 1x f x x f x x x x x 2222200sin cos 1sin cos 131lim 31lim x x x x x x f f x x x133111.22f f 3.设()f x 有连续导数,且()1 2.f = 记()2x z f e y =,若zz x∂=∂,()f x 在0x >的表达式为.【参考解答】:由题设,得222x x x zf e y e y f e y x. 令2x u e y ,得到当0u ,有 f u u f u ,即1ln ln .f u f u u f u u所以有 1ln ln , f u u C f u Cu . 再由初值条件 12 f ,可得2C =,即 2f u u .所以当0x 时,有 2.f x x 4.设()sin 2x f x e x =,则()()40f=.【参考解答】:由带皮亚诺余项余项的麦克劳林公式,有323341111222!3!3!f x x x x o x x x o x所以 f x 展开式的4次项为 3441223!3!x x x x ,即有4014!f ,故 4024.f 5.曲面222x z y =+平行于平面220x y z +-=的切平面方程为.【参考解答】: 移项,曲面的一般式方程为 22,,02x F x y z y z ,有,,,,,2,1x y z n x y z F F F x y . ()()()121221,,//,,//,,n x y z n x y ⇒--,可得21.221x y 由此可得2,1 x y ,将它代入到曲面方程,可得3 z ,即曲面上点()213,,处切平面与已知平面平行,所以由平面的点法式方程可得切平面方程为222130x y z ,即22 3.x y z 第二题: (14分)设()f x 在[0,1]上可导,()00f =,且当()0,1x ∈,()01f x '<<. 试证:当()0,1a ∈时,有()()2300d d .a a f x x f x x ⎛⎫ ⎪> ⎪ ⎪⎝⎭⎰⎰ 【参考解答】:不等式的证明转换为证明不等式2300.aaf x dx f x dx 于是对函数求导,302xF x f x f t dt f x202xf x f t dt f x 已知条件 00f ,可得()00F '=,并且由 01f x ,所以函数()f x 在()01,内单调增加,即()0f x >,所以只要证明 220 xg x f t dt f x .又()00g =,所以只要证明()0g x '>,于是有22210g x f x f x f x f x f x 所以()g x 单调增加,所以 0,0g x x . 所以也就有 202xg x f t dt f x ,即()0F x '>,可得()0F x >,因此230xxF x f t dtf t dt单调增加,所以()()00F a F >=,即有2233aaaaF a f t dt f t dt f t dt f t dt.第三题:(14分)某物体所在的空间区域为222:22x y z x y z ++≤++,密度函数为222x y z ++,求质量()222d d d .M xy z x y z=++⎰⎰⎰【参考解答】:令111222,,u x v y w z ⎫⎪=-=-=-⎪⎪⎭,即111222,,x u y v z =+=+=+,则椭球面转换为变量为,,u v w 的单位球域,即222:1 uvw u v w . 则由三重积分的换元法公式,即222,,,,.,,uvwx y z M x y z dxdydz F u v w dudvdw u v w2222221113,,22224w F u v w u v u u v v10,,01,,00x x x uv w x y z yy y u v w uv w z y yuv w所以原积分就等于222324uvw w M u u v v由于单元圆域222:1 uvwu v w关于三个坐标面都对称,所以积分也就等于2222uvw uvw w M uv dudvdw dudvdwuvwdudvdw由于积分区域具有轮换对称性,所以有222uvwuvwuvwu dudvdw v dudvdw w dudvdw222222255226uvw uvw uvww u v dudvdw u dudvdw u v w dudvdw所以222222152122000021sin 2cos .255uvw uvw w u v dudvdw u v w dudvdw r d d r r dr所以最终的结果就为M=+=+=第四题:(14分)设函数()f x在闭区间0,1⎡⎤⎢⎥⎣⎦上具有连续导数,()()00,1 1.f f==证明:()1111lim d.2nn kkn f x x fn n→∞=⎛⎫⎛⎫⎪⎪⎪-=-⎪⎪⎪⎪⎝⎭⎪⎝⎭∑⎰【参考解答】:将区间0,1n等份,分点kkxn,则1kxn,且111111lim lim kkn n nxk kxn nk k kkn f x dx f n f x dx f x xn n1111lim limk kk kn nx x kk kx xn nk k kf x f xn f x f x dx n x x dxx x111lim,,kkn xk kk k k kxnk k kf f xn x x dx x xx1211111011lim lim2111lim.222kkn nxk k k k kxn nk knk k knkn f x x dx n f x xf x x f x dx第五题:(14分)设函数()f x在区间0,1⎡⎤⎢⎥⎣⎦上连续,且()1d0.I f x x=≠⎰证明:在()0,1内存在不同的两点12,x x,使得()()12112.If x f x+=【参考解答】:设1,xF x f t dtI则00,1 1.F F由介值定理,存在0,1,使得1.2F 在两个子区间0,,,1上分别应用拉格朗日中值定理:11122201/2,0,,11/2,,1,11f x F FF x xIf x F FF x xI12121112.1/21/2I If x f x F x F x第六题:(14分) 设()f x在(),-∞+∞上可导,且()()(2f x f x f x=+=+,用傅里叶(Fourier)级数理论证明()f x为常数。

历届全国大学生高等数学竞赛真题及答案非数学类

历届全国大学生高等数学竞赛真题及答案非数学类

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

历届全国大学生数学竞赛真题及答案非数学类

历届全国大学生数学竞赛真题及答案非数学类

高数竞赛预赛试题〔非数学类〕〔参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

〕2021年 第一届全国大学生数学竞赛预赛试卷 一、填空题〔每题5分,共20分〕1.计算=--++⎰⎰y x yx x yy x D d d 1)1ln()(,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解:令vx u y x ==+,,那么vu y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v u uv u u u u u〔*〕令u t -=1,那么21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)t t t⎰+-=1042d )21(2t t t 151651322153=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 那么=)(x f .解:令⎰=20d )(x x f A ,那么23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得。

因此。

3.曲面平行平面022=-+z y x 的切平面方程是.解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面22=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

全国大学生数学竞赛预赛试题(1-9届)

全国大学生数学竞赛预赛试题(1-9届)

全国大学生数学竞赛预赛试题(1-9届)第三届全国大学生数学竞赛预赛试题一. 计算下列各题(共3小题,每小题各5分,共15分)(1).求11cos 0sin lim xx x x -→⎛⎫⎪⎝⎭; (2).求111lim ...12n n n n n →∞⎛⎫+++ ⎪+++⎝⎭; (3)已知()2ln 1arctan ttx e y t e ⎧=+⎪⎨=-⎪⎩,求22d ydx。

二.(10分)求方程()()2410x y dx x y dy +-++-=的通解。

三.(15分)设函数f(x)在x=0的某邻域内具有二阶连续导数,且()()()'"0,0,0f f f 均不为0,证明:存在唯一一组实数123,,k k k ,使得()()()()1232230lim0h k f h k f h k f h f h→++-=。

四.(17分)设2221222:1x y z a b c∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值。

五.(16分)已知S 是空间曲线2231x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分(0z ≥)取上侧,∏是S 在(),,Px y z 点处的切平面,(),,x y z ρ是原点到切平面∏的距离,,,λμν表示S的正法向的方向余弦。

计算:(1)(),,S zdS x y z ρ⎰⎰;(2)()3S z x y z dS λμν++⎰⎰六.(12分)设f(x)是在(),-∞+∞内的可微函数,且()()f x mf x <、,其中01m <<,任取实数0a ,定义()1ln ,1,2,...,n n a f a n -==证明:()11n n n a a ∞-=-∑绝对收敛。

七.(15分)是否存在区间[]0,2上的连续可微函数f(x),满足()()021f f ==,()()201,1fx f x dx ≤≤⎰、?请说明理由。

08-第八届全国初赛-非数学类试题参考解答

08-第八届全国初赛-非数学类试题参考解答

2016年第八届全国大学生数学竞赛初赛(非数学类)试卷及参考答案一、填空题(满分30分,每小题5分)1.若()f x 在点x a =处可导,且()0f a ≠,则()()1/lim n n f a n f a →+∞⎡⎤+⎢⎥=⎢⎥⎢⎥⎣⎦.【参考解答】:由于 101lim limxx x x f a f a x x f a f a , 由已知条件: f x 在点x a 处可导,且 0f a ,由带皮亚诺余项的泰勒公式,有()()()()()f x f a f a x a o x a '=+-+-可得()()()()f a x f a f a x o x '+=++,将其代入极限式,则有111011lim1lim lim lim 1lim 1.n xxxn n x f a x o x x f a f a o x f a f a x o x f a x f a f a n f a x f a f a x o x f a x o x f a f a f a f a x o x ee f a2.若()()10,1f f '=存在,则极限()220sin cos tan 3lim1sin x x f x x xI e x →+==⎛⎫⎪- ⎪⎪ ⎝⎭ .【参考解答】:2222sin cos 3sin cos lim3limx x f x x xf x x I x x x22220sin cos 1sin cos 13lim sin cos 1x f x x f x x x x x2222200sin cos 1sin cos 131lim 31lim x x x x x x f f x x x133111.22f f3.设()f x 有连续导数,且()1 2.f = 记()2x z f e y =,若zz x∂=∂,()f x 在0x >的表达式为 . 【参考解答】:由题设,得222x x x zf e y e y f e y x. 令2x u e y ,得到当0u ,有 f u u f u ,即1ln ln .f u f u u f u u所以有 1ln ln , f u u C f u Cu . 再由初值条件 12 f ,可得2C =,即 2f u u .所以当0x 时,有 2.f x x 4.设()sin 2x f x e x =,则()()40f= .【参考解答】:由带皮亚诺余项余项的麦克劳林公式,有323341111222!3!3!f x x x x o x x x o x所以 f x 展开式的4次项为 3441223!3!x x x x ,即有4014!f ,故 4024.f 5.曲面222x z y =+平行于平面220x y z +-=的切平面方程为 .【参考解答】: 移项,曲面的一般式方程为 22,,02x F x y z y z ,有,,,,,2,1x y z n x y z F F F x y . ()()()121221,,//,,//,,n x y z n x y ⇒--,可得21.221x y 由此可得2,1 x y ,将它代入到曲面方程,可得3 z ,即曲面上点()213,,处切平面与已知平面平行,所以由平面的点法式方程可得切平面方程为222130x y z ,即22 3.x y z第二题: (14分)设()f x 在[0,1]上可导,()00f =,且当()0,1x ∈,()01f x '<<. 试证:当()0,1a ∈时,有()()2300d d .a a f x x f x x ⎛⎫ ⎪> ⎪ ⎪⎝⎭⎰⎰ 【参考解答】:不等式的证明转换为证明不等式2300.aaf x dx f x dx 于是对函数求导,302xF x f x f t dt f x202xf x f t dt f x已知条件 00f ,可得()00F '=,并且由 01f x ,所以函数()f x 在()01,内单调增加,即()0f x >,所以只要证明 220 xg x f t dt f x .又()00g =,所以只要证明()0g x '>,于是有22210 g x f x f x f x f x f x所以()g x 单调增加,所以 0,0g x x . 所以也就有 202xg x f t dt f x ,即()0F x '>,可得()0F x >,因此230xxF x f t dtf t dt单调增加,所以()()00F a F >=,即有2233aaaaF a f t dt f t dt f t dt f t dt.第三题:(14分)某物体所在的空间区域为222:22x y z x y z ++≤++,密度函数为222x y z ++,求质量()222d d d .M xy z x y z=++⎰⎰⎰【参考解答】:令111222,,u x v y w z ⎫⎪=-=-=-⎪⎪⎭,即111222,,x u y v z =+=+=+,则椭球面转换为变量为,,u v w 的单位球域,即222:1 uvw u v w . 则由三重积分的换元法公式,即222,,,,.,,uvwx y z M x y z dxdydz F u v w dudvdw u v w2222221113,,22224w F u v w u v u u v v10,,01,,00x x x uv w x y z yy y u v w uv w z y y uv w所以原积分就等于222324uvw w M u u v v由于单元圆域222:1 uvw u vw 关于三个坐标面都对称,所以积分也就等于2222uvw uvw w M u v dudvdw dudvdwuvwdudvdw由于积分区域具有轮换对称性,所以有222uvwuvwuvwu dudvdw v dudvdw w dudvdw222222255226uvw uvw uvww u v dudvdw u dudvdw u v w dudvdw所以2222221521220001521sin 2cos .255uvw uvw w u v dudvdw u v w dudvdw r d d r r dr所以最终的结果就为M=+=+=第四题:(14分)设函数()f x在闭区间0,1⎡⎤⎢⎥⎣⎦上具有连续导数,()()00,1 1.f f==证明:()1111lim d.2nn kkn f x x fn n→∞=⎛⎫⎛⎫⎪⎪⎪-=-⎪⎪⎪⎪⎝⎭⎪⎝⎭∑⎰【参考解答】:将区间0,1n等份,分点kkxn,则1kxn,且111111lim lim kkn n nxk kxn nk k kkn f x dx f n f x dx f x xn n1111lim limk kk kn nx x kk kx xn nk k kf x f xn f x f x dx n x x dxx x111lim,,kkn xk kk k k kxnk k kf f xn x x dx x xx1211111011lim lim2111lim.222kkn nxk k k k kxn nk knk k knkn f x x dx n f x xf x x f x dx第五题:(14分)设函数()f x在区间0,1⎡⎤⎢⎥⎣⎦上连续,且()1d0.I f x x=≠⎰证明:在()0,1内存在不同的两点12,x x,使得()()12112.If x f x+=【参考解答】:设1,xF x f t dtI则00,1 1.F F由介值定理,存在0,1,使得1.2F 在两个子区间0,,,1上分别应用拉格朗日中值定理:11122201/2,0,,11/2,,1,11f x F FF x xIf x F FF x xI12121112.1/21/2I If x f x F x F x第六题:(14分) 设()f x在(),-∞+∞上可导,且()()(2f x f x f x=+=+,用傅里叶(Fourier)级数理论证明()f x为常数。

历届全国大学生高等数学竞赛真题及答案非数学类.docx

历届全国大学生高等数学竞赛真题及答案非数学类.docx

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解:令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=10210d 1)ln (1ln d )d ln 1d 1ln (u u u u u u u u u u v v u uv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 151651322153=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解:令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

全国大学生数学竞赛第八届答案

全国大学生数学竞赛第八届答案
2 2 −1
从而
x0
=
2
,
y0
=
1
,

z0
=
x20 2
+ y02
=
3
,
从而所求切平面为
2(x − 2) + 2(y − 1) − (z − 3) = 0
即 二 (本题满分 14 分)
2x + 2y − z = 3
设 f (x) 在 [0, 1] 可导, f (0) = 0, 且当 x ∈ (0, 1) , 0 < f ′(x) < 1 .
,n
.
lim
(∫ n
1
f (x) dx −
1
∑n ( k )) f
n→∞
0
( ∑n

xk
n
n
k=1
)
∑n
= lim n
f (x) dx − hf (xk)
n→∞
k=1 xk1
k=1
∑n ∫ xk (
)
= lim n
f (x) − f (xk) dx
n→∞ k=1 xk1
∑n ∫ xk = lim n
2π ∫ dφ
π∫ dθ
1 r2 · r2 sin θ dr = 4π
0
0
0
5
Σ
由于 u2, v2, w2 在 Σ 上积分都是 I , 故 3
(
)

M = √1
111
52
+ + I+A= π
23 3 6
6
准考证号
学校
省市
第 3 页, 共 6 页
四 (本题满分 14 分)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档