17.3复数的几何意义与三角形式
《复数的三角表示》复数PPT课件(复数的三角表示式)
科 学 课 件 : /kejian/kexue/ 物 理 课 件 : /kejian/wuli/
化 学 课 件 : /kejian/huaxue/ 生 物 课 件 : /kejian/shengwu/
地 理 课 件 : /kejian/dili/
资 料 下 载 : /ziliao/
个 人 简 历 : /jianli/
试 卷 下 载 : /shiti/
教 案 下 载 : /jiaoan/
手 抄 报 : /shouchaobao/
复数 z=a+bi 的三角表示式,简称三角形式.为了与三角形式区分开来, a+bi 叫
做复数的代数表示式,简称代数形式.
(3)两个用三角形式表示的复数相等的充要条件:两个非零复数相等当且仅当它们的 模 与 辐角的主值 分别相等.
必修第二册·人教数学A版
[自主检测] 1.复数 1+ 3i 化成三角形式,正确的是( )
[提示] 根据三角函数的定义 sin θ=yr,cos θ=xr得 x=rcos θ,y=rsin θ.
必修第二册·人教数学A版
返回导航 上页 下页
(2)我们知道,复数可以用 a+bi(a,b∈R)的形式来表示,复数 a
+bi 与复平面内的点 PPT模板:/moban/ PPT背 景 : /beijing/ PPT下 载 : /xiazai/ 资 料 下 载 : /ziliao/
PPT素 材 : /sucai/ PPT图 表 : /tubiao/ PPT教 程 : /powerpoint/ 个 人 简 历 : /jianli/
试 卷 下 载 : /shiti/
PPT图 表 : /tubiao/
PPT下 载 : /xiazai/
PPT教 程 : /powerpoint/
复数的三角形式
三角形式和指数形式是等价的,可以通过三角恒等式相互转换。
复数三角形式的运算
加法运算
要点一
总结词
要点二
详细描述
复数三角形式的加法运算可以通过直接相加对应部分的方式进行。
对于两个复数 $z_1 = r_1(cos theta_1 + i sin theta_1)$ 和 $z_2 = r_2(cos theta_2 + i sin theta_2)$,其和为 $z_1 + z_2 = (r_1 + r_2)(cos(theta_1 + theta_2) + i sin(theta_1 + theta_2))$。
模
模长$r = sqrt{x^2 + y^2}$,其中$x$和$y$分别是复数$z$的实部 和虚部。
复数三角形式的性质
幅角和模的性质
幅角
表示复数在复平面上的角度,其取值范围为$[0, 2pi)$。
模
表示复数在复平面上的距离,即该点到原点的长度。
幅角和模的关系
对于任意复数$z = r(costheta + isintheta)$,其 模为$r$,幅角为$theta$。
总结词
复数三角形式的除法运算可以通过将分母转换为 三角形式后再进行相除的方式进行。
详细描述
对于非零复数 $z_1$ 和 $z_2$,其商为 $frac{z_1}{z_2} = frac{r_1}{r_2} (cos(theta_1 -
theta_2) + i sin(theta_1 - theta_2))$。
解释
复数$z$可以用极坐标表示,其中$r$表 示原点到点$z$的距离,$theta$表示从 正实轴逆时针到点$z$的连线所形成的 角度。
复数的几何意义以及运算公式
复数的几何意义以及运算公式知识就是力量,在于平时不断的积累,想要了解复数的小伙伴赶紧来看看吧!下面由小编为你精心准备了“复数的几何意义以及运算公式”,本文仅供参考,持续关注本站将可以持续获取更多的知识点!复数的几何意义是什么1、复数的几何意义是:复数集与平面直角坐标系中的点集之间可以建立一一对应的关系。
2、我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a 称为实部,b称为虚部,i称为虚数单位。
3、当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。
复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。
4、复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
复数的运算公式(1)加法运算设z1=a+bi,z2=c+di是任意两个复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和:(a+bi)±(c+di)=(a±c)+(b±d)i。
(2)乘法运算设z1=a+bi,z2=c+di是任意两个复数,则:(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
其实就是把两个复数相乘,类似两个多项式相乘,结果中i2=-1,把实部与虚部分别合并。
两个复数的积仍然是一个复数。
(3)除法运算复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi (x,y∈R)叫复数a+bi除以复数c+di的商。
运算方法:可以把除法换算成乘法做,将分子分母同时乘上分母的共轭复数,再用乘法运算。
拓展阅读:复数与向量的关系是什么向量是复数的一种表示方式,而且只能是二维向量,即平面向量。
复数仅仅限制在二维平面上。
复数和复平面上以原点为起点的向量一一对应。
1、向量:在数学与物理中,既有大小又有方向的量叫做向量,亦称矢量,在数学中与之相对应的是数量,在物理中与之相对应的是标量。
复数的三角表示式复数乘除运算的三角表示及其几何意义【新教材】人教A版高中数学必修第二册课件
返回导航
第七章 复数
(2)由 a=0,b=-4<0,知
r= 02+-42=4,arg z2=32π,
因此复数 z2=-4i 的三角形式为
z2=4cos
32π+isin
32π.
数学(必修·第二册RJA)
返回导航
第七章 复数
数学(必修·第二册RJA)
题型二 将复数的三角形式化为代数形式 典例 2 将下列复数表示成代数形式:
1 复数三角形式的乘法运算
(2)决定辐角所在的象限;
2
12
12
[分析] 将复数的三角形式化为代数形式,只需要将其中蕴含的三角函数值求出数值即可.
返回导航
第七章 复数
数学(必修·第二册RJA)
知识点4 复数三角形式的除法 两个复数相除,商的模等于被除数的模除以除数的模所得的__商___,
商的辐角等于被除数的辐角减去除数的辐角所得的__差___.
数学(必修·第二册RJA)
[归纳提升] 将复数的三角形式化为复数代数形式的方法是:复数 三角形式z=r(cos A+isin A),代数形式为z=x+yi,对应实部等于实部, 虚部等于虚部,即x=rcos A,y=rsin A.
返回导航
第七章 复数
数学(必修·第二册RJA)
【对点练习】❷ __1_-__i__.
返回导航
第七章 复数
数学(必修·第二册RJA)
知识点2 辐角主值 求辐角主值时的常见误区
[分析] 根据复数三角形式的除法法则进行.
将复数的三角形式化为代数形式
复数三角形式的除法运算
规 定 在 __0_≤__θ_<_2_π___ 范 围 内 的 辐 角 θ 的 值 为 辐 角 的 主 值 , 通 常 记 作 2.类比三角函数的单位圆定义体会复数三角表示的特征.
复数的三角形式
复数的三角形式1.复数的三角形式复数的幅角指的是复数Z=a+bi所对应的向量半轴为始边,向量以x轴正方向所在的射线(起点为O)为终边的角度θ,记作ArgZ。
其中,满足0≤θ<2π的辐角θ的值称为辐角的主值,记作argZ。
需要注意的是,不等于零的复数Z的辐角有无限多个值,这些值中的任意两个相差2π的整数倍。
复数的三角形式指的是r(cosθ+isinθ),其中r为复数Z=a+bi的模,θ为Z的一个辐角。
任何一个复数Z=a+bi都可以表示成r(cosθ+isinθ)的形式。
2.复数的三角形式的运算设Z=r(cosθ+isinθ),Z1=r1(cosθ1+isinθ1),Z2=r2(cosθ2+isinθ2),则:3.应用例1:求下列复数的模和辐角主值1)1+i解:对于1+i,有a=1,b=1,点(1,1)在第一象限,所以r=sqrt(2),tanθ=1,辐角主值为θ=π/4.2)4-3i解:对于4-3i,有a=4,b=-3,点(4,-3)在第四象限,所以r=5,tanθ=-3/4,辐角主值为θ=11π/6.想一想:如何求复数z=3-4i的辐角?解:对于3-4i,有a=3,b=-4,点(3,-4)在第四象限,所以r=5,tanθ=-4/3,辐角主值为θ=11π/6.复数的三角形式具有以下特征:形式为r(cosθ+isinθ),其中r为模,θ为一个辐角。
下列各式是否为复数的三角形式:1)isinθ+cosθ2)2(cos(π/4)+isin(π/4))3)5(cos(5π/6)+isin(π/6))解:(1)不是,(2)是,(3)是。
例2:把下列复数转化为三角形式1)-1解:-1=cosπ+isinπ,所以r=1,θ=π。
2)2i解:2i=2(cosπ/2+isinπ/2),所以r=2,θ=π/2.3)3-i解:3-i=2(cos(11π/6)+isin(π/6)),所以r=2,θ=11π/6.总结:将复数的代数形式z=a+bi转化为复数的三角形式的一般方法步骤是:①求复数的模:r=sqrt(a^2+b^2);②由tanθ=b/a求出复数的辐角主值θ;③将复数表示为r(cosθ+isinθ)的形式。
复数的三角形式及几何意义
复数的三角形式及几何意义本节介绍复数的几何形式与三角形式,它们展示了复数的复平面的几何意义.通过复数的三角形式及运算,我们可以看到复数相乘(除)所对应的便是几何旋转.同时,复数的三角形式还可以有效地链接三角恒等变换,解决一些三角恒等式的计算,因此,本节内容也是强基或联赛中重点考察的对象.一.基础理论1.三角形式.复数bi a z +=(R b a ∈,)与复平面上的点),(b a Z 是一一对应的,点),(b a Z 和向量→OZ 于是一一对应的.向量→OZ 的模长称为复数bi a z +=的模||z ,即满足:22||b a z +=.进一步,复数yi x z +=在复平面内对应的点为),(y x Z .我们把向量OZ 与x 轴正方向形成的角叫做复数yi x z +=的辐角,记为Argz .取值在)2,0[π的辐角称为辐角主值,用z arg 来表示.对于非零复数,它的辐角主值是唯一的(复数0的辐角是任意的).显然,若z arg =θ,则22sin yx y +=θ,22cos yx x +=θ,于是就可进一步得到复数的三角形式:设||OZ r =,θ为辐角,那么点P 点的坐标就可以记为)sin ,cos (θθr r ,)sin (cos θθi r z +=.2.幅角的性质.显然,若记22y x r +=则复数yi x z +=的主幅角可以表示为反三角函数的形式:xy r x r y z arctan arccos arcsinarg ====θ3.指数形式.由欧拉公式:θθθsin cos i ei +=可得到复数的指数形式:θθθi re i r z =+=)sin (cos .4.三角形式的基本运算.对于复数代数形式的加减乘除运算,属于高考数学的内容之一,这部分相对简单,此处就不再列举.我们这里重点需要强调的是复数的三角形式及运算.)sin (cos 1111θθi r z +=)sin (cos 2222θθi r z +=(1)乘法)]sin()[cos()sin )(cos sin (cos 21212122112121θθθθθθθθ+++=++=i r r i i r r z z .进一步可得:||||||2121z z z z ⋅=,2121arg arg arg z z z z +=或π2arg arg arg 2121-+=z z z z .几何意义:模翻倍,角度逆时针旋转.(可以看到,复数乘法从几何意义上讲便是旋转,这是复数的一个重要价值.)进一步,可得乘方的运算公式:设)sin (cos θθi r z +=,则)sin (cos θθn i n r z nn+=(棣莫弗定理)(2)除法)]sin()[cos(21212121θθθθ-+-=i r r z z .几何意义:模折倍,角度顺时针旋转(实则为夹角,可正可负),即||||||2121z z z z =,2121arg arg arg z z z z -=或π2arg arg arg 2121+-=z z z z.(3)开方设)sin (cos θθi r z +=,则2sin 2(cosnk i n k r z n n πθπθ+++=(1,,2,1,0-=n k ).例如,222sin 222cos 2sin 2cos ππππππk i k i i +++=+=.可以看到,复数的n 次方根是n 个复数,它们的模都等于这个复数的模的n 次算术根,它们的幅角分别等于这个复数的幅角与π2的1,,1,0-⋅⋅⋅n 倍的和的n 分之一.5.复数的几何曲线(1)满足||||21z z z z -=-的复数z 所对应的点的轨迹为线段21Z Z 的中垂线;(2)满足r z z =-||1的复数z 所对应的点的轨迹为以1Z 为圆心,半径为r 的圆;(3)满足)2|(|,2||||2121a Z Z a z z z z <=-+-的复数z 所对应的点的轨迹为以21,Z Z 为椭圆,长轴长为a 2的椭圆.二.典例分析例1.计算下列各式的值.(1)312⎛⎫-+ ⎪ ⎪⎝⎭;(2)312⎛⎫-- ⎪ ⎪⎝⎭.解析:利用复数的三角形式可得:(1)33122cos sin cos2sin212233i i ππππ⎛⎫⎛⎫-=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭;(2)33144cos sin cos4sin41233i ππππ⎛⎫⎛⎫-=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭.点评:上述两个值是三次方程的两个单位根,其有重要的应用.例2.已知复数z 满足2240z z ++=,且arg ,2z ππ⎛⎫∈ ⎪⎝⎭,则z 的三角形式为__________.解析:由2240z z ++=可得,()213z +=-,所以11z z +=⇒=-,又arg ,2z ππ⎛⎫∈ ⎪⎝⎭,所以1z =-.因为2z ==,所以122z ⎛⎫=-=⎪ ⎪⎝⎭222cos sin 33i ππ⎛⎫+ ⎪⎝⎭.故答案为:222cos sin 33i ππ⎛⎫+ ⎪⎝⎭.例3.设11z i =+,22z i =+,33z i =+,则123arg()z z z -等于A.6πB.3πC.23πD.56π解析:由于()()()12312310z z z ii i i =+++=,∴()123arg z z z -()5arg 106i π=-=.选D.例4.(2020清华强基计划)求=++)31arcsin 103arccos1sin(arctan __________.解析:令i z i z i z +=+=+=2,3,1321,由于)arg(arg arg arg 321321z z z z z z =++,且根据复数的定义:=++31arcsin 103arccos1arctan 321arg arg arg z z z ++.另一方面:i z z z 10321=,故2)arg(321π=z z z ,则2)arg(arg arg arg 321321π==++z z z z z z ,综上,131arcsin 103arccos1sin(arctan =++.练习1.化简12arcsin 23-=______.解析:令11z =,22i z =,则有()2121211arg arg arg22z z z z +=()()1arg 42i 2⎡⎤=-+⎣⎦()13πarg 18i 24=-=.从而,12πarcsin234-=.下面我们再看复数的几何意义相关问题.例5.(2019上海竞赛)设复数z 满足4|3||3|=++-z z ,则||i z +的最大值为______.解析:显然,复数yi x z +=所对应的点的轨迹为方程为13422=+y x ,故求||i z +的最大值等价于求22)1(++y x 的最大值.利用椭圆的参数方程可求最大值为334.例6.(2020清华强基)设复数z 满足3|73|=-i z ,则iz z z +-+-1222的()A.最大值为38 B.最大值为37 C.最小值为34 D.最小值为32解析:由3|73|=-i z 可得:1|37|=-i z ,则z 是以)37,0(i 为圆心,1为半径的圆.另一方面,|1|1222i z iz z z --=+-+-,根据几何意义可知:]38,32[|1|∈--i z .练习2.(2019中科大自主招生)若复数z 满足11+-z z 是纯虚数,则|3|2++z z 的最小值为__.答案:333.练习3.若复数z 满足1||=z ,则|))((|i z i z +-的最大值为______.答案:2练习4.若复数z 满足4|3||3|=++-z z ,则||i z +的最大值为______.答案:334练习5.(2020高联A 卷)设z 为复数.若2z z i--为实数(i 为虚数单位),则|3|z +的最小值为______.解析:设(,)z a bi a b =+∈R ,由条件知22222(2)i (2)(1)22Im Im 0i (1)i (1)(1)z a b a b ab a b z a b a b a b ⎛⎫--+---++-⎛⎫==== ⎪ -+-+-+-⎝⎭⎝⎭,故22a b +=.从而|3||(3)2|5z a b +=≥++=,即|3|z +≥.当2,2a b =-=时,|3|z +练习6.(2016山东预赛)=+++651arcsin 501arcsin 261arcsin 101arcsin_______.答案:4π.。
《复数——复数的三角表示》数学教学PPT课件(3篇)
=2 3cos161π-π3+isin161π-π3
=2
3cos
32π+isin
3 2π
=-2 3i.
故把复数 3- 3i 对应的向量按逆时针旋转π3得到的复数为 3+
3i,按顺时针旋转π3得到的复数为-2 3i.
栏目 导引
第七章 复 数
两个复数 z1,z2 相乘时,先分别画出与 z1,z2 对应的向量O→Z1, O→Z2,然后把向量O→Z1绕点 O 按逆时针方向旋转角 θ2(如果 θ2<0, 就要把O→Z1绕点 O 按顺时针方向旋转角|θ2|),再把它的模变为原 来的 r2 倍,得到向量O→Z,O→Z表示的复数就是积 z1z2.
栏目 导引
第七章 复 数
6cosπ3+isinπ3×4cosπ6+isinπ6=________; 6cosπ3+isinπ3÷4cosπ6+isinπ6=________.
栏目 导引
解析:6cosπ3+isinπ3×4cosπ6+isinπ6 =24cosπ3+π6+isinπ3+π6 =24i. 6cosπ3+isinπ3÷4cosπ6+isinπ6 =64cosπ3-π6+isinπ3-π6 =32cosπ6+isinπ6 =3 4 3+34i. 答案:24i 343+34i
栏目 导引
第七章 复 数
(2) 3(cos 225°+isin 225°)÷[ 2(cos 150°+isin 150°)]
= 32[cos(225°-150°)+isin(225°-150°)]
= 26(cos 75°+isin 75°)
=
6 2
6- 4
2+
6+ 4
2i
=6-82
3+6+82
第17讲 复数的三角形式(讲义)解析版
第17讲 复数的三角形式知识梳理1.复数的三角表示式及复数的辐角和辐角主值一般地,如果非零复数z =a +b i(a ,b ∈R )在复平面内对应点Z (a ,b ),且r 为向量OZ →的模,θ是以x 轴正半轴为始边、射线OZ 为终边的一个角,则r =|z |根据任意角余弦、正弦的定义可知cos θ=a r ,sin θ=b r.因此a =r cos θ,b =r sin θ,从而z =a +b i =(r cos θ)+(r sin θ)i =r (cos θ+isin θ), 上式的右边称为非零复数z =a +b i 的三角形式(对应地,a +b i 称为复数的代数形式),其中的θ称为z 的辐角.显然,任何一个非零复数z 的辐角都有无穷多个,而且任意两个辐角之间都相差2π的整数倍.特别地,在[0,2π)内的辐角称为z 的辐角主值,记作arg z 2.复数三角形式的乘、除运算若复数z 1=r 1(cos θ1+isin θ1),z 2=r 2(cos θ2+isin θ2),且z 1≠z 2,则 (1)z 1z 2=r 1(cos θ1+isin θ1)×r 2(cos θ2+isin θ2) =r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)]. (2)z 1z 2=r 1r 2[cos(θ1-θ2)+isin(θ1-θ2)].(3)[r (cos θ+isin θ)]n=r n[cos(n θ)+isin(n θ)].例题解析1.代数形式化为三角形式例1.(2021·浙江高一单元测试)把下列复数的代数形式化成三角形式.(1)3-;(2.【答案】(1)11113cos isin 66ππ+⎫-=⎪⎭(277cos isin 244ππ⎛⎫=⎝+⎪⎭【分析】(1)先根据模公式r =求出模来,再根据其对应的点是(3,在第四象限,求出()11arg 36π=,最后写成三角形式.(2)先根据模公式r =求出模来,再根据其对应的点是在第四象限,求出)7arg4π=,最后写成三角形式.【详解】(1)r ==因为与3-对应的点在第四象限,所以()11arg 36π-=,所以11113cos isin 66ππ+⎫-=⎪⎭.(2)2r ==.对应的点在第四象限,所以)7arg4π=,77cosisin 244ππ⎛⎫= ⎝+⎪⎭. 【点睛】本题主要考查了复数的代数形式与三角形式的转化,还考查了数形结合的思想和运算求解的能力,属于基础题. 【巩固训练】1.(202012i +化成三角形式,正确的是( ) A .cossin33i ππ+B .cossin66i ππ+C .22cos sin 33i ππ+ D .1111cos sin 66i ππ+ 【答案】B【分析】直接根据特殊角的三角函数值计算可得;【详解】解: 因为cos6π=1sin 62π=1cos sin 266i i ππ+=+ 故选:B【点睛】本题考查复数的基本概念,考查了复数的三角形式,属于基础题.2.(2020·全国高一课时练习)复数1-+的三角形式是 A .222cossin 33i ππ⎛⎫+ ⎪⎝⎭ B .552cossin 66i ππ⎛⎫+ ⎪⎝⎭ C .552cossin 33i ππ⎛⎫+ ⎪⎝⎭D .11112cossin 66i ππ⎛⎫+ ⎪⎝⎭【答案】A【分析】根据复数的三角形公式(cos sin )z r i θθ=+求解或利用定义直接求解即可.【详解】解法一:设复数的三角形式为(cos sin )z r i θθ=+,则2r ==,tan θ=,可取2arg 3z πθ==,从而复数1-+的三角形式为222cos sin 33i ππ⎛⎫+ ⎪⎝⎭.解法二:1⎡⎤-=12222cos sin 2233i ππ⎛⎫⎛⎫-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭故选:A【点睛】本题主要考查了复数的三角形式,属于基础题.3.(2020·全国高一课时练习)复数1z i =-(i 为虚数单位)的三角形式为( )A .45cos 45)z i ︒︒=-B .45isin 45)z ︒︒=-C .45)sin(45)]z i ︒︒=---D .45)+sin(45)]z i ︒︒=--【答案】D【分析】复数的三角形式是()cos sin z r i θθ=+,根据复数和诱导公式化简,化为复数的三角形式,再结合答案选择.【详解】解:依题意得r ==复数1z i =-对应的点在第四象限,且cos θ=,因此,arg 315z ︒=,结合选项知D 正确, 故选:D.【点睛】本题考查了复数的代数形式和三角形式的转化,主要利用诱导公式化简,注意两种形式的标准形式,式子中各个位置的符号,以及三角函数值的符号.总结规律:复数的代数形式化为三角形式的步骤 (1)先求复数的模. (2)决定辐角所在的象限. (3)根据象限求出辐角. (4)求出复数的三角形式.提醒:一般在复数三角形式中的辐角,常取它的主值,这使表达式简便,又便于运算,但三角形式辐角不一定取主值.2.三角形式化为代数形式例1.(2020·全国高一课时练习)“复数12,z z 的模与辐角分别相等”是“12z z =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】要对充分性和必要性进行判断,注意辐角可以相差2π的整数倍即可. 【详解】当复数12,z z 的模与辐角分别相等时,一定有12z z =,充分性成立;但当12z z =时,1z 与2z 的辐角可以相等,也可以相差2π的整数倍,必要性不成立.综上,“复数12,z z 的模与辐角分别相等”是“12z z =”的充分不必要条件.故选:A.【点睛】本题考查对复数三角形式的认知,要注意辐角是不唯一的.例2.(2020·河北冀州中学(衡水市冀州区第一中学)高三月考)任意复数z a bi =+(,a b ∈R ,i 为虚数单位)都可以()cos sin z r i θθ=+的形式,其中)0r θπ=≤<该形式为复数的三角形式,其中θ称为复数的辐角主值.若复数z =,则z 的辐角主值为( )A .6π B .3π C .23π D .56π 【答案】D【分析】把复数代为代数形式再化为三角形式后可得辐角主值.【详解】2155cos sin42266i z i i ππ-====-+=+,所以辐角主值为56π. 故选:D .例3.(2020·全国高一课时练习)已知复数z 1cos sin1212i ππ⎫+⎪⎭,z 2cossin66i ππ⎫+⎪⎭,则z 1z 2的代数形式是( )A cossin44i ππ⎫+⎪⎭B cossin1212i ππ⎫+⎪⎭C D 【答案】D【分析】利用复数三角形式的乘法法则,计算即可得解.【详解】12cos sin cos sin 121266z z i i ππππ⎫⎫=++⎪⎪⎭⎭[cos()s in()]112626i ππππ=+++44cossin )i ππ=+=故选:D.【点睛】本题考查了复数三角形式的乘法法则,意在考查学生的计算能力,是基础题. 例4.(2020·全国高一课时练习)复数55sin cos 1818z i ππ=-+的辐角主值为 A .518π B .169πC .29π D .79π 【答案】D【分析】化简55sincos 1818z i ππ=-+利用诱导公式化成标准形式再判断即可. 【详解】5577sin cos cos sin 181899z i i ππππ=-+=+,故复数z 的辐角主值为79π.故选:D【点睛】本题主要考查了复数的辐角主值的辨析,属于基础题.例5.(2020·全国高三专题练习)分别指出下列复数的模和辐角的主值,并将复数表示成代数形式. (1)4(cos sin )66i ππ+; (2)2(cossin )33i ππ- 【分析】(1)复数4(cossin )66i ππ+为复数的三角形式,再写出其模和辐角的主值,然后再转化为(),a bi a b R +∈的形式;(2)先把复数2cossin33i ππ⎛⎫- ⎪⎝⎭,转化为三角形式552cossin 33i ππ⎡⎤+⎢⎥⎣⎦,再写出其模和辐角的主值,然后再转化为(),a bi a b R +∈的形式; 【详解】(1)复数4(cossin )66i ππ+模r =4,辐角的主值为θ=6π.4(cossin )66i ππ+4cos 4sin 66i ππ=+1442i =+⨯2i =. (2)2cossin33i ππ⎛⎫- ⎪⎝⎭2cos 2sin 233i ππππ⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦552cos sin 33i ππ⎡⎤=+⎢⎥⎣⎦,复数的模为2,辐角的主值为θ=53π,2cos sin33i ππ⎛⎫- ⎪⎝⎭552cos 2sin 33i ππ=+12222i ⎛⎫=⨯+⨯- ⎪ ⎪⎝⎭1=. 【巩固训练】1.(2020·全国高一课时练习)下列复数是不是三角形式?如果不是,把它们表示成三角形式. (1)442cos sin 55i ππ⎛⎫-+ ⎪⎝⎭; (2)33sincos 55i ππ+. 【答案】(1)不是,992cossin 55i ππ⎛⎫+ ⎪⎝⎭(2)不是,cos sin 1010i ππ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭.【分析】(1)根据复数的三角形式的定义,结合题意,本题中模是负数,显然不是三角形式,需要借助诱导公式化简;(2)根据复数的三角形式的定义,显然不是复数,借助诱导公式化简即可. 【详解】(1)不是.44442cos sin2cos sin 5555i i ππππ⎛⎫⎛⎫-+=--= ⎪⎪⎝⎭⎝⎭44992cos sin 2cos sin 5555i i ππππππ⎡⎤⎛⎫⎛⎫⎛⎫+++=+ ⎪⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ (2)不是.3333sincos cos sin cos sin 5525251010i i i ππππππππ⎛⎫⎛⎫⎛⎫⎛⎫+=-+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【点睛】本题考查复数的三角形式的辨识,以及化简复数为三角形式的能力,需要注意合理利用诱导公式.总结规律:复数的三角形式z =rcos θ+isin θ必须满足“模非负、余正弦、+相连、角统一、i 跟sin”,否则就不是三角形式,只有化为三角形式才能确定其模和辐角,.3.复数三角形式的乘、除运算例1.(2020·全国高一课时练习)计算:(1)771333cos sin cos sin 44222i i ππππ⎛⎫⎛⎫+÷+⎪ ⎪⎝⎭⎝⎭;(2)1222cos sin 233i i ππ⎛⎫÷+ ⎪⎝⎭. 【答案】(1)3232i ;(2)32i【分析】直接根据复数代数形式的乘法与除法运算法则计算可得; 【详解】解:(1)771333cossin cos sin 44222i i ππππ⎛⎫⎛⎫+÷+ ⎪⎪⎝⎭⎝⎭2232i ⎫⎛⎫=÷-⎪ ⎪⎪⎝⎭⎝⎭ 226323222i i ⎛⎫=-= ⎪ ⎪⎝⎭(2)1222cos sin 233i i ππ⎛⎫÷+ ⎪⎝⎭113222i ⎛⎫=÷-+ ⎪ ⎪⎝⎭1422ii⎛⎫-⎪===⎝⎭⎝⎭⎝⎭【点睛】本题考查复数代数形式的乘除运算,考查计算能力,属于基础题.【巩固训练】2.计算:(1)⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫cosπ3+isinπ32;(2)2(cos 75°+isin 75°)×⎝⎛⎭⎪⎫12-12i;(3)⎝⎛⎭⎪⎫-12+32i÷⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫cosπ3+isinπ3.[解] (1)⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫cosπ3+isinπ32=(2)2⎝⎛⎭⎪⎫cos23π+isin23π=2⎝⎛⎭⎪⎫-12+32i=-1+3i.(2)12-12i=22⎝⎛⎭⎪⎫22-22i=22⎝⎛⎭⎪⎫cos74π+isin74π,所以2(cos 75°+isin 75°)×⎝⎛⎭⎪⎫12-12i=2⎝⎛⎭⎪⎫cos512π+isin512π×⎣⎢⎡⎦⎥⎤22⎝⎛⎭⎪⎫cos74π+isin74π=2×22⎣⎢⎡⎦⎥⎤cos⎝⎛⎭⎪⎫512π+74π+isin⎝⎛⎭⎪⎫512π+74π=cos2612π+isin2612π=cosπ6+isinπ6=32+12i.(3)因为-12+32i=cos23π+isin23π,所以⎝ ⎛⎭⎪⎫-12+32i ÷⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫cos π3+isin π3=⎝ ⎛⎭⎪⎫cos 23π+isin 23π÷⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫cos π3+isin π3=12⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫23π-π3+isin ⎝ ⎛⎭⎪⎫23π-π3=12⎝⎛⎭⎪⎫cos π3+isin π3=14+34i. 总结规律:1.乘法法则:模相乘,辐角相加. 2.除法法则:模相除,辐角相减.3.复数的n 次幂,等于模的n 次幂,辐角为n 倍.4.复数三角形式乘、除运算的几何意义例1.(2020·全国高三二模(文))在复平面内,O 为坐标原点,复数z 对应的点为()1,0Z ,将向量OZ 按逆时针方向旋转30得到OZ ',则OZ '对应的复数z '为( )A .122i + B .122i + C .122i - D .122- 【答案】A【分析】设z a bi '=+,根据三角函数的定义可求得a 、b 的值,进而可得出复数z '的值.【详解】设z a bi '=+,由题意知,3cos302a ==1sin 302b ==,所以12z i '=+,故选:A .【点睛】本题考查复数的求解,考查了三角函数定义的应用,考查计算能力,属于基础题.例2.(2020·全国高一课时练习)将复数1对应的向量ON 绕原点按顺时针方向旋转2π,得到的向量为1ON ,那么1ON 对应的复数是A i -B iC .iD .i +【答案】A【分析】先将复数1+写成三角形式,再根据三角形式的运算法则求解即可.【详解】复数1的三角形式是2cossin33i ππ⎛⎫+ ⎪⎝⎭,向量1ON 对应的复数是2cos sin 332cos sin 66cos sin 22i i i ππππππ⎛⎫+ ⎪⎡⎤⎛⎫⎛⎫⎝⎭=-+-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦+故选:A【点睛】本题主要考查了复数三角形式的运用,属于基础题.例3.(2020·全国高一课时练习)将复数1i +对应的向量OM 绕原点按逆时针方向旋转4π,得到的向量为1OM ,那么1OM 对应的复数是 A .2i BC.22+ D【答案】B【分析】根据复数的三角形式运算求解即可. 【详解】复数1i +cossin44i ππ⎫+⎪⎭,向量1OM 对应的复数cos sin cos sin 4444i ππππ⎫⎛⎫+⨯+⎪ ⎪⎭⎝⎭cos sin 22i ππ⎫=+=⎪⎭故选:B【点睛】本题主要考查了复数的三角形式运算,属于基础题.例4.(2020·全国高一课时练习)在复平面内,把与复数22i -+对应的向量绕原点O 按逆时针方向旋转75︒,求与所得向量对应的复数(用代数形式表示).【答案】【分析】根据三角形式的复数乘法意义,应用乘法法则,计算即可. 【详解】与所得向量对应的复数为()()22cos75sin75i i -+⨯︒+︒)()cos135sin135cos75sin 75i i =︒+︒⨯︒+︒()()cos 13575sin 13575i =︒+︒+︒+︒⎤⎦)cos210sin 210i =︒+︒=12i ⎫-⎪⎪⎭=.【点睛】本题考查复数三角形式乘法的意义,属基础题.例5.(2020·全国高一课时练习)在复平面内,设O 为坐标原点,点,A B 所对应的复数分别为12,z z ,且12,z z 的辐角主值分别为,αβ,模长均为1.若AOB 的重心G 对应的复数为11315i +,求()tan αβ+. 【答案】512【分析】根据题意,写出复数的三角形式,由重心坐标的计算公式,可得重心对应的复数的形式,结合题目已知条件,即可求解.【详解】由题意,可知12cos sin ,cos sin z i z i ααββ=+=+.∵AOB 的重心G 对应的复数为11315i +, ∴12113315z z i +=+,即cos cos 11sin sin 5αβαβ+=⎧⎪⎨+=⎪⎩, ∴2cos cos 12212sin cos 225αβαβαβαβ+-⎧=⎪⎪⎨+-⎪=⎪⎩, ∴1tan 25αβ+=, ∴()22tan 52tan 121tan 2αβαβαβ++==+-. 【点睛】本题综合考查复数的三角形式的理解和认知,属三角形式中的中档题.注意本题中还涉及和差化积公式.例6.(2020·全国高一课时练习)设复数12sin cos 42z i ππθθθ⎛⎫=+<< ⎪⎝⎭在复平面上对应向量1OZ ,将向量1OZ 绕原点O 按顺时针方向旋转34π后得到向量2OZ ,2OZ 对应复数()2cos isin z r ϕϕ=+,则tan ϕ=( )A .2tan 12tan 1θθ+-B .2tan 12tan 1θθ-+C .12tan 1θ+D .12tan 1θ- 【答案】A【分析】先把复数1z 化为三角形式,再根据题中的条件求出复数2z ,利用复数相等的条件得到sin ϕ和cos ϕ的值,求出tan ϕ.【详解】因为1z ==所以1z ⎫=,设cos β=sin β=,0,2πβ⎛⎫∈ ⎪⎝⎭, 则cos tan 2sin θβθ=,23355cos sin cos +sin +4444z i i ππππββββ⎤⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-=+ ⎪ ⎪ ⎪ ⎪⎥⎥⎝⎭⎝⎭⎝⎭⎝⎭⎦⎦即r =5cos cos 4πϕβ⎛⎫=+ ⎪⎝⎭,5sin sin 4πϕβ⎛⎫=+ ⎪⎝⎭, 故5sin 54tan tan tan 544cos 4πβππϕββπβ⎛⎫+ ⎪⎛⎫⎛⎫⎝⎭==+=+ ⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭ cos 11tan 2tan 12sin cos 1tan 2tan 112sin θβθθθβθθ+++===---. 故选:A.【点睛】本题考查复数的几何意义及复数的综合运算,较难. 解答时要注意将1z 、2z 化为三角形式然后再计算.【巩固训练】1.(2020·全国高一课时练习)在复平面内,把与复数4+对应的向量绕原点O 按顺时针方向旋转15︒,求与所得向量对应的复数(用代数形式表示).【答案】+【分析】根据复数除法的意义,进行计算即可.【详解】与所得向量对应的复数为()()4cos15sin15i +÷︒+︒()()8cos60sin60cos15sin15i i =︒+︒÷︒+︒()()8cos 6015sin 6015i =︒-︒+︒-︒⎡⎤⎣⎦()8cos45sin 45i =︒+︒22822i ⎛⎫=+ ⎪ ⎪⎝⎭ 4242i =+.【点睛】本题考查复数的除法的意义,属基础题.2.(2020·全国高一课时练习)在复平面内,把与复数i -对应的向量绕原点O 按逆时针方向旋转45°,所得向量对应的复数为z ,求复数z (用代数形式表示). 【答案】22i 22z =- 【分析】把与复数i -对应的向量绕原点O 按逆时针方向旋转45°得到()()cos45isin 45i =︒+︒⨯-z ,再把三角形式转化为代数形式运算,整理为a bi + 的形式.【详解】由题意得()()()22cos 45isin 45i i i 22z⎛⎫=︒+︒⨯-=+⨯- ⎪ ⎪⎝⎭22i 22=-. 【点睛】本题主要考查了复数的代数形式与三角形式的转化及其运算,还考查了运算求解的能力,属于基础题.总结规律:两个复数z 1,z 2相乘时,先分别画出与z 1,z 2对应的向量,,然后把向量绕点O 按逆时针方向旋转角θ2如果θ2<0,就要把绕点O 按顺时针方向旋转角|θ2|,再把它的模变为原来的r 2倍,得到向量,表示的复数就是积z 1z 2.5.三角形式下复数的乘方与开方【巩固训练】1.(2020·全国)复数()()452213i i +-=( )A .13iB .13i -+C .13iD .13i --【答案】B【分析】由复数的三角形式得22cos sin 44i i ππ+=+),1=2(cos sin )33i ππ-,代入运算可得选项.【详解】22cos sin 44i i ππ+=+),故46(22)2(cos sin )i i ππ+=+=62-,1=2(cos sin )33i ππ-,故5555(1)2cos sin 33i ππ⎛⎫=- ⎪⎝⎭,46512222552(cos sin )33i ππ⎛⎫-- ⎪-===-⎝⎭⎝⎭12()12=--=-+. 故选:B.【点睛】本题考查复数的三角形式的运算,属于基础题.2.(2020·全国高一课时练习)计算下列各式:(1)()5cos36sin 36i -︒+︒; (2)4 2cos isin 33ππ-⎡⎤⎛⎫+ ⎪⎢⎥⎝⎭⎣⎦. 【答案】(1)1-;(2)13232i -+ 【分析】根据复数的乘方及乘法法则计算可得;【详解】解:(1)()5cos36sin 36i -︒+︒()5111cos180sin180cos36sin 36i i ===-︒+︒︒+︒ (2)4 2cos isin 33ππ-⎡⎤⎛⎫+ ⎪⎢⎥⎝⎭⎣⎦ 412cos isin 33ππ=⎡⎤⎛⎫+ ⎪⎢⎥⎝⎭⎣⎦ 14 16cos isin 334ππ=⎛⎫+ ⎪⎝⎭=⎝⎭12⎛⎫- ⎪=⎝⎭⎝⎭132=-+ 【点睛】本题考查复数代数形式的乘方运算及除法运算,属于中档题.3.(2020.【答案】8-+【分析】根据复数三角形式的乘方运算及代数形式的乘法运算法则计算可得;【详解】解51322i ⎫⎪=532sin cos i ππ⎛⎫+ ⎪=5532sin cos i ππ⎛⎫+ ⎪=13222i ⎛⎫-+ ⎪=)132228i i ⎛⎫-+ ⎪==-+ 【点睛】本题考查复数三角形式的乘方运算及代数形式的除法运算,属于基础题.反思总结:知识:(1)任何一个不为零的复数的辐角有无限多个值,且这些值相差2π的整数倍.(2)复数0的辐角是任意的.(3)在0≤θ<2π范围内的辐角θ的值为辐角主值,通常记作arg z,且0≤arg z<2π.(4)两个非零复数相等当且仅当它们的模与辐角主值分别相等.方法:两个复数三角形式乘法的法则可简记为:模相乘,辐角相加,并且可以作以下推广;(1)有限个复数相乘,结论亦成立.即z1·z2…z n=r1(cos θ1+isin θ1)·r2(cos θ2+isin θ2)…r n(cos θn+isin θn)=r1·r2…r n[cos(θ1+θ2+…+θn)+isin(θ1+θ2+…+θn)].(2)当z1=z2=…=z n=z时,即r1=r2=…=r n=r,θ1=θ2=…=θn=θ,有z n=[r(cos θ+isin θ)]n=r n[cos(nθ)+isin(nθ)],这就是复数三角形式的乘方法则,即:模数乘方,辐角n倍.。
复数的三角表示式
复数的三角表示式复数是由实数和虚数组成的数,可以用多种形式表示。
其中,三角表示式是一种常见且有用的表示方式。
本文将介绍复数的三角表示式及其相关概念和性质。
一、复数的三角表示式概述复数的三角表示式是将复数表示为一个模长和一个辐角的形式。
一般地,复数可以表示为z = a + bi,其中a为实部,b为虚部,i为虚数单位。
而三角表示式将复数表示为z = r(cosθ + isinθ),其中r 为模长,θ为辐角。
二、复数的模长和辐角1. 模长:复数的模长表示复数到原点的距离,也可以理解为复数的绝对值。
对于复数z = a + bi,其模长可以通过求解|z| = √(a^2 + b^2)来获得。
2. 辐角:复数的辐角表示复数与实轴正半轴的夹角。
对于复数z =a + bi,其辐角可以通过求解θ = arctan(b/a)来获得。
需要注意的是,在计算辐角时,需要对各种特殊情况进行讨论和处理。
三、复数的三角表示式的转换复数的三角表示式可以与代数表示式相互转换,具体的转换方式如下:1. 从代数表示式转换为三角表示式:- 计算复数的模长|r| = √(a^2 + b^2);- 计算复数的辐角θ = arctan(b/a);- 将复数表示为z = r(cosθ + isinθ)。
2. 从三角表示式转换为代数表示式:- 计算复数的实部a = r*cosθ;- 计算复数的虚部b = r*sinθ;- 将复数表示为z = a + bi。
四、复数的三角表示式的运算复数的三角表示式在进行加减乘除等运算时具有一定的方便性和简洁性。
具体运算规则如下:1. 加法:将两个复数的实部分别相加,虚部分别相加,得到结果的三角表示式。
2. 减法:将两个复数的实部分别相减,虚部分别相减,得到结果的三角表示式。
3. 乘法:将两个复数的模长相乘,辐角相加,得到结果的三角表示式。
4. 除法:将两个复数的模长相除,辐角相减,得到结果的三角表示式。
需要注意的是,进行复数的乘法和除法运算时,模长相乘或相除,辐角相加或相减。
复数乘、除运算的三角表示及其几何意义
解:要求点C对应的复数,即求向量对应的复数,结合图形知
=+,故可以先求向量对应的复数.向量可以看作
向量的长度扩大为原来的 3倍,并绕点B按顺时针方向旋转
90°后得到,因为向量对应的复数为(-1+2i)-(1+i)=-2+i,
isin 30°)÷[ 3(cos 60°+isin 60°)]=
( B )
3
(cos
3
30°+
3 1
× [cos(30°-60°)+isin(30°-60°)]=
3
3
1
3 1
[cos(-30°)+isin(-30°)]= - i,故选B.
3
6 6
=1+2i,故点P对应的复数为1+2i.
课堂评价
1.若复数z1=
A.6 2
π
π
6(cos +isin ),z2=2
4
4
B.4 3
C.2 3
π
π
3(cos +isin ),则z1z2的模为
5
5
D. 6
[解析] z1z2的模为 6×2 3=6 2,故选A.
( A )
课堂评价
2.若复数z1=
A.4
B.4i
π
按顺时针方向旋转 后,得到向量1 ,求向量1 和点P对应的复数.
2
解:由题意知向量1 2 对应的复数是z2-z1=(-3+4i)-(-2+i)=-1+3i.由复数乘法
π
π
的几何意义得,向量1 对应的复数是(-1+3i)·[cos(- )+isin(- )]=3+i.由复数
复数的三角表示
三. 复数乘除法的几何意义的应用
例5 已知复数z1=-2+i对应的点为P1,z2=-3+4i对应的点为P2,
把向量
uuuur P1P2
绕P1点按顺时针方向旋转
2
后,得到向量
uuur P1P
,求向
量
uuur P1P
和点P对应的复数分别是什么?
uuuur
解:由题意知向量 P1P2 对应的复数是
z2-z1=(-3+4i)-(-2+i)=-1+3i.
【名师点拨】 将复数的三角形式r(cos θ+isin θ)化为代 数形式a+bi(a,b∈R)时,其中a=rcos θ, b=rsin θ. 【注意】 复数z=a+bi(a,b∈R)与复平面内的点 (a,b)是一一对应的.
二. 利用复数的三角形式进行复数的乘、除运算
<1>复数的乘法运算
例3.
5
3.复数代数形式和三角形式的转化
a+bi=rcos θ+irsin θ=r(cos θ+isin θ),
a
b
其中 r= a2 b2 , cos θ= r , sin θ= r .
(1)复数的代数形式是唯一的,但三角形式不唯一. (2)任何一个不为零的复数的辐角有无限多个值,但辐角主 值只有一个;复数0的辐角是任意的,不讨论它的辐角主值.
cos
6
isin
6
·
2
cos
4
isin
4
=
.
【解析】
5
cos
6
ห้องสมุดไป่ตู้
复数的三角形式
复数的三角形式1、复数的三角形式(1)复数的幅角:设复数Z=a+bi对应向量,以x轴的正半轴为始边,向量所在的射线(起点为O)为终边的角θ,叫做复数Z的辐角,记作ArgZ,其中适合0≤θ<2π的辐角θ的值,叫做辐角的主值,记作argZ.说明:不等于零的复数Z的辐角有无限多个值,这些值中的任意两个相差2π的整数倍.(2)复数的三角形式:r(cosθ+isinθ)叫做复数Z=a+bi的三角形式,其中.说明:任何一个复数Z=a+bi均可表示成r(cosθ+isinθ)的形式.其中r为Z的模,θ为Z的一个辐角.2、复数的三角形式的运算:设Z=r(cosθ+isinθ),Z1=r1(cosθ1+isinθ1),Z2=r2(co sθ2+isinθ2).则3、应用例1求下列复数的模和辐角主值 (1)i +1 (2)i -3解:(1)211122=+=+i又a b tan =θ=1,点(1,1)在第一象限。
所以41πθ=+=)(i arg(2)213322=-+=-)()(i有31-=θtan ,点(13-,)在第四象限,所以611623πππθ=-=-=)(i arg想一想:怎样求复数i z 43-=的辐角想一想:复数的三角形式有哪些特征下列各式是复数的三角形式吗(1)θθcos sin i + (2)[])()(︒-+︒-30302sin i cos(3))(6655ππsin i cos+例2 把下列复数转化为三角形式 (1)-1;(2)i 2; (3)i -3解:(1)2201+-=)(r =1,辐角主值为θ=π=-)(1arg,所以-1=ππsin i cos +(2)22022=+=r 辐角主值为θ=()22π=i arg ,所以i2=)(222ππsin i cos+(3)21322=-+=)()(r ,由3331-=-=θtan 和点),(13-在第四象限,得611623πππθ=-=-=)(i arg ,所以i -3=)(6116112ππsin i cos+总结:复数的代数形式bi a z +=化为复数的三角形式一般方法步骤是:①求复数的模:22b a r +=;②由a btan =θ及点)(b ,a 所在象限求出复数的一个辐角(一般情况下,只须求出复数的辐角主值即可);③写出复数的三角形式。
复数的三角形式乘法及其几何意义练习版
复数的三角形式 乘法及其几何意义1、复数的三角形式及运算(1)复数的幅角:设复数Z=a +bi 对应向量,以x 轴的正半轴为始边,向量所在的射线(起点为O)为终边的角θ,叫做复数Z 的辐角,记作Arg Z ,其中适合0≤θ<2π的辐角θ的值,叫做辐角的主值,记作arg Z . 说明:不等于零的复数Z 的辐角有无限多个值,这些值中的任意两个相差2π的整数倍.(2)复数的三角形式:r(cosθ+isin θ)叫做复数Z =a +bi 的三角形式,其中.说明:任何一个复数Z =a +bi 均可表示成r(cosθ+isin θ)的形式.其中r 为Z 的模,θ为Z 的一个辐角. (3)复数的三角形式的运算:设Z=r(cosθ+isin θ),Z 1=r 1(cos θ1+isin θ1),Z 2=r 2(cos θ2+isin θ2).则2、复数的几何意义(1)复数模的几何意义:,即Z 点到原点O 的距离,一般地|Z 1-Z 2|即Z1点到Z 2点的距离. (2)复数加、减法的几何意义图中给出的平方四边形,可以直观地反映出复数加、减法的几何意义.即Z=Z 1+Z 2,.(3)复数乘、除法的几何意义:设Z 1=r 1(cos θ1+isin θ1),则ZZ1的几何意义是把Z 的对应向量按逆时针方向旋转一个角θ1(如果θ1<0,就要把按顺时针方向旋转一个角|θ1|,再把它的模变为原来的r 1倍,所得向量即表示积ZZ 1,如图,Z 1≠0,的几何意义是把Z 的对应向量按顺时针方向旋转一个角θ1(如果θ1<0,就要把按逆时针方向旋转一个角|θ1|,再把它的模变为原来的倍,所得的向量即表示商.概念:1、复数的三角形式:设|z|=r (r ≥0),辐角主值:argz=α, 那么复数z =2、复数三角形式的几点要求:⑴ ⑵ ⑶3、回顾练习:⑴下列那一个是复数的三角形式: (A)21(cos 3π-isin 3π) (B) -21(cos 4π+isin 4π) (C)21(sin 54π+icos 54π) (D)cos 56π+isin 56π⑵把下列复数化为三角形式: -3= ;=-i 2123 ; 一、 复数的三角形式的乘法运算:1、定理:设z 1=r 1(cos α+isin α),z 2=r 2(cos β+isin β),r 1≥0,r 2≥0 那么:z 1·z 2=此定理用语言叙述为: 【例题1】1、求下列复数的积: ①2(cos12π+isin 12π)∙3(cos 6π+isin 6π) ②3(cos75º+isin75º) ∙3(cos15º+isin15º)③(cos3A +isin3A) ∙ (cos2A -isin2A)定理的推广:设z n =r n (cos αn +isinn α),其中r n ≥0于是:z1z2z 3…z n =r1r2r 3…r n [cos(α1+α2+α3+…+αn )+isin(α1+α2+α3+…+αn )](当α1=α2=α3=…=αn 时z 1n=cosna +isinn a )1、将下列乘积的结果直接写出:(如果没有特别声明,计算结果一般保留代数形式) ⑴8(cos6π+isin 6π)∙2 (cos 12π+isin 12π)= ⑵8(cos240º+isin240º)∙2 (cos150º-isin150º)= ⑶3(cos18º+isin18º) ∙2 (cos54º+isin54º) ∙5 (cos108º+isin108º⑷|3(cos 12π-isin 12π)∙ (1+i) ∙2(sin22º+icos22º)|=二、复数乘法的几何意义:⑴两个复数z 1、z2相乘时,可以先画出分别与z1、z2对应的向量1OZ 、2OZ ,然后把向量2OZ 按逆时针方向旋转1θ(1θ<0如何?)再把模变为原来的r1倍,所得的向量OZ 就表示积z 1z 2.*特征:旋转+伸缩变换⑵向量的旋转与伸缩可以转化为两个复数的乘积.【例题2】试说明下列乘法运算可以看成对应向量的如何变化: ⑴8(cos6π+isin 6π)∙2 (cos 12π+isin 12π): ⑵8(cos240º+isin240º)∙2 (cos210º-isin210º):⑶3(cos18º+isin18º) ∙2 (cos54º+isin54º) ∙ (cos108º+isin108º):【例题3】1、OZ 对应复数-1+i,将按逆时针OZ 方向旋转120º后得到Z O ',求对应复数Z O 'z2、(2000全国)把复数3-3i 对应向量按顺时针方向旋转π31,所得向量对应复数为( ) (A)23(B) -23i (C) 3-3i (D) 3+3i3、Z A =1,Z B =3+2i,并且ABC D 是按逆时针方向排列的正方形的四 个顶点,求ZC 与Z D .【反馈练习2】如果向量对OZ 应复数4i ,OZ 逆时针旋转45º后再把模变为原来的倍得到2向量1OZ ,那么与对应1OZ 的复数是2、正⊿ABC 的顶点A 、B 、C 对应复数Z A 、Z B 、Z C ,点A 、B 、C 按逆时针顺序排列,那么( ) (A) Z C =(Z B -Z A ) ∙ (cos60º+isin60º) (B) Z C =(Z B -Z A ) ∙ (cos60º-isin60º) (C) Z C =Z B ∙ (cos60º+isin60º) (D) Z C =Z A +(Z B -Z A ) ∙ (cos60º+isin60º) 三、知识小结:(1)、积的模等于模的积,积的辐角等于辐角之和 (2)、复数的乘法⇔向量的旋⎬转与伸缩(3)、做复数的乘法运算时,三角形式和代数形式可以交替使用,但是结果一般保留代数形式. 四、练习1、已知0<α<π,且,复数Z=tanα-i . (1)求Z 的三角形式; (2)若|Z|<2,求argZ 的取值范围.2. 已知复数z i =+1, 求复数z z z 2361-++的模和辐角主值。
复数复数的三角表示pptx
在交流电路中,通过使用复数三角 表示,可以更容易地计算出负载和 源之间的阻抗匹配,从而提高电路 的性能。
在信号处理中的应用
信号调制
在信号处理中,可以使用复数三角表示来调制信号,例如使用正 弦和余弦波来调制信号,以实现更高效的信号传输。
滤波器设计
通过使用复数三角表示,可以设计出更精确的滤波器,从而更好 地过滤噪声和干扰。
对复数三角表示的总结
复数三角表示的背景
复数是一种扩展实数系统的数,它包括实数和虚数。三角表示是一种将复数表示为三角函数的形式。
复数三角表示的优点
三角表示具有一些优点,例如它可以方便地表示复数的领域中的应用价值。
复数三角表示的公式和定理
复数三角表示主要包括正弦、余弦和正切等三角函数。这些函数可以用欧拉公式和复数的乘法、加法运算进行表示。此外 ,还有一些关于复数三角表示的基本定理和公式,例如棣美弗定理和欧拉公式。
02
03
纠缠态描述
在量子力学中,纠缠态是一种重要的 概念。通过使用复数三角表示,可以 更容易地描述纠缠态的性质和演化。
04
复数三角表示的进一步讨 论
复数的指数表示
定义
复数z的指数表示形式为z=r(cosθ+i sinθ),其中r为z的模,θ为z 的辐角。
性质
指数表示形式具有旋转不变性,即若z=r(cosθ+i sinθ),则z的旋 转不变量为arg(z)。
频谱分析
在信号处理中,频谱分析是一个重要的技术。通过使用复数三角表 示,可以将信号转换为频域表示,从而更容易地分析信号的频率成 分。
在量子力学中的应用
量子态描述
在量子力学中,可以使用复数三角表示来描述量子态, 例如使用波函数来描述粒子的状态。
复数的三角形式2018
每一个不等于零的复数有唯一的模和辐角主值,并且 可由模与辐角主值唯一确定。
思考:如何求取和确定辐角
新知学习
4
4
.
.
练习巩固
教材第74、75页第一题、第二题(1)、(2)
总结回顾
作业布置
教材第75页第三题
今日寒窗苦读,必定有我 明朝独占鳌头,舍我其谁
新知学习
复数的三角形式
例3:把下列复数的代数形式化为三角形式。
(1)z1 1 3 i (2) z2 4 i
解:
步骤:①求出模②确定辐 角主值③写出其三角形式。
.
新知学习
复数的三角形式
例4:把下列复数的三角形式化为代数形式。
(1) 2(cos i sin )
3
3
解:
(2) 2[cos( 3) i sin( 3)]
复数的三角形式
若复数z的模为r,辐角为 ,则 z r(cos i sin )
一般地,我们把 z r(cos i sin ) 叫复数的三角形式.
要点:复数的三角形式须满足
“模非负,角相同,余正弦,加号 连” 例1 指出下列复数的模和辐角
(1)2(cos i sin )
3
3
(2) 2[cos( 3) i sin( 3)]
17.3.3 复数的三角形式
复习导入
复数的模与辐角
1、复数的模:一般地,复平面内表示复数z=a+bi
(a,b∈R)的点Z(a,b)到原点的距离叫做复数的模,
专题8 复数的三角表示
专题8 复数的三角表示知识点一 复数的三角形式记向量的模||||OZ a bi r =+=,由图可以得到cos ,sin .a rb r θθ=⎧⎨=⎩所以i cos i sin (cos isin )a b r r r θθθθ+=+=+,其中 r =,cos a r θ=, sin brθ=. 这样, 我们就用刻画向量大小的模r 和刻画向量方向的角θ表示了复数z . 一般地, 任何一个复数i z a b =+都可以表示成(cos isin )r θθ+的形式. 其中,r 是复数z 的模,θ是以x 轴的非负半轴为始边, 向量OZ 所在射线(射线 OZ )为终边的角, 叫做复数i z a b =+的辐角(argument of a complex number). (cos isin )r θθ+ 叫做复数i z a b =+的三角表示式, 简称三角形式. 为了与三角形式区分开来,i a b +叫做复数的代数表示式, 简称代数形式.显然, 任何一个不为零的复数的辐角有无限多个值, 且这些值相差2π的整数倍. 例如, 复数i 的辐角是22k ππ+, 其中k 可以取任何整数. 对于复数0 , 因为它对应着零向量, 而零向量的方向是任意的, 所以复数0的辐角也是任意的. 我们规定在02θπ<范围内的辐角θ的值为辐角的主值 (principal value of anargument). 通常记作arg z , 即0arg 2z π≤<, 例如, arg10=, arg 2i π=, arg(1)π-=, 3arg(i)2π-=. 规定:①用arg z 表示复数z 的辐角主值。
②适合[0,2π)的角θ叫辐角主值③ 唯一性:复数z 的辐角主值是确定的,唯一的。
④不等于零的复数的模z r =是唯一的。
⑤z =0时,其辐角是任意的。
⑥复数三角形式中辐角、辐角主值的确定。
(求法)显然,复数的代数形式可以转化为三角形式,三角形式也可以转化为代数形式。
复数的几何意义和三角形式
求出复数的一个辐角(一般情况下,只须求出复数的辐角主值即
可);③写出复数的三角形式。
三、课堂练习 课本 P64 练习 1、2 四、课堂小结
教师引导学生总 结复数的代数形 式化为三角形式
1、 复数与复平面内的点及向量一一对应;
的方法步骤
2、复数的模、辐角及辐角主值;
3、复数三角形式的三个特征及复数的代数形式化为三角形式一般 方法步骤。 五、布置作业
有序实数对( a,b ) 与直角坐标系内的点一一对应的,由复数 代数形式 z a bi 可以知道,任何一个复数 z a bi(a,b R), 都 可 以 有 一 个 有 序 的 实 数 对 ( a,b ) 唯 一 确 定 , 即 复 数 图1 z a bi 与有序实数对( a,b )之间一一对应。由此可知,复数 z a bi 与复平面内的点 Z(a,b)之间是一一对应的(如图 1 所 示),即任何复数 z a bi 都可以用复平面内的点 Z(a,b)来表 示。我们把这种表示形式叫做复数的几何表示。 想一想:实数、纯虚数、虚数表示的点分别在复平面的什么位置 (复平面内,表示实数的点都在实轴上,表示纯虚数的点都在虚 学生思考并回答 轴上,表示非纯虚数的点分别在四个象限内.) 3. 复数的向量表示
吗
(1) i sin cos (2) 2cos( 30) i sin( 30)
学生讨论并回答
5(cos 5 i sin )
(3)
6
6
复数的三角形式 有三个特征:①模
复数的代数形式和三角形式之间可以相互转化,把复数的代 r 0 ; ② 括 号 内
数形式转化为三角形式时,通常取 为复数的辐角主值。
学生讨论并回答
a r cos b r sin
于是 a bi = r cos ir sin r(cos i sin) 我们把复数的表示形式 z r(cos i sin)称为复数的三角
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个实数可以用数轴上的一点来表示,这个实数就是这个 点的坐标;
一对有序实数可以用平面直角坐标系中的一点来表示,这对 有序实数就是这个点的坐标;
复数a+bi(a,b∈R)是否也能用一种类似的方法来表示呢?
在复数发现之初,由于它的现实意义不十分明显,人们 对它的合理性并没有把握。有不少数学家试图将复数用几 何图形直观地表示出来,其中,瑞士数学家阿甘特于1806 年提出了阿甘特图,也就是本节接下来要描述的复平面。
y Z(a,b)
x
阿甘特图
练习
1.在复平面内作出表示下列复数的点:
(1) 0 (3) 1+2i (5) -2+3i (2) 2-i (4) -i (6) -1-2i
2.指出如图所示复平面内各点所
表示的复数。