含指数函数的不定积分方法归纳[1]

合集下载

不定积分的求解方法和技巧

不定积分的求解方法和技巧

不定积分的求解方法和技巧不定积分是微积分中的一种重要概念,可以用来求解函数的原函数。

在求解不定积分时,有一些方法和技巧可以帮助我们简化计算和找到更好的求解路径。

接下来,我将介绍一些常见的不定积分求解方法和技巧。

一、基本不定积分公式:不定积分有许多基本公式,它们是我们在求解过程中常常会用到的工具。

下面是一些常见的不定积分公式:1. 恒等式:$\\int dx = x + C$2. 幂函数:$ \\int x^n dx = \\frac{1}{n+1} x^{n+1} + C, (n \eq -1)$3. 对数函数:$\\int \\frac{1}{x} dx = \\ln|x| + C$4. 三角函数:$\\int \\sin(x) dx = -\\cos(x) + C, \\int \\cos(x) dx = \\sin(x) + C$5. 指数函数:$\\int e^x dx = e^x + C$这些基本不定积分公式可以大大简化我们计算的过程,在求解时可以灵活运用。

二、换元法:换元法是一种常用的求解不定积分的方法。

其基本思想是,通过适当选择变量替换,使积分表达式变得简单。

设有函数$y=f(u)$, 且$u=\\varphi (x)$ 是一个可导的单调函数,且$\\varphi'(x) ≠0$。

则可以计算积分$\\int f(\\varphi(x))\\varphi'(x) dx$。

换元法的具体步骤如下:1. 选择一个合适的变量替换 $u = \\varphi(x)$。

2. 计算变量替换的导数 $\\varphi'(x)$。

3. 将原函数中的$x$ 用$u$ 表示,并将$\\varphi'(x)$ 插入到积分中。

4. 做出了新的积分表达式,对 $u$ 进行不定积分。

5. 将 $u$ 再用 $x$ 替换,得到所求积分的结果。

换元法在求解一些特定形式的不定积分时特别有用,例如复合函数的形式。

考研数学-专题10 不定积分和定积分的方法和技巧

考研数学-专题10 不定积分和定积分的方法和技巧

∫ ∫ a −a
f
( x) d
x
=
⎪⎧0, ⎪⎩⎨2
a 0
f
( x) d
x,
f (x) 为奇函数时, f (x) 为偶函数时.
(2) 设 f (x) 是以T 为周期的连续函数,则对任给数 a ,总有
5)利用公式
∫ ∫ a+T
T
f (x)d x = f (x) d x.
a
0
6
∫ ∫ (1)
π
2 sinn x d x =
x
= A + Bx + C
x3 − x2 + x −1 x −1 x2 +1
则 x ≡ A(x2 + 1) + (Bx + C)(x −1)
由此解得 A = 1 , B = − 1 ,C = 1 .
2
22

x3

x x2 +
x
dx −1
=
1 2

dx x −1

1 2

x −1
x
2
+
dx 1
= 1 ln x −1 − 1 ln(x2 + 1) + 1 arctan x + C
0
∫=
2
[(x −1) +1]
1− (x −1)2 dx
0
【例 3】
∫= 2 2x − x2 dx = π (几何意义)
0
2
∫π x
cos2 x − cos4 xdx = __________ .
0
∫ ∫ 【解】
原式 = π
π cos2 x − cos4 xdx = π

不定积分公式总结

不定积分公式总结

不定积分公式总结在微积分的学习中,不定积分是一个非常重要的概念,它是求导的逆运算。

掌握不定积分公式对于解决各种积分问题至关重要。

接下来,就让我们一起系统地总结一下常见的不定积分公式。

一、基本积分公式1、常数的积分:∫C dx = Cx + C₁(其中 C 为常数,C₁为任意常数)这意味着任何常数乘以自变量 x 的积分,结果是该常数乘以 x 再加上一个任意常数。

2、幂函数的积分:∫xⁿ dx =(1/(n + 1))xⁿ⁺¹+ C (n ≠ -1)∫x⁻¹ dx = ln|x| + C3、指数函数的积分:∫eˣ dx =eˣ + C∫aˣ dx =(1 /ln a) aˣ + C (a > 0 且a ≠ 1)4、对数函数的积分:∫ln x dx = x ln x x + C5、三角函数的积分:∫sin x dx = cos x + C∫cos x dx = sin x + C∫tan x dx = ln|cos x| + C∫cot x dx = ln|sin x| + C6、反三角函数的积分:∫arcsin x dx = x arcsin x +√(1 x²) + C∫arccos x dx =x arccos x √(1 x²) + C∫arctan x dx = x arctan x (1/2) ln(1 + x²) + C二、凑微分法相关公式凑微分法是一种非常重要的积分方法,通过将被积表达式凑成某个函数的微分形式,然后进行积分。

例如:∫f(ax + b) dx =(1/a) ∫f(u) du (其中 u = ax + b)常见的凑微分形式有:1、∫cos(ax + b) dx =(1/a) sin(ax + b) + C2、∫sin(ax + b) dx =(1/a) cos(ax + b) + C三、换元积分法相关公式换元积分法分为第一类换元法(凑微分法)和第二类换元法。

不定积分计算方法总结及举例

不定积分计算方法总结及举例

不定积分计算方法总结及举例对不定积分计算方法的思考为大家献上对不定积分计算方法的思考,欢迎各位数学毕业的同学阅导数在不等式证明中的应用!摘要:本文通过分析不定积分计算教与学中的困难,提出老师和学生要注意的问题,并对几种常用方法作了分析。

关键词:不定积分计算困难分析常用方法不定积分是大学数学关于计算问题的一个重要内容,是定积分、重积分、线面积分计算、微分方程求解的基础。

因此,熟练掌握不定积分的计算方法与技巧,对于学好高等数学是十分必要的,然而它的计算却存在着一定的难度。

一、不定积分计算的困难及分析不定积分计算的困难首先是由其概念本身带来的,因为从求导的逆运算引进,造成了它的计算是非构造性的一类运算,它与求导相比有着显著的不同,求导有一定的公式可套,但求不定积分并非如此。

不定积分计算的困难还在于错误的思考方法,对于学生来说,解题往往通过“猜”的方式,猜原函数,这显然相当的困难;在老师方面,不定积分的教学也是一个难点,老师的任务是理出方法,教会学生如何理解方法,而不是凭感觉。

现实存在的.问题有两个:一是当在指定让学生用哪种方法解决时,学生可以做到,但如果把方法混在一起,学生往往不知道用哪种方法;二是在当时学生会解决的题目,时间久了,学生就忘记了。

原因都在于学生没有真正理解透各种方法的本质特点,面对问题时,不知道怎么根据其特征选择适当的方法。

二、不定积分计算的方法思考在介绍积分方法时,老师首先应提醒学生注意被积函数的多样性,而不同类型的被积函数就需要不同的积分方法来解决,对于一个给定的f(x),要求f(x)dx,这是一个未知的问题,从宏观上说我们要将未知的问题转化为已学知识来讨论。

那么就存在两个问题:已知的是什么?怎么转化过去?课本根据求导与不定积分的关系由基本求导公式给出了积分基本公式,它们可以作为已知的知识,那么不能直接由积分公式解决的问题,就要通过几种转化方法转化到现有的公式上,转化的依据要根据被积函数的结构和转化方法的特点。

求不定积分的三种方法

求不定积分的三种方法

求不定积分的三种方法一、基本积分法基本积分法是不定积分求解的基础,它适用于一些简单的函数。

通过掌握基本积分法,我们可以迅速求解相关的不定积分问题。

以下是一些常见的基本积分法:1.幂函数积分法:对于幂函数f(x) = x^n(n为非负整数),其基本积分法为:∫x^n dx = x^(n+1)/(n+1) + C。

2.指数函数积分法:对于指数函数f(x) = a^x(a为正实数),其基本积分法为:∫a^x dx = a^x * ln(a) + C。

3. 对数函数积分法:对于对数函数f(x) = ln(x)(x>0),其基本积分法为:∫ln(x) dx = x * ln(x) + C。

4.三角函数积分法:对于正弦函数f(x) = sin(x),其基本积分法为:∫sin(x) dx = -cos(x) + C。

5.余弦函数积分法:对于余弦函数f(x) = cos(x),其基本积分法为:∫cos(x) dx = sin(x) + C。

二、换元积分法当不定积分的被积函数具有一定的形式时,我们可以通过换元法简化求解过程。

换元积分法是将原函数中的自变量替换为另一个变量,从而使问题变得更容易求解。

以下是一些常见的换元积分法:1.三角换元法:设u = sin(x),则du = cos(x) dx。

将原函数中的x用u表示,可得:∫cos(u) du = sin(u) + C。

2.反三角换元法:设u = cos(x),则du = -sin(x) dx。

将原函数中的x用u表示,可得:∫-sin(u) du = -cos(u) + C。

3.代数换元法:设u = x^2,则du =2x dx。

将原函数中的x 用u表示,可得:∫2x dx = x^2 + C。

三、分部积分法分部积分法是一种非常实用的求解不定积分的方法,它适用于具有一定形式的分式函数。

分部积分法的关键是将分式函数拆分为两个基本函数的乘积,然后利用乘积的导数公式进行积分。

常用求导积分公式及不定积分基本方法

常用求导积分公式及不定积分基本方法

常用求导积分公式及不定积分基本方法常用求导公式:1.一元函数求导公式:- 反函数求导法则:若y=f(u),则u=f^(-1)(y),则有(dy)/(dx) =1/(du/dy)- 常数乘法法则:若y=kf(x),则(dy)/(dx) = kf'(x)-基本初等函数求导法则:- 常数函数求导法则:若y=c,则(dy)/(dx) = 0- 幂函数求导法则:若y=x^n,则(dy)/(dx) = nx^(n-1)- 指数函数求导法则:若y=a^x,则(dy)/(dx) = (lna) * a^x- 对数函数求导法则:若y=loga(x),则(dy)/(dx) = 1 / (xlna)- 三角函数求导法则:若y=sin(x)、cos(x)、tan(x)、cot(x)、sec(x)、csc(x),则(dy)/(dx) = cos(x)、-sin(x)、sec^2(x)、-csc^2(x)、sec(x)tan(x)、-csc(x)cot(x),对应地还有反三角函数的求导公式- 反函数求导法则:若y=f^(-1)(x),则(dy)/(dx) = 1 / (dx/dy)-两个函数的和、差、积、商求导法则:- 和、差法则:若y=u+v,则(dy)/(dx) = (du)/(dx) + (dv)/(dx),若y=u-v,则(dy)/(dx) = (du)/(dx) - (dv)/(dx)- 积法则:若y=uv,则(dy)/(dx) = u(dv)/(dx) + v(du)/(dx)- 商法则:若y=u/v,则(dy)/(dx) = (v(du)/(dx) - u(dv)/(dx))/ v^22.多元函数求导公式:-偏导数:对多元函数,其对其中其中一个自变量求导,其它自变量当作常数,即得到偏导数-偏导函数的求导法则:对偏导函数重复使用一元函数求导公式常用不定积分基本方法:1.基本初等函数的不定积分法则:- 幂函数积分法则:∫x^n dx = (1/(n+1)) * x^(n+1) + C,其中n≠-1- 指数函数与对数函数积分法则:∫a^x dx = (1/lna) * a^x + C,∫(1/x) dx = ln,x, + C-三角函数与反三角函数积分法则:- ∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C- ∫sec^2(x) dx = tan(x) + C,∫csc^2(x) dx = -cot(x) + C- ∫sec(x)tan(x) dx = sec(x) + C,∫csc(x)cot(x) dx = -csc(x) + C- ∫(1/√(1-x^2)) dx = arcsin(x) + C,∫(1/√(1+x^2)) dx = arctan(x) + C- 反函数的不定积分法则:若F'(x) = f(x),则∫f^(-1)(x) dx =x * f^(-1)(x) - F(f^(-1)(x)) + C-特殊函数的不定积分法则:包括指数函数幂倍积分法则、二次函数积分法则等2.基本不定积分运算:- 基本线性运算:若∫f(x) dx = F(x) + C₁,∫g(x) dx = G(x) +C₂,则∫(af(x) + bg(x)) dx = aF(x) + bG(x) + C₃,其中a、b为实数- 递推公式:若∫f(x) dx = F(x) + C,则∫f(x)Ⓓ(x) dx = FⒹ(x) - ∫FⒹ(x) fⒹd(x) dx + C3. 分部积分法:设u(x)和v(x)具有连续一阶导数,根据分部积分公式,有∫u(x)v(x) dx = u(x)v(x) - ∫v(x)uⒹ(x) dx4.换元积分法(含有待定变量):设y=f(u),u=g(x),当g(x)可导、f(u)的原函数可积时5.改线积分法:将不定积分中的自变量换成关于自变量的函数。

不定积分求解方法及技巧小汇总

不定积分求解方法及技巧小汇总

不定积分求解方法及技巧小汇总不定积分是求解函数的原函数的过程,在数学领域中具有广泛的应用。

下面是一些不定积分的求解方法和技巧的小汇总。

1.基本积分法则:基本积分法则是不定积分中最基本的方法。

它是指通过学习和掌握常见函数的不定积分,从而求解更复杂的函数的不定积分。

常见的函数和它们的积分表达式如下:- 幂函数:∫x^n dx = (1/(n+1))x^(n+1) + C- 正弦函数:∫sin(x) dx = -cos(x) + C- 余弦函数:∫cos(x) dx = sin(x) + C- 指数函数:∫e^x dx = e^x + C2.分部积分法:分部积分法是用于求解两个函数的乘积的不定积分。

它利用了积分的乘法法则,将乘积的积分转化为两个函数的不定积分的组合形式。

分部积分法的公式如下:∫u dv = uv - ∫v du具体步骤是选择一个函数作为u,选择另一个函数的导函数作为dv,利用公式求出v和du,然后代入公式进行计算。

3.替换法(换元积分法):替换法是通过进行变量替换来简化求解不定积分的过程。

对于一些复杂的函数形式,通过合理的变量替换,可以将其转化为较为简单的形式,从而便于求解。

常见的变量替换有以下几种:- 代数替换:将一个复杂的代数表达式进行替换,使其转化为一个简单的形式。

例如,将∫(x^2 + 1)^2 dx 替换为∫u^2 du,其中u = x^2 + 1- 三角替换:将一个复杂的三角函数表达式进行替换,使其转化为一个简单的形式。

例如,将∫(sinx + cosx)^2 dx 替换为∫(1 + sin(2x)) dx,其中2x = u。

- 指数替换:将一个复杂的指数函数表达式进行替换,使其转化为一个简单的形式。

例如,将∫e^(x^2) dx 替换为∫(1/2) e^u du,其中u = x^24.三角函数的积分:对于三角函数的积分,有一些常用的积分公式,可以帮助简化求解的过程。

常见的三角函数积分公式如下:- ∫sin(ax) dx = - 1/a cos(ax) + C- ∫cos(ax) dx = 1/a sin(ax) + C- ∫tan(ax) dx = (-1/a) ln,cos(ax), + C- ∫cot(ax) dx = (1/a) ln,sin(ax), + C5.偏微分法:当被积函数可以表示为两个变量的偏导数之和时,可以使用偏微分法进行求解。

不定积分的解法汇总

不定积分的解法汇总

不定积分的解法汇总不定积分是微积分中的一个重要概念,在实际应用中经常需要求解不定积分。

下面将汇总一些常见的不定积分的解法。

1. 一些基本的不定积分:- 常数函数的不定积分:∫c dx = cx + C,其中c为常数,C为常数。

- 幂函数的不定积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中n为实数,C为常数。

- 指数函数的不定积分:∫e^x dx = e^x + C,其中C为常数。

- 正弦函数的不定积分:∫sin(x) dx = -cos(x) + C,其中C为常数。

- 余弦函数的不定积分:∫cos(x) dx = sin(x) + C,其中C为常数。

2. 基本积分法则:- 线性性质:∫(af(x) + bg(x)) dx = a∫f(x) dx + b∫g(x) dx,其中a和b为常数。

- 乘法性质:∫f(x)g'(x) dx = f(x)g(x) - ∫f'(x)g(x) dx,其中f(x)和g(x)为可微函数。

- 分部积分法:∫u dv = uv - ∫v du,其中u和v为可微函数。

4. 一些常见的特殊积分:- ∫(ax + b)^n dx = (ax + b)^(n+1)/(a(n+1)) + C,其中n为实数。

- ∫e^(ax)sin(bx) dx = (e^(ax))(asinx - bcosx)/(a^2 + b^2) + C。

- ∫e^(ax)cos(bx) dx = (e^(ax))(acosx + bsinx)/(a^2 + b^2) + C。

还有一些特殊的函数积分,比如有理函数、反三角函数和反双曲函数的不定积分,需要根据具体的情况使用不同的方法进行求解。

需要注意的是,不定积分的解法并不唯一,同一个函数可能可以使用不同的方法进行求解,有时还需要进行换元积分或部分分式分解等技巧。

有些函数可能不存在原函数,即无法求得其不定积分。

不定积分是一个复杂而多变的问题,需要根据具体的函数和积分形式选择不同的解法。

基本不定积分公式

基本不定积分公式
∫csc²x dx = -cotx + C
5.反三角函数的不定积分
∫(1/√(1-x²)) dx = arcsinx + C
∫(1/√(1+x²)) dx = arctanx + C
6.双曲函数的不定积分
∫sinhxdx=coshx+C
∫coshxdx=sinhx+C
7.分式函数的不定积分
∫(1/x+a) dx = ln,x+a, + C
其中C为常数。
2.指数函数的不定积分
∫aˣ dx = (aˣ)/(logₑa) + C
其中a>0且a≠1,C为常数。
3.对数函数的不定积分
∫(1/x) dx = ln,x, + C
4.三角函数的不定积分
∫sinx dx = -cosx + C
∫cosx dx = sinx + C
∫sec²x dx = tanx + C
其中a≠0,C为常数。
8.代换法则
通过代换可以将一个复杂的不定积分转化为一个简单的不定积分,然后利用基本公式进行求解。常见的代换方法有以下几种:
(1)以变量替代法:
当不定积分中的部分表达式与一些变量的导数形式相似时,可以进行变量替代。
(2)以三角函数替代法:
当不定积分中包含三角函数且可三角函数替代。
基本不定积分公式
不定积分是微积分的重要内容,它是定积分的逆运算。通过求导可以得到原函数,而不定积分则是给定一个函数,求出它的原函数。在求解不定积分时,我们需要掌握一些基本的不定积分公式。下面我们将介绍一些常见的基本不定积分公式。
1.幂函数的不定积分
如果n不等于-1,则有:

不定积分公式总结

不定积分公式总结

不定积分公式总结不定积分是微积分中的一项重要内容,它是定积分的逆运算。

在不定积分中,我们需要找到原函数,即原函数的导函数为被积函数。

在实际运算中,我们会使用一系列的公式和方法来求解不定积分。

以下是一些常用的不定积分公式总结。

1. 线性函数:对于形如 f(x) = ax + b 的线性函数,其不定积分为F(x) = (1/2)ax^2 + bx + C,其中 a、b 和 C 为常数。

2.幂函数:不定积分的幂函数公式为F(x)=(1/(n+1))x^(n+1)+C,其中n为实数且n≠-1、例如,对于x^3的不定积分,结果为F(x)=(1/4)x^4+C。

3. 指数函数:不定积分的指数函数公式为 F(x) = (1/a^x * ln,a,) + C,其中 a 为正实数且a ≠ 1、例如,对于 2^x 的不定积分,结果为 F(x) = (1/ln2)2^x + C。

4. 对数函数:不定积分的对数函数公式为 F(x) = x * (ln,x, - 1) + C。

5. 三角函数:不定积分的三角函数公式包括正弦函数、余弦函数、正切函数和余切函数等。

例如,正弦函数的不定积分为 F(x) = -cos(x) + C,余弦函数的不定积分为 F(x) = sin(x) + C。

6. 反三角函数:不定积分的反三角函数公式为 F(x) = arcsin(x) +C 或 F(x) = arccos(x) + C。

其中,arcsin(x) 表示 x 的反正弦函数。

7. 代换法:对于一些复杂的函数,我们可以通过代换来简化积分运算。

常用的代换方法包括令 u = g(x),然后求 du/dx,并将原函数中的x 替换为 u。

8.部分分式分解法:对于一些有理函数,我们可以将其进行部分分式分解,然后再分别求不定积分。

9. 分部积分法:分部积分法是一个用于简化一些积分的方法。

其公式为∫(u * dv) = uv - ∫(v * du)。

这个公式通过不断的选取 u 和dv 来进行迭代,从而简化复杂函数的积分。

大学微积分中的不定积分计算

大学微积分中的不定积分计算

大学微积分中的不定积分计算微积分是数学的一个重要分支,它主要研究函数的微分和积分运算。

在微积分中,不定积分是一个常见且重要的概念。

不定积分,也称为反导数,是求解函数的导函数的逆运算。

不定积分的计算方法有很多种,包括基本积分公式、换元积分法、分部积分法等。

下面将介绍这些不定积分计算方法的基本原理和应用。

一、基本积分公式基本积分公式是不定积分计算的基础,它包括常数函数、幂函数、指数函数、三角函数等的积分公式。

1. 常数函数的积分常数函数的积分公式非常简单,即常数函数的不定积分等于该常数乘以自变量。

例如,对于函数f(x)=5,其不定积分为∫f(x)dx=5x+C,其中C为常数。

2. 幂函数的积分幂函数是指以自变量为底的指数函数。

对于幂函数f(x)=x^n(n≠-1),其中n为实常数,其不定积分的计算公式为:∫f(x)dx= (1/(n+1))*x^(n+1) + C其中,C为常数。

3. 指数函数的积分指数函数的积分也是一种常见的不定积分计算。

对于指数函数f(x)=e^x,其中e为自然对数的底数,其不定积分的计算公式为:∫f(x)dx=e^x+C其中,C为常数。

4. 三角函数的积分三角函数的不定积分计算也是微积分中的重要内容。

对于一些常见的三角函数,如sin(x)、cos(x)、tan(x),它们的不定积分计算公式如下:∫sin(x)dx=-cos(x)+C∫cos(x)dx=sin(x)+C∫tan(x)dx=-ln|cos(x)|+C其中,C为常数。

二、换元积分法换元积分法,也称为代入法,是一种常用的不定积分计算方法。

它通过代入一个新的变量,将原积分转化为一个更容易求解的形式。

换元积分法的基本思想是,根据函数的链式法则,进行变量代换。

首先,选择一个新的变量,然后确定该变量与原变量之间的关系,最后将原积分式子中的变量全部换成新的变量。

举例来说,当我们需要计算∫(2x+1)^2dx时,我们可以使用换元积分法。

不定积分方法总结

不定积分方法总结

不定积分方法总结不定积分是微积分中的重要概念,用于求解函数的原函数。

不同函数的不定积分方法各不相同,下面将对常见的不定积分方法进行总结。

1.常规的幂函数积分:对于形如$x^n$的函数,其中$n$为常数,其不定积分可以按照以下公式进行求解:$$\int x^n dx = \frac{{x^{n+1}}}{n+1} + C$$其中C为常数。

2.指数函数的积分:对于形如$e^x$的函数,其不定积分可以直接求得:$$\int e^x dx = e^x + C$$其中C为常数。

3.对数函数的积分:对于形如$\ln(x)$的函数,其不定积分可以直接求得:$$\int \ln(x) dx = x(\ln(x) - 1) + C$$其中C为常数。

4.三角函数的积分:对于常见的三角函数,其不定积分方法如下:- 正弦函数:$$\int \sin(x) dx = -\cos(x) + C$$- 余弦函数:$$\int \cos(x) dx = \sin(x) + C$$- 正切函数:$$\int \tan(x) dx = -\ln,\cos(x), + C$$- 余切函数:$$\int \cot(x) dx = \ln,\sin(x), + C$$5.常见的三角函数幂函数积分:- $$\int \sin^n(x) dx$$:当$n$为奇数时,可以采用递归法进行求解,当$n$为偶数时,可以采用倍角公式和减角公式进行化简。

- $$\int \cos^n(x) dx$$:当$n$为奇数时,可以采用递归法进行求解,当$n$为偶数时,可以采用倍角公式和减角公式进行化简。

6.有理函数的积分:对于形如$\frac{P(x)}{Q(x)}$的有理函数,其中$P(x)$和$Q(x)$分别为多项式函数,可以采用分部积分法、配凑法、偏分式分解等方法进行求解。

7.常见的代换法:- 令$x=\sin(t)$或$x=\cos(t)$:用于处理含有平方根的积分;- 令$x=\tan(t)$或$x=\cot(t)$:用于处理含有平方差的积分;-令$t=g(x)$:用于处理含有根式的积分。

指数函数的不定积分

指数函数的不定积分

指数函数的不定积分一、引言指数函数是高中数学的重要内容之一,其在数学和科学中都有广泛的应用。

而不定积分是微积分中一个重要的概念,也是指数函数研究的基础之一。

因此,本文将介绍指数函数的不定积分。

二、指数函数的定义指数函数可以表示为f(x) = a^x,其中a为正实数且a≠1。

它是一个连续且单调增加的函数,其图像呈现出一条上升曲线。

三、不定积分的定义不定积分也称为原函数或反导函数,在微积分中用于求解导数。

如果f(x)是一个连续函数,则F(x)是f(x)在区间[a,b]上的原函数,当且仅当F'(x)=f(x),其中F'(x)表示F(x)在点x处的导数。

四、指数函数的不定积分公式根据微积分基本公式和指数函数的性质,可以得到以下不定积分公式:∫a^xdx = a^x/ln(a)+C其中C为常量。

五、证明过程我们先对a^x求导:d/dx(a^x)=ln(a)*a^x然后将其代入∫a^xdx中:∫a^xdx = 1/ln(a)*∫ln(a)*a^xdx令u = ln(a)*a^x,du/dx=ln(a)*a^x,dx=1/ln(a)*du/a^x 则∫a^xdx = 1/ln(a)*∫u*du= 1/ln(a)*(u^2/2+C)= a^x/ln(a)+C六、应用举例1. 求∫2^xdx根据不定积分公式,可得:∫2^xdx = 2^x/ln(2)+C其中C为常量。

2. 求∫e^(3x)dx根据不定积分公式,可得:∫e^(3x)dx = e^(3x)/ln(e)+C= e^(3x)/1+C其中C为常量。

七、总结指数函数的不定积分是微积分中的重要内容之一,在数学和科学中都有广泛的应用。

本文介绍了指数函数的定义、不定积分的定义和指数函数的不定积分公式,并通过应用举例进行了说明。

专题10:计算不定积分和定积分的方法和技巧

专题10:计算不定积分和定积分的方法和技巧

专题10 计算不定积分和定积分的方法和技巧(一) 不定积分(1) 三种主要的积分法 1)第一类换元法(凑微分法)若C u F u u f +=∫)(d )(,且)(x ϕ可导,则C x F x d x f x x x f +==′∫∫))(()())((d )())((ϕϕϕϕϕ2)第二类换元法设函数)(t x ϕ=可导,且,0)(≠′t ϕ又设C t F dt t t f +=′∫)()())((ϕϕ则C x F dt t t f dx x f +=′=−∫∫))(()()(()(1ϕϕϕ三种常用的变量代换(1) 被积函数中含有22x a −时,令,sin t a x =或;cos t a x = (2) 被积函数中含有22x a +时,令t a x tan =; (3)被积函数中含有22a x −时,令t a x sec =;3)分部积分法设)(),(x v x u 有连续一阶导数,则∫∫−=vdu uv udv【注】(1) 分部积分法常用于被积函数为两类不同函数相乘的不定积分;(2)分部积分法选择)(),(x v x u 的原则是∫vdu 比∫udv 好积, 设)(x p n 是n 次多项式,则形如∫∫∫xdxx x x x x e x nnxn αααcos )(p ,d sin )(p ,d )(p 的积分都是先把多项式以外的函数凑进微分号,然后分部积分; 形如∫∫∫xdxx x x x x x x nnnarcsin )(p ,d arctan )(p ,d ln )(p 的积分都是先把多项式函数凑进微分号,然后分部积分;形如∫∫xdx e x x e x x ββααcos ,d sin 的积分可连续两次将指数函数凑进微分号分部积分还原,求得原不定积分.(2) 三类常见函数的积分1)有理函数积分 ∫x x R d )((1)一般方法(部分分式法)(2)特殊方法(加项减项拆或凑微分绛幂); 2) 三角有理式积分 ∫x x x R d )cos ,(sin (1)一般方法(万能代换) 令t x=2tandt t t t t t R x x x R 222212)11,12(d )cos ,(sin ++−+=∫∫ (2)特殊方法 (三角变形,换元,分部) 几种常用的换元法i)若),cos ,(sin )cos ,sin (x x R x x R −=− 则 令;cos x u = ii)若),cos ,(sin )cos ,(sin x x R x x R −=− 则 令;sin x u =iii)若),cos ,(sin )cos ,sin (x x R x x R =−− 则 令.tan x u =3) 简单无理函数积分 x dcx bax x R nd ),(∫++令 t dcx bax n=++,将其化为有理函数积分进行计算.【例1】=+∫dx x x x )1(arctan . ( C x +2)(arctan )【例2】._________2sin tan ln =∫dx x x【解】dx x x xdx x x ∫∫=cos sin 2tan ln 2sin tan ln∫∫==x xd x d x x tan ln tan ln 21tan tan 2tan lnC x +=2)tan (ln 41【例3】(2018年3) ._________1arcsin 2=−∫dx e e xx 【解】xx xx de e dx e e ∫∫−=−221arcsin 1arcsin∫−−−−−=2222)1(111arcsin xx x xx e e d e ee∫−−−=x x x e d e e 2211arcsinC e e e x x x +−−−=2211arcsin【例4】(2018年1,2)求不定积分dx e e xx 1arctan 2−∫【解】xx xx de e dx e e 221arctan 211arctan ∫∫−=− ∫−−−=dx e e e e x x xx 1411arctan 2122x x x x x de e e dx e e ∫∫−=−112x x x x de e de e ∫∫−+−=111C e e e x x x+−+−−=121)1(32 dx e e x x 1arctan 2−∫C e e e e xx x x +−+−−=1)2(611arctan 212【例5】(2003年2)∫+x x xe xd )1(2/32arctan 【解1】 设t x tan =,则∫∫∫=+==+t t t t t t x x x tt x d sin e d sec )tan 1(tan e d )1(e 22/322/32arctan又tdt e t e et t t t t tt cos sin d sin d sin e ∫∫∫−==∫−=t t tde t e cos sin,d sin e cos sin e ∫−−=t t t e t ttt故.)cos (sin e 21sin e C t t tdt t t+−=∫ 因此 C x xx x x x x x +⎟⎟⎠⎞⎜⎜⎝⎛+−+=+∫22arctan 2/32arctan 111e 21d )1(e .12e )1(2arctan C xx x ++−=【解2】 ∫∫∫+−+=+=+x x xx x x x x x x x xx d )1(e 1e de 1d )1(e 2/32arctan 2arctan arctan 22/32arctan ∫+−+=x x x x x arctan 22arctan de 111e,d )1(e 1e 1e 2/32arctan 2arctan 2arctan ∫+−+−+=x x x xx x x xx移项整理,得.12e )1(d )1(e 2arctan 2/32arctan C x x x x x xx ++−=+∫【例6】 dx x x x ∫++)1(323 【解1】令11)1(3223++++=++x Cx B x A x x x由223)1()1(x Cx x B x Ax −=++++得 ⎪⎩⎪⎨⎧==+−=+301B B A C A解得.2,3,3==−=C B Adx x x x dx x x x ∫∫⎟⎠⎞⎜⎝⎛+++−=++12331)1(3223C x xx x +++−−=1ln 23ln 3 【解2】【例7】dx x x x x∫−+−123【解1】由于)1)(1(1223+−=−+−x x x x x ,设111223+++−=−+−x CBx x A x x x x 则 )1)(()1(2−+++≡x C Bx x A x 由此解得 .21,21,21=−==C B A dx x x x dx dx x x x x ∫∫∫+−−−=−+−11211211223C x x x +++−−=arctan 21)1ln(411ln 212【解2】【例8】∫x x dx2cos sin【解】原式∫−=)sin (cos sin 22x x x dx)cos ,(sin )cos ,sin ((x x R x x R −=−∫−−−=)1cos 2)(cos 1(cos 22x x xd du u u u u ∫−−−+−−=)12)(1()12()1(22222∫∫−+−−=112222u duu du C u u u u ++−++−−=11ln 211212ln 21 C x x x x ++−++−−=1cos 1cos ln 211cos 21cos 2ln 21 (二) 定积分定积分的计算常用方法有以下五种 1)牛顿-莱布尼兹公式如果函数)(x F 是连续函数)(x f 在区间],[b a 上的一个原函数,则)()(d )(a F b F x x f b a−=∫;2)换元积分法设)(x f 在区间],[b a 上连续,函数)(=t x ϕ满足以下条件: (1)a =)(αϕ,b =)(βϕ;(2))(t ϕ在],[βα(或],[αβ)上具有连续导数,且其值域],,[b a R =ϕ则.d ))(d )(∫∫)(′(=βαϕϕt t t f x x f b a3)分部积分法设函数)(x u 和)(x v 在],[b a 上有连续一阶导数,则.d d ∫∫−=babab au v uv v u4)利用奇偶性和周期性(1) 设)(x f 为],[a a −上的连续函数(0>a ),则⎪⎩⎪⎨⎧=∫∫−.)(,d )(2)(,0d )(0为偶函数时为奇函数时,x f x x f x f x x f aa a(2) 设)(x f 是以T 为周期的连续函数,则对任给数a ,总有.d )(d )(0∫∫=+TT a ax x f x x f5)利用公式)]1,0[)(d )(sin 2d )(sin (2)奇1,32231偶,221231d cos d sin (1)02020上连续在(其中数的为大于数为正x f x x f x x f x n n n n n n n n n n x x x x πn n ∫∫∫∫=⎪⎩⎪⎨⎧⋅⋅⋅−−−⋅⋅⋅−−−==πππππ【例1】.___________sin ][cos 202222=+∫∫−−xdx dt e x xtππ【解】 2et −偶函数,则∫−x t t 0d e 2奇函数.原式∫=2π022d sin cos 2x x x.8πd sin )sin 1(22π022=−=∫x x x 【例2】(2012年1)∫=−2022dx x x x .【解1】 原式∫−−=202d )1(1x x x∫∫−==+=−2π2π2π0222πd cos 2d cos )sin 1(sin 1t t t t t t x 【解2】 原式∫−−=202d )1(1x x x∫−−+−=202d )1(1]1)1[(x x x ∫=−=2022πd 2x x x (几何意义) 【例3】.__________cos cos 042=−∫dx x x x π【解】 原式∫∫=−=π0042d sin |cos |2πd cos cos 2ππx x x x x x ⎥⎦⎤⎢⎣⎡−=∫∫ππππ220sin cos sin cos 2xdx x xdx x2π=【例4】(2013年1)计算,)(10dx xx f ∫其中.)1ln()(1dt t t x f x ∫+=【解】dx xx x f x x d x f dx x x f ∫∫∫+−==10101010)1ln(2)(2)(2)(dx x xx x x d x ∫∫+++−=+−=10101014)1ln(4)1ln(4π282ln 4−+−=【例5】计算定积分.cos 1202∫+πxdx【解】∫∫∫+=+=+202202202tan 2tan 4cos 14cos 1πππx x d x dx xdxππ22tan arctan 2420==x【例6】计算定积分∫−+202.dx e e xxx【解】令,2t x −=则,dt dx −=∫−+202dx e e xxx ∫+−=−202.2dt e e t t t ]2[21202202dx e e x dx e e xx xxx ∫∫−−+−++= ∫−+=202x x e e dx∫+=2022ee de xx==2arctan 1eee x 1arctan [arctan 1ee e − 【例7】计算定积分∫++102d 1)1ln(x x x【解】 du uudt t x x x u t t x ]tan 1tan 11ln[)tan 1ln(d 1)1ln(4440tan 102∫∫∫+−+=+=++−==πππdu u∫+=40tan 12lnπ∫+−=40)tan 1ln(2ln 4ππdu u 2ln 8π=【例8】(1995年3)设)(),(x g x f 在)0(],[>−a a a 上连续,)(x g 为偶函数,且)(x f 满足条件A x f x f =−+)()((A 为常数) 1) 证明∫∫−=a aadx x g A dx x g x f 0)()()(2) 利用1) 计算∫−22arctan |sin |ππdx e x x【证】(1)令t x −=,则∫∫−−−=a aa a t t g t f x x g x f d )()(d )()(,d )()(∫−−=a ax x g x f于是 ]d )()(d )()([21d )()(∫∫∫−−−−+=a a aaaa x x g x f x x g x f x x g x f.d )(d )()]()([210∫∫=−+=−a aax x g A x x g x f x f(2)令xx f e arctan )(=,|sin |)(x x g =,2π=a ,则)(x f 、)(x g 在⎥⎦⎤⎢⎣⎡−2,2ππ上连续,)(x g 为偶函数.又因为 0)e arctan e (arctan =′+−x x ,所以 .e arctan e arctan A xx =+−令0=x ,得A =1arctan 2,故2π=A ,即.2)()(π=−+x f x f于是,有.2d sin 2d |sin |2de arctan |sin |202022πππππππ===∫∫∫−x x x x x x x【例9】 设2)1arctan()(−=′x x f ,0)0(=f ,求∫10d )(x x f .【解】∫∫−=110)1()()(x d x f dx x fdx x x x f x 2110)1arctan()1()()1(−−−−=∫dx x x 21)1arctan()1(−−=∫∫=10arctan 21du u (令u x =−2)1() ∫−=+−=102102ln 418121arctan 21πdu u u u u .【例10】 设)(x f 为非负连续函数,且∫=−x x dt t x f x f 04sin )()(,求)(x f 在2,0[π上的平均值. 【解】 令u t x =−,则∫∫=−x xu u f t t x f 0d )(d )(∫=xx u u f x f 04sin d )()(∫∫∫=2π002π04d sin d ]d )()([xx x x u u f x f∫⋅⋅=xu u f 022π2143)d )((212π ∫=2π02π321d )(x x f则)(x f 在]2,0[π上的平均值为πππ232)(20=∫dxx f 思考题1.求下列不定积分1)dx x x x ∫−−−2152 2)dx x x x ∫++)1(232 3)dx x x x x ∫++−+)1()1(6322 4)∫−422x x dx5)∫++x x dxcos sin 1 6)∫xdx x arcsin7)x xx e x d cos 1)sin 1(∫++ 8)∫.arccos arcsin xdx x2.计算下列定积分 1)dx x x∫−10221 2)dx x x x ∫−62263)∫209sin πxdx x 4)dx e xx∫−+2221sin ππ5)∫20sin ln πxdx6),)(102dx x f x ∫其中.1)(14dt t x f x∫+=7)∫10)(dx x f 其中.sin )(12dt tt x x f x∫= 答案1.求下列不定积分1) C x x +−++2ln 31ln 2 2) C x x x +++−arctan 3)1ln(ln 223) C x x x x ++++−−−−)1ln(131ln 22 4)C x x x +−+−22arctan 41442 5) C x++2tan1ln 6) C x x x x x +−+−22141arcsin 41arcsin 27) C xe x+2tan11 8) C x x x x x x x x ++−−−+2arcsin 1arccos 1arccos arcsin 222.计算下列定积分 1) .16π 2) .8405π 3) .315128π 4) .4π 5) .2ln 2π− 6) .16π 7) )221(181−8) )11(cos 41−。

最全不定积分表(高数)

最全不定积分表(高数)

òx ò òx
1
2
a 2 - x 2 dx = 1
-1 2 x a - x 2 - arcsin + C x a x +C a
2 2
21.
a -x
2
2
dx = arx sin
七. 31.
含有 tan x, cotx,sec x, csc x 的积分
22.
1
2
a -x
2 2
2
dx =
- a -x +C a2 x
56.
òe
ax
sin bxdx =
1 e ax ( a sin bx - b cos bx ) + c 2 a +b
2
57.
eax ò e cos bxdx = a 2 + b2 (a cos bx + b sin bx) + C
ax
十.
含有 Inx 的积分 58.
ò Inxdx = x( Inx - 1) + C ò
n
1 -1 a + bx b(2n - 3) 1 dx = [ n -1 + dx], n ¹ 1 ò n -1 a (n - 1) x 2 a + bx x a + bx
利用 pdfFactory Pro 测试版本创建的PDF文档
16.
ò ò
a + bx 1 dx = 2 a + bx + a ò dx x x a + bx x -2(2a - bx) dx = a + bx + Cห้องสมุดไป่ตู้3b 2 a + bx
32. 33. 34.

关于不定积分计算的总结

关于不定积分计算的总结

关于不定积分计算的总结不定积分计算是微积分中的一个重要概念,也是微积分的基础知识之一、通过不定积分的计算,我们可以求出一个函数的原函数,也就是它的不定积分。

在实际问题中,不定积分的计算可以帮助我们求解各种问题,比如确定连续函数的面积、曲线的弧长等等。

不定积分计算主要涉及到两种方法:直接积分法和换元积分法。

下面我将对这两种方法进行详细的总结:一、直接积分法直接积分法就是根据不定积分的基本公式,逐项对各项进行求积分,最终得到函数的原函数。

不同类型的函数需要采用不同的积分方法,比如常数函数、幂函数、三角函数、指数函数等等。

下面我们以一些常用的函数类型为例,介绍不定积分的计算方法:1. 常数函数 a,积分结果为 ax + C∫ a dx = ax + C2.幂函数x^n,积分结果为(n+1)×x^(n+1)+C(n≠-1)∫ x^n dx = (n+1)×x^(n+1) + C (n≠-1)3. 三角函数,如 sin x, cos x, sec x, tan x等,需要根据不定积分法则进行化简4.指数函数,如e^x,其积分结果为e^x+C∫ e^x dx = e^x + C通过以上几种常用的函数类型,我们可以初步了解直接积分法的基本步骤。

在具体计算过程中,我们需要注意常数项、幂函数的次数、三角函数、指数函数等的不同情况,通过对不定积分的基本公式的灵活运用,可以省去繁琐的计算步骤,提高计算效率。

二、换元积分法换元积分法是一种比较复杂但也十分重要的积分方法,通过引入一个合适的变量替代原函数中的变量,从而简化不定积分的计算。

换元积分法适用于很多情况,比如含有根式、三角函数、指数函数、反三角函数等的积分问题。

下面我们以一个简单的例子来介绍换元积分法的基本思想:考虑积分∫ x^2 dx,我们可以引入一个变量 u = x^2,然后对 u 进行求导得到 du = 2x dx,将 x^2 替换为 u,并将 dx 替换为 du/2x,得到新的积分式为∫ (1/2) du,最终求解得到积分结果为 (1/2)u + C = (1/2)x^2 + C。

不定积分的求解技巧总结

不定积分的求解技巧总结

不定积分的求解技巧总结不定积分是微积分中的重要内容,用于求解函数的原函数。

下面总结一些常用的不定积分求解技巧。

一、基本积分公式法基本积分公式是指一些常用的函数的不定积分公式,主要包括:1. 常数函数的不定积分:∫a dx = ax + C,其中a为常数,C为任意常数。

2. 幂函数的不定积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中n不等于-1,C为任意常数。

3. 指数函数的不定积分:∫a^x dx = (a^x)/(ln(a)) + C,其中a为正常数且不等于1,C为任意常数。

4. 对数函数的不定积分:∫1/x dx = ln|x| + C,其中x 不等于0,C为任意常数。

5. 三角函数和反三角函数的不定积分:∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C,∫tan(x) dx = -ln|cos(x)| + C,等等。

二、分部积分法分部积分法通过对不定积分中函数的乘积进行分解,使得原积分转化为另一种形式的积分,从而简化计算。

其公式为:∫u dv = uv - ∫v du。

三、换元法(第一类换元法)换元法利用代数替换或三角函数代换的方式,将不定积分中的变量进行换元,从而简化积分的计算。

常用的代换方式有:1. 代数替换:常用的代数替换有三角函数代换、指数函数代换、对数函数代换、有理函数代换等。

2. 三角函数代换:可以通过利用三角函数之间的恒等关系进行推导,并将不定积分中的其他函数转化为三角函数的形式,然后进行换元求解。

四、分式分解法对于分式的部分或全部进行分解,将不定积分转化为更加简单的形式,常用的分式分解方法有:1. 部分分式分解:将一个分式表示为几个分式的和或差的形式。

2. 偏差分解:对于分母为多项式乘方的分式,将分子分解成多个不同次数的多项式相乘的形式。

五、参数微分法对于一些特殊的函数,可以通过引入参数的方式进行求解。

含指数函数的不定积分方法归纳[1]

含指数函数的不定积分方法归纳[1]
fxfxedxe对于这种情况主要是拆分和指数函数相乘的那个函数将被积函数中除去指数函数的部分拆成某可导函数及其导函数之和的形式然后利用公式2即可进行较为方便的不定积分的求解
· · · · · · · · · · ·教 育 战 线 · · · · · · · · · · · · · 含指数函数的不定积分方法归纳
∫ (1 + x)
2
2
解:
∫ (1 + x)
xe
x
dx =
∫ [1 + x − (1 + x)
1
1
2
]e x dx
1 e x dx de x ∫ 1 + e x dx = ∫ e x (1 + e x ) = ∫ e x (1 + e x )
1 1 ex = ∫[ +( +C ) ']e x dx = 1+ x 1+ x 1+ x
例 3.2 解:
1 1 ) deห้องสมุดไป่ตู้x = x − ln(1 + e x ) + C = ∫( x − 1 + ex e x 例 1.2 ∫ x e − x dx
e +e
∫e
2x
2x
(tan x + 1) 2 dx
∫e
(tan x + 1) 2 dx = ∫ e 2 x (sec 2 x + 2 tan x)dx



∫ uv ' dx = ∫ udv = uv − ∫ vdu = uv − ∫ vu ' dx , 一 般 令 v 为
127
以上两个例子说明,对于复合函数中内函数为指数函数 的分部积分,主要是凑出指数函数的形式,继而进行进一步 的求解。 二、当被积函数为指数函数和其它初等函数的乘积时, 可用分部积分法。 例2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。




∫ uv ' dx = ∫ udv = uv − ∫ vdu = uv − ∫ vu ' dx , 一 de2 x 1 2x = = dx dx ∫ ex + e− x ∫ e2 x + 1 2 ∫ e2 x + 1 = 2 ln(1 + e ) + C
= ∫ [e 2 x (tan x) '+ (e 2 x ) ' tan x]dx = e 2 x tan x + C
例 3.2 说明公式(1)可有以下更广泛的推广: αx αx αx ∫ [α f ( x) + f '( x)]e dx = ∫ [e f ( x)]' dx = e f ( x) + C .(2) 对于这种情况, 主要是拆分和指数函数相乘的那个函数, 将被积函数中除去指数函数的部分,拆成某可导函数及其导 函数之和的形式,然后利用公式(2),即可进行较为方便的 不定积分的求解。 综合以上三种情况,可以将含指数函数的不定积分的三 种形式归纳如下 : 首先, 当被积函数为指数函数的复合函数时, 可考虑凑微分法;其次,当被积函数为指数函数和其它初等 函数的乘积时,可考虑采用分部积分法,通过分部积分公式 进行求解;最后,当被积函数为指数函数和某可导函数及其 导函数之和的乘积时,可考虑公式(1)和(2),采用这种 有一定技巧的积分方法。 参考文献: [1] 林源渠、方企勤编:《数学分析解题指南》[M],北 京大学出版社,北京 2003 年,137 页。 [2] 陈传璋、金福临、朱学炎、欧阳光中编: 《数学分析》 (上册)[M],高等教育出版社,北京 2003 年,247 页。
1 ∫ 1 + e x dx
指数函数。 三、当被积函数可化为某可导函数及其导函数之和与指 数函数的乘机时,可用下面的推导公式。 x x x ∫ [ f ( x) + f '( x)]e dx = ∫ [e f ( x)]' dx = e f ( x) + C (1) x [1] xe 例 3.1 dx
∫ (1 + x)
2
2
解:
∫ (1 + x)
xe
x
dx =
∫ [1 + x − (1 + x)
1
1
2
]e x dx
1 e x dx de x ∫ 1 + e x dx = ∫ e x (1 + e x ) = ∫ e x (1 + e x )
1 1 ex = ∫[ +( +C ) ']e x dx = 1+ x 1+ x 1+ x
· · · · · · · · · · ·教 育 战 线 · · · · · · · · · · · · · 含指数函数的不定积分方法归纳
河北大学数计学院 时 坚
INTELLIGENCE
摘 要:本文给出了含指数函数的不定积分的几种形式,并通过例子来归纳这 些形式的积分技巧。 关键词:指数函数 不定积分 复合函数 分部积分
例 3.2 解:
1 1 ) de x = x − ln(1 + e x ) + C = ∫( x − 1 + ex e x 例 1.2 ∫ x e − x dx
e +e
∫e
2x
2x
(tan x + 1) 2 dx
∫e
(tan x + 1) 2 dx = ∫ e 2 x (sec 2 x + 2 tan x)dx
以上两个例子说明,对于复合函数中内函数为指数函数 的分部积分,主要是凑出指数函数的形式,继而进行进一步 的求解。 二、当被积函数为指数函数和其它初等函数的乘积时, 可用分部积分法。 例2
∫ xe dx
x
解: xe x dx = xde x = xe x − e x dx = xe x − e x + C 事 实 上, 对 于 这 样 的 情 形, 无 论 是 指 数 函 数 和 幂 函 数,抑或是指数函数和三角函数,还是和其它初等函数, 都采用分部积分法。这些分部积分方法在一般的数学分析 教材中可常见。值得注意的是,在含有指数函数和其它函 数 乘 积 的 分 部 积 分 的 过 程 中, 对 于 常 用 的 分 部 积 分 公 式
不定积分为数学分析中一类重要的内容,其积分技巧和 方法在几百年来一步步得到深入研究和探索。而含指数函数 的不定积分为积分学中一大类重要积分,其积分方法多种多 样,活灵活现,现将其归纳如下: 一、被积函数为复合函数,且该复合函数的内函数为指 数函数时,利用该指数函数作为过度,再利用凑微分法即可。 例 1.1 解:
相关文档
最新文档