空间的角与距离的计算

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间的夹角与距离

一.复习目标:

1.了解异面直线掌握异面直线所成角的概念, 会通过平移,将空间问题转化为平面问题,从而求异面直线所成的角;

2.了解直线与平面所成角的概念,能作出斜线与平面所成的角,会在直角三角形中求斜线与平面所成的角;

3.理解二面角的概念,能熟练的掌握二面角的平面角的常用作法;

4.掌握点到平面距离的概念,能作出点到平面的距离,利用解直角三角形的方法求出距离;

5.了解直线到平面、两平行平面距离的概念,能将直线到平面、两平行平面的距离转化为点到平面距离并进行计算;

6.掌握将空间问题转化为平面问题的化归思想 二.尝试训练:

1.平面的一条斜线与平面所成的角为θ,则θ的范围是 ( )

A 、0 º≤θ≤90 º

B 、0 º<θ≤90 º

C 、0 º≤θ<90 º

D 、0 º<θ<90 º 2.平面外一条直线和这个平面所成的角为θ,则θ的范围是 ( )

A 、0 º≤θ≤90 º

B 、0 º<θ≤90 º

C 、0 º≤θ<90 º

D 、0 º<θ<90 º 3.两条异面直线所成的角为θ,则角的范围是 ( ) A 、0 º<θ<180 º B 、0 º≤θ≤90 º C 、0 º<θ≤90 º D 、0 º≤θ<90 º 4.已知正方体ABCD - 1A 1B 1C 1D 棱长为a,

异面直线 1A D 与B 1C 所成的角______;求异面直线A 1C 与BD 所成的角______;求异面直线

1A 1C 与A 1B 所成的角_____ 1A D 与 1B 1C 间的距离_____ 1A B 与 1B 1C 间的距离____. 5.在正方体ABCD - 1A 1B 1C 1D 中,E 为DD 1的中点,求二面角E -AC -D 的平面角的正切值.

7.长方体ABCD - 1A 1B 1C 1D ,AB =4,BC =2,A 1A =1,求异面直线B 1D 和 1B C 所成角的余弦.

8.在边长为a 的正方体ABCD - 1A 1B 1C 1D 中,求与 1A 1C 平面BD 1C 所成角的正弦.

9.在△ABC 中,∠ACB =90º,P 是平面ABC 外的一点,PA =PB =PC ,若AC =12,P 到平面ABC 的距离是8,求P 到BC 的距离.

三.知识回顾:

1.异面直线所成的角:

(1)空间等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,则这两个角相等.

(2)异面直线所成的角定义:已知两条异面直线a ,b ,经过空间的任一点o ,作两直线a ′∥a ,b ′∥b ,则a ′与b ′所成的锐角(或直角)叫做异面直线a 、b 所成的角. ]90,0(0

∈θ 2.直线和平面所成的角:

(1)斜线与平面所成的角:斜线与斜线在平面内射影所成的角叫做斜线与直线所成的角; (2)结论:斜线与平面所成的角是斜线与平面内任意一条直线所成角中的最小的角; (3)直线与平面所成的角θ有三种情况:直线在平面内,θ=0º;直线与平面垂直, θ=90º;直线与平面斜交,θ∈(0º,90º). 3.二面角:

(1)二面角定义:从一条直线出发的两个半平面组成的图形叫做二面角;

(2)二面角的平面角:一个平面垂直于二面角的棱,并与两个半平面分别相交成两条射线,则这两条射线所成的角叫二面角的平面角; ]180,0[0

∈θ (3)直二面角:平面角是直角的二面角叫直二面角.

(4)二面角平面角的常见作法①定义法:关键如何取点,注重等腰三角形中点的应用 ②三垂线法:过二面角一个平面α内一点A 作AB ⊥β垂足为B ,过A 作棱l 的垂线

垂足为O 连OB 则∠AOB 为二面角平面角,关键是找二面角两个平面中一个平面的垂线 4.点到平面的距离:

(1)过平面外一点p 作平面的垂线po ,o 为垂足,则线段po 的长度叫点p 到平面α的距离; (2)注意等积法的应用 5.直线到平面的距离:

此直线特指平面的平行直线,方法是在直线上任意找一点,这点到平面的距离就是直线到平面的距离.

6.两平行平面间的距离:

(1)作直线l 垂直于两个平行平面,则两个垂足之间的距离为两平行平面间的距离,两平行平面的公垂线段的长度叫做两平行平面的距离;

(2)在两平行平面的一个面上找一个点,这个点到另一个平面的距离就是两平行平面的距离 (3)直线与平面,两平行平面间距离一般可以转化为点到平面距离。 7.异面直线所成角:与两异面直线都垂直且都相交的的直线称为公垂直线,则两交点间的线段为公垂线段,公垂线段的长为两异面直线间距离 四.典型例题:

例1、 空间四边形ABCD 中AC=10,BD=6,M,N 分别是AB,CD 中点MN=7

练习:正四面体ABCD 中M,N 分别是AB,CD 中点求直线MN 与AC

例2、长方体中,AB=BC=2,1AA 1=,E,H 分别是111BB ,B A 中点 1)求EH 和1AD 所成角2)求1BD 和C B 1所成角

例3、Rt △ABC 中∠ACB=0

90,AC=BC=1,PA ⊥平面

1)求证:平面PAC ⊥平面PBC 2)求PC 和平面PAB 3)求点A 到平面PBC 距离

练习:正三棱柱111

C B A -ABC 中侧棱长和底面边长都为2,

D 是AC 中点 1)求证:D A BD 1⊥,2)求直线B A 1与平面11A ACC 3)求点1B 到平面BD A 1距离

例4、正四面体中各棱长均为a ,E 为AD 中点 1)求AB 2)CE 和底面BCD 所成角3)求二面角A-BC-D B

例5、底面是菱形的四棱锥P-ABCD 中PA ⊥平面ABCD ∠

1)求四棱锥P-ABCD 体积, 2)求二面角P-CD-A

例6

、四棱锥P-ABCD 中侧面PAB 是边长为1的正三角形,ABCD 为菱形,∠ABC=600, 平面PAB ⊥平面ABCD ,1)求证

PC ⊥AB, 2)求二面角

练习:正三棱柱111C B A -ABC 中侧棱长为3,底面边长为21)求证AD ⊥平面D CC 1 2)求点C 到平面1ADC 距离 3)求平面ADC 和平面1ADC 所成二面角

例7、底面是直角梯形的四棱锥-ABCD 中0

90ABC =∠,SA 求四棱锥S-ABCD 体积,2)求平面SCD 和平面SAB 所成二面角

相关文档
最新文档