【初升高】北京北京师范大学附属中学2020中考提前自主招生数学模拟试卷(9套)附解析
北京师范大学附属中学2019-2020学年中考数学模拟检测试题
![北京师范大学附属中学2019-2020学年中考数学模拟检测试题](https://img.taocdn.com/s3/m/f03f026aa76e58fafbb0033e.png)
北京师范大学附属中学2019-2020学年中考数学模拟检测试题一、选择题1+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.如图,在已知的△ABC 中,按以下步骤:(1)分别以B 、C 为圆心,大于12BC 的长为半径作弧,两弧相交M 、N ;(2)作直线MN ,交AB 于D ,连结CD ,若CD =AD ,∠B =20°,则下列结论:①∠ADC =40°②∠ACD =70°③点D 为△ABC 的外心④∠ACD =90°,正确的有( )A .4个B .3个C .2个D .1个3.如图,菱形ABCD 的对角线AC 、BD 相交于点O .若周长为20,BD =8,则AC 的长是( )A.3B.4C.5D.6 4.如图,AB 、CD 相交于点O ,∠1= 80°,DE ∥AB ,DF 是∠CDE 的平分线,与AB 交于点F 那么∠DFB 的度数为( )A .80°B .100°C .120°D .130°5.如果实数a ,b 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .a b <B .a b >-C .2a >-D .b a >6.在ABC △中,90ACB ∠=︒,用直尺和圆规在AB 上确定点D ,使ACD CBD △∽△,根据作图痕迹判断,正确的是( )A .B .C .D .7.如图,AB CD ,AC BD 、相交于点O ,过点O 的直线分别交AB CD 、于点E F 、,则下列结论不一定成立的是( )A.OA AB OC CD =B.OA OB OD OC =C.CD AB DF BE =D.OE AB OF CD= 8.下列图形中,不是轴对称图形的是( )A .B .C .D .9.已知a ﹣b=3,c+d=2,则(b+c )﹣(a ﹣d )的值是( )A .﹣1B .1C .﹣5D .1510.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A.20°B.35°C.40°D.70° 11.下列各式计算正确的是( )A B .(﹣a 2b )3=a 6b 3 C .a 3﹒a=a 4 D .(b ﹢2a)(2a ﹣b)=b 2﹣4a 212.如图所示,在这个数据运算程序中,若开始输入的x 的值为2,结果输出的是1,返回进行第二次运算则输出的是6,……,则第2019次输出的结果是( )A .1B .3C .6D .8 二、填空题13.计算:212-⎛⎫-= ⎪⎝⎭________________。
北师大附属实验中学 2020—2021 学年度第一学期初三数学摸底测试试卷
![北师大附属实验中学 2020—2021 学年度第一学期初三数学摸底测试试卷](https://img.taocdn.com/s3/m/45b83eea69eae009591bec67.png)
对上述数据进行整理、描述和分析,下面给出了部分信息:
收入 x 1.0≤x< 1.5≤x< 2.0≤x< 2.5≤x< 3.0≤x< 3.5≤x<
1.5
2.0
2.5
3.0
3.5
4.0
频数
0
2
a
7
3
2
收入 x
4.0≤x< 4.5≤x< 5.0≤x< 5.5≤x< 6.0≤x< 6.5≤x<
4.5
5.0
A. 6<x<6.17 B. 6.17<x<6.18 C. 6.18<x<6.19 D. 6.19<x<6.20
10.已知二次函数 y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:
①因为 a>0,所以函数 y 有最大值;
y
②该函数的图象关于直线 x 1 对称;
③当 x 2 时,函数 y 的值等于 0;
6
(2)在(1)的条件下,求线段 EF 的长;
(3)当点 M 在 CD 边上运动时,能使△AEF 为等腰三角形,请直接写出此时 DM
与 AD 的数量关系
.
四、附加题:
25. (5 分)阅读下面的材料:
小明在学习中遇到这样一个问题:若 1≤x≤m,求二次函数 y x2 6x 7
的最大值.他画图研究后发现, x 1 和 x 5 时的函数值相等,于是他认为需
x=3
请你参考小明的思路,解答下列问题:
(1)当 2 ≤x≤4 时,二次函数 y 2x2 4x 1的最大值为_______;
(2)若 p≤x≤2,求二次函数 y 2x2 4x 1的最大值;
(3)若 t ≤ x ≤ t+2 时,二次函数 y 2x2 4x 1的最大值为 31,则 t 的值
2020年数学中考模拟试卷北师大版
![2020年数学中考模拟试卷北师大版](https://img.taocdn.com/s3/m/2142638b89eb172ded63b7b0.png)
2020年数学中考模拟试卷北师大版数学(考试时间:100分钟试卷满分:120分)第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在数3,0,–4,|–2|中,最小的数是A.3 B.0 C.–4 D.|–2|2.据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿用科学记数法表示为A.9.29×109B.9.29×1010C.92.9×1010D.9.29×10113.如图是由5个相同的小正方体构成的几何体,其俯视图是A.B.C.D.4.下列各式计算正确的是A.2ab+3ab=5ab B.(–a2b3)2=a4b5CD.(a+1)2=a2+15.不等式组32120xx->⎧⎨-≤⎩的解在数轴上表示为A.B.C.D.6.某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)5 6 7 8人数(人) 3 15 22 10表中表示零件个数的数据中,众数是A.5 B.6 C.7 D.8 7.如果关于x的方程x2+2x+c=0没有实数根,那么c在2、1、0、–3中可以取A.2 B.1 C.0 D.–3 8.在一个不透明的袋子里,有1个黑球和2个白球,除颜色外全部相同,现从中任意摸两个球,则摸到1个黑球、1个白球的概率是A.13B.23C.25D.359.如图,将边长为2 cm的正方形OABC放在平面直角坐标系中,O 是原点,点A的横坐标为1,则点C的坐标为A1)B.(2,–1)C.(1D.(–1,10.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是A.π2B.π3C.π4D.π第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)11.计算:2sin30°+(–1)–2–|2|=__________.12.如图,在ABCD中,∠C=43°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为__________.13.已知反比例函数y =kx 的图象经过点A (-6,8),则当x =-3时,y =__________.14.如图,每个小正方形的边长为1,则△ABC 的边AC 上的高BD 的长为__________.15.如图,四边形ABCD 是边长为4的正方形,若AF =3,E 为AB 上一个动点,把△AEF 沿着EF 折叠,得到△PEF ,若△BPE 为直角三角形,则PC 的长度为__________.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分8分)已知b =a +2018,求代数式2122()2a a b a ab a++÷--的值.17.(本小题满分9分)体育老师为了解学生最喜爱哪一种体育运动项目,围绕“在A:足球、B:篮球、C:乒乓球、D:羽毛球四种体育运动项目中,你最喜欢哪一种项目(必选且只选一种)”这一问题,在全校范围内随机抽取部分同学进行问卷调查,并将调查整理的结果绘制成条形统计图,已知喜欢羽毛球的学生占抽取的学生的20%.解答下列问题:(1)这次调查中一共抽取了多少名学生?(2)补全条形统计图;(3)若该校有2400名学生,试估计该校最喜欢篮球的学生有多少名?18.(本小题满分9分)如图,AB是⊙O的直径,且AB=6,点M为⊙O外一点,且MA,MC分别切⊙O于点A,C.点D是两条线段BC与AM延长线的交点.(1)求证:DM=AM;(2)直接回答:①当CM为何值时,四边形AOCM是正方形?②当CM为何值时,△CDM是等边三角形?19.(本小题满分9分)如图,在平面直角坐标系xOy中,反比例函的图象与一次函数y=–x+1的图象的一个交点为A(–1,数y=kxm).(1)求这个反比例函数的表达式;(2)如果一次函数y=–x+1的图象与x轴交于点B(n,0),请的值的范围.确定当x<n时,对应的反比例函数y=kx20.(本小题满分9分)2018 年4 月12 日,中央军委在南海海域隆重举行海上阅兵,展示人民海军崭新的面貌,激发强军强国的坚定信念,为了维护海洋权益,国家海洋局加强了海洋巡逻力度.如图,现有一艘海监船位于灯塔P的南偏东45°方向,距离灯塔200海里的A处,沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处.(1)在这段时间内,海监船与灯塔P的最近距离是多少?(结果用根号表示)(2)在这段时间内,海监船航行了多少海里?(参考数据:≈.结果精确到0.1海里)2.44921.(本小题满分10分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号的设备每台的价格分别是多少;(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案?(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.22.(本小题满分10分)四边形是我们在学习和生活中常见的图形,而对角线互相垂直的四边形也比较常见.比如筝形、菱形、图1 等,它们给我们的学习和生活带来了很多的乐趣和美感.(1)如图2,在四边形ABCD中,AB =AD,CB =CD,问四边形ABCD 的对角线互相垂直吗?请说明理由;(2)试探究对角线互相垂直的四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系.猜想结论:_________(要求用文字语言叙述),并写出证明过程;(3)问题解决:如图3,分别以Rt ACB△的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,BE,已知AC=4,AB =5,求GE的长.23.(本小题满分11分)如图,Rt△OAB按如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点O逆时针旋转90°,点B旋转到点C的位置,一条抛物线正好经过点O,C,A三点.(1)求该抛物线的解析式;(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P、点M作x轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有最大值?如果有,请求出最大值,并写出解答过程;如果没有,请说明理由.(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O、C、H、N四点构成以OC为一边的平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.。
2020年中考数学模拟试题及参考答案1
![2020年中考数学模拟试题及参考答案1](https://img.taocdn.com/s3/m/6199b2e5482fb4daa48d4b8c.png)
2020年中考数学模拟试题及参考答案(一)一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填入题后的括号内,每小题3分,共24分)1. 的相反数是()A. B. C. D.2. 国家游泳中心--“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260 000平方米,将260 000用科学记数法表示应为()A.0.26×106B.26×104C.2.6×106D.2.6×1053. 下列计算正确的是()A.a6·a3=a18B.(-2a3)2=4a6C.a6÷a3=a2D.5a2-3a2=24. 如图,直线a,b被直线c所截,如果a∥b,那么()A.∠1>∠2 B.∠1=∠2C.∠1<∠2 D.∠1+∠2=180°5. 下列图形中,不是轴对称图形的是()6.下列各组事件中,发生的可能性最大的是()A.掷一枚均匀的骰子,朝上面的点数为6B.从一副扑克牌中任意抽取一张牌,得到红桃9C.掷一枚均匀的硬币,正面朝上D.一个口袋中有3个红球,2个白球,这些球除颜色以外都一样,从中任意摸出一个球,这个球是红球7. 数学老师为了估计全班每位同学数学成绩的稳定性,要求每位同学对自己最近5次的数学测试成绩进行统计分析,那么张明同学需要求出自己这5次成绩的 ( )A.平均数B. 众数C.频率D. 方差8.某市为鼓励居民节约用水,采取如下收费标准:①若每户每月居民用水不超过4立方米,则按每立方米2元收费;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元收费(不超过部分仍然按每立方米2元收费).现假设该市某户居民某月用水x立方米,水费y元,则y与x的函数关系用图象表示正确的是()二、填空题(每小题3分,共24分)9. 分解因式:2x2-18= ___________.10. 已知反比例函数的图象经过点A(-3,-6),则k的值11. 函数中,自变量x的取值范围是.12. 如图,D、E两点分别在AC、AB上,且DE与BC不平行,请填上一个你认为合适的条件:,使得△ADE∽△ABC.13.有两组扑克牌各三张,牌面数字分别是1,2,3,随意从每组中各抽出一张.数字和是偶数的概率是.14.以长为3cm,5cm,7cm,10cm的四根木棍中的三根木棍为边,可以构成三角形的个数是.15.如图,⊙O的直径EF的长为4cm,弦AB=2cm,CD=cm,且AB//CD//EF,则阴影部分的面积为.16.如图,是用火柴棒摆出的一系列三角形图案,按这种方式摆下去,当每边上摆20(即n=20)根时,需要的火柴棒总数为根.三、解答题(每小题8分,共16分)17.计算:(下面(1)、(2)两个小题中,请任选一题作答,若两个小题都解答,只以第(1)题评分.)(1)(a-2)2+a(a+4);(2)+tan60°.18.先化简,求值 ,其中x=2009.四、解答题(每小题10分,共20分)19.在Rt△ABC中,∠A<∠B,CM是斜边AB上的中线,将△ACM沿直线CM折叠,点A落在D处,且CD恰好与AB垂直,求∠A的度数.20.如图是某班全体学生年龄的频数分布直方图.根据图中提供的信息,求出该班学生年龄的众数,你从图中还能得出什么结论(写出两条即可).21.用剪刀将形状如图1所示的矩形纸片ABCD沿着直线CM剪成两部分,其中M 为AD的中点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt△BCE就是拼成的一个图形.用这两部分纸片除了可以拼成图2中的Rt△BCE外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图3、图4的虚框内.22.有两个可以自由转动的转盘A、B,转盘A被分成4等分;转盘B被分成6等份,数字标注如图所示,有人设计了一个游戏,其规则如下:甲、乙两人同时各转动转盘一次,转盘停止后,指针各指向一个数字,将转得的数字相乘. 如果积为偶数,则甲胜;如果积为奇数,则乙胜.(1)你认为这个游戏公平吗?请你用所学的数学知识说明理由;(2)如果不公平,请你利用这两个转盘设计一个公平的游戏.23. 在锦州凌南新区的建设中,宝地施工队要拆除烟囱AB,他们在地面上事先划定以B为圆心,半径与AB等长的圆形危险区,现在从离B点21米远的建筑物CD的顶点C,测得A点的仰角为45o,B点的俯角为30o,试问离B点35米远的居民住宅是否在危险区内,请你帮助他们做出正确的判断,并通过计算说明.24. 百货大楼经营一种进价为2元一件的小商品,在市场营销中发现,此商品的销售单价xx(元) 3 5 9 11y(件) 18 14 6 2(1(2)设经营此商品的日销售利润(不考虑其他因素)为P元,根据日销售规律,求出日销售利润P元与日销售单价x元之间的函数关系式.七、解答题(本题12分)25.如图一,已知点O是边长为2的正方形ABCD的对角线交点,四边形OBPC也是正方形,将正方形OBPC绕点O旋转任一角度得到图二中的正方形OGPH.(1)图二中两个正方形重叠部分的面积会怎样变化?证明你的结论;(2)如图三,连接AH、DG.①求证:AH=DG,②猜想AH、DG之间的位置关系,并证明你的猜想;(第25题)八、解答题(本题14分)26.已知二次函数y=x2+(2m-1)x+m2-1(m为常数),它的图象(抛物线)经过坐标原点O,且顶点M在第四象限,(1)求m的值,并写出二次函数解析式;(2)设点A是抛物线上位于O、M之间的一个动点,过A作x轴的平行线,交抛物线于另一点D,作AB⊥x轴于B,DC⊥x轴于C.① 当BC=1时,求矩形ABCD的周长;② 试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标;如果不存在,请说明理由.参考答案及评分标准1一、1.C 2. D 3. B 4. B 5. A 6. D 7. D 8.C二、9.2(x+3)(x-3) 10.11. x≤6 12.∠1=∠B或∠2=∠C或13.14.2个15.2πcm216.630三、17.(1)原式=a2-4a+4+a2+4a …… 4分 (2)原式=3+1-…… 4分=2a2+4. ……8分=1 …… 8分18. 原式=x+2. …… 4分当x=2009时,原式=2011. …… 8分四、19. 由题意,知△DCM≌△ACM,则∠1=∠2. …… 4分而已知CM为斜边中线,可得∠A=∠1. …… 6分又CD⊥AB,可得∠3=∠A.所以∠A=∠1=∠2=∠3=30°.…… 10分20. 众数是15岁,……2分,结论答案不唯一,只要合理即可,如:15岁占全班人数的一半,15岁比14岁的人数多10人等.(每条4分,共8分)五、21.画对1个得5分,一共10分.22.(1)这个游戏不公平. …… 2分因为,每次游戏可能出现的所有结果列表如下:1 2 3 4 5 61 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)根据列表,共有24种可能的结果,其中两数乘积为偶数的有18种;奇数的有6种,概率不相同,所以这个游戏不公平. ……6分 (也可画树状图说明)(2)答案不唯一,只要合理即可,如两个得数的乘积是偶数加1分,是奇数加3分等.……10分六、23.在Rt△ABC中,tan30O=.∵CK=BD=21,∴BK=7. …… 3分Rt△CKA中,tan45°=,∴AK=21. ……5分∴AB=AK+BK=21+≈33.1. ……8分∵AB<35,∴居民住宅不在危险区内.……10分24.(1)图略,经描点连线可知,其图象是一条直线,所以y是x的一次函数. …… 2分设y=kx+b,将(5,14)、(9,6)分别代入,得解得…… 4分所以y=-2x+24 (6)(2)由题意知p=xy-2y=(24-2x)(x-2)=-2x2+28x-48,所以,所求的函数关系式为p=-2x2+28x-48. ……10分七、25. (1)重叠部分的面积不变.……1分证明:∵∠BOE+∠COE=∠COE+∠COF=90°,∴∠BOE=∠COF.……3分又∵OB=OC,∠OBE=∠OCF=45°,∴△BOE≌△COF.……4分∴重叠部分的面积=.……5分(2)①证明:∵∠AOH=90°+∠DOH,∠DOG=90°+∠DOH,∴∠AOH=∠DOG.……6分∴△AOH≌△DOG.……7分∴AH=DG.……8分②AH⊥DG.……9分证明:由①得∠OAH=∠ODG,且∠OAH+∠DAH+∠ODA=90°,∴∠ODG+∠DAH+∠ODA=90°.∴AH⊥DG.……12分八、26.(1)∵抛物线过原点,∴n2-1=0,解得n1=1,n2= -1.n=1时,y=x2+x(顶点不在第四象限);n=- 1时,y=x2-3x(顶点在第四象限),∴所求的函数关系为y=x2-3x.……4分(2)①由y=x2-3x,令y=0, 得x2-3x =0,解得x1=0,x2=3.∴抛物线与x轴的另一个交点为(3,0).∴它的顶点为M, 对称轴为直线x=,如图.∵BC=1,由对称性知B(1,0),从而A(1,-2),∴矩形ABCD的周长为2(AB+BC)=2×(2+1)=6. ……9分②设B(x,0)(0<x<),则A(x,x2-3x),从而BC=3-2x,AB=|x2-3x|=3x-x2.∴矩形ABCD的周长L=2(3+x-x2)=-2(x-2+.∴当x=时,矩形ABCD的周长有最大值为,此时.……14分。
2020年北京市海淀区首都师大附中中考数学一模试卷(含答案解析)
![2020年北京市海淀区首都师大附中中考数学一模试卷(含答案解析)](https://img.taocdn.com/s3/m/0dbf50a8376baf1ffd4fad01.png)
2020年北京市海淀区首都师大附中中考数学一模试卷一、选择题1.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3|B.﹣2C.0D.π2.下列各式的变形中,正确的是()A.(﹣x﹣y)(﹣x+y)=x2﹣y2B.﹣x=C.x2﹣4x+3=(x﹣2)2+1D.x÷(x2+x)=+13.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40%B.33.4%C.33.3%D.30%4.如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.5.下列命题正确的个数是()①若代数式有意义,则x的取值范围为x≤1且x≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.③若反比例函数(m为常数),当x>0时,y随x增大而增大,则一次函数y=﹣2x+m的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y=x2中偶函数的个数为2个.A.1B.2C.3D.46.下列图形中,阴影部分面积最大的是()A.B.C.D.7.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.8.为了解中学生获取资讯的主要渠道,设置“A.报纸.B.电视.C.网络,D.身边的人.E.其他”五个选项(五项中必选且只能选一项)的调查问卷.先随机抽取50名中学生进行该问卷调查.根据调查的结果绘制条形图如图.该调查的方式是(),图中的a的值是()A.全面调查,26B.全面调查,24C.抽样调查,26D.抽样调查,249.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A.B.C.D.10.定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A.B.C.D.二、填空题11.计算(﹣π)0﹣(﹣1)2020的值是.12.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是.13.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式.若,则x=.14.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起分钟该容器内的水恰好放完.15.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为米(结果保留根号).16.一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为cm.三、解答题17.先化简,再求值(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣18.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?19.如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=的图象经过点E,与AB交于点F.(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF﹣AE=2,求反比例函数的表达式.20.某商场为缓解我市“停车难”问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果.(参考数据:sin18°=0.31,cos18°=0.95,tan18°=0.325)(结果精确到0.1m)21.某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1152a3b45(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?22.如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.(1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=AM;(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.23.在平面直角坐标系中xOy中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图的方式放置.点A1,A2,A3…、A n和点C1,C2,C3…、∁n分别落在直线y=x+1和x轴上.抛物线L1过点A1、B1,且顶点在直线y=x+1上,抛物线L2过点A2、B2,且顶点在直线y=x+1上,…,按此规律,抛物线L n过点A n、B n,且顶点也在直线y=x+1上,其中抛物线L1交正方形A1B1C1O的边A1B1于点D1,抛物线L2交正方形A2B2C2C1的边A2B2于点D2…,抛物线L n交正方形A n B n∁n C n﹣1的边A n B n于点D n(其中n≥2且n为正整数).(1)直接写出下列点的坐标:B1,B2,B3;(2)写出抛物线L2,、L3的解析式,并写出其中一个解析式的求解过程,再猜想抛物线L n的顶点坐标;(3)①设A1D1=k•D1B1,A2D2=k2•D2B2,试判断k1与k2的数量关系并说明理由;②点D1、D2、…,D n是否在一条直线上?若是,直接写出这条直线与直线y=x+1的交点坐标;若不是,请说明理由.2020年北京市海淀区首都师大附中中考数学一模试卷参考答案与试题解析一、选择题1.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3|B.﹣2C.0D.π【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.【点评】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.2.下列各式的变形中,正确的是()A.(﹣x﹣y)(﹣x+y)=x2﹣y2B.﹣x=C.x2﹣4x+3=(x﹣2)2+1D.x÷(x2+x)=+1【分析】根据平方差公式和分式的加减以及整式的除法计算即可.【解答】解:A、(﹣x﹣y)(﹣x+y)=x2﹣y2,正确;B、,错误;C、x2﹣4x+3=(x﹣2)2﹣1,错误;D、x÷(x2+x)=,错误;故选:A.【点评】此题考查平方差公式和分式的加减以及整式的除法,关键是根据法则计算.3.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40%B.33.4%C.33.3%D.30%【分析】缺少质量和进价,应设购进这种水果a千克,进价为y元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)y元/千克,根据题意得:购进这批水果用去ay元,但在售出时,只剩下(1﹣10%)a千克,售货款为(1﹣10%)a×(1+x)y元,根据公式×100%=利润率可列出不等式,解不等式即可.【解答】解:设购进这种水果a千克,进价为y元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)y元/千克,由题意得:×100%≥20%,解得:x≥≈33.4%,经检验,x≥是原不等式的解.∵超市要想至少获得20%的利润,∴这种水果的售价在进价的基础上应至少提高33.4%.故选:B.【点评】此题主要考查了一元一次不等式的应用,关键是弄清题意,设出必要的未知数,表示出售价,售货款,进货款,利润.注意在解出结果后,要考虑实际问题,利用收尾法,不能用四舍五入.4.如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cos A=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y =(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cos A=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=xcm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P的位置进行分类讨论,以防错选.5.下列命题正确的个数是()①若代数式有意义,则x的取值范围为x≤1且x≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.③若反比例函数(m为常数),当x>0时,y随x增大而增大,则一次函数y=﹣2x+m的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y=x2中偶函数的个数为2个.A.1B.2C.3D.4【分析】根据有关的定理和定义作出判断即可得到答案.【解答】解:①若代数式有意义,则x的取值范围为x<1且x≠0,原命题错误;②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元正确.③根据反比例函数(m为常数)的增减性得出m<0,故一次函数y=﹣2x+m的图象一定不经过第一象限.,此选项正确;④若函数的图象关于y轴对称,则函数称为偶函数,三个函数中有y=3,y=x2是偶函数,原命题正确,故选:C.【点评】本题考查了命题与定理的知识,在判断一个命题正误的时候可以举出反例.6.下列图形中,阴影部分面积最大的是()A.B.C.D.【分析】分别根据反比例函数系数k的几何意义以及三角形面积求法以及梯形面积求法得出即可.【解答】解:A、根据反比例函数系数k的几何意义,阴影部分面积和为:xy=3,B、根据反比例函数系数k的几何意义,阴影部分面积和为:3,C、根据反比例函数系数k的几何意义,以及梯形面积求法可得出:阴影部分面积为:3+×(1+3)×2﹣﹣=4,D、根据M,N点的坐标以及三角形面积求法得出,阴影部分面积为:×1×6=3,阴影部分面积最大的是4.故选:C.【点评】此题主要考查了反比例函数系数k的几何意义以及三角形面积求法等知识,将图形正确分割得出阴影部分面积是解题关键.7.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B .【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.8.为了解中学生获取资讯的主要渠道,设置“A .报纸.B .电视.C .网络,D .身边的人.E .其他”五个选项(五项中必选且只能选一项)的调查问卷.先随机抽取50名中学生进行该问卷调查.根据调查的结果绘制条形图如图.该调查的方式是( ),图中的a 的值是( )A .全面调查,26B .全面调查,24C .抽样调查,26D .抽样调查,24 【分析】根据题意得到此调查为抽样调查,由样本容量求出a 的值即可.【解答】解:根据题意得:该调查的方式是抽样调查,a =50﹣(6+10+6+4)=24,故选:D .【点评】此题考查了条形统计图,以及全面调查与抽样调查,弄清题意是解本题的关键. 9.正方形ABCD 的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD 内投一粒米,则米粒落在阴影部分的概率为( )A .B .C .D .【分析】求得阴影部分的面积后除以正方形的面积即可求得概率.【解答】解:如图,连接PA 、PB 、OP ;则S 半圆O ==,S △ABP =×2×1=1,由题意得:图中阴影部分的面积=4(S 半圆O ﹣S △ABP )=4(﹣1)=2π﹣4,∴米粒落在阴影部分的概率为=,故选:A.【点评】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积,难度不大.10.定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A.B.C.D.【分析】根据题意可得y=2⊕x=,再根据反比例函数的性质可得函数图象所在象限和形状,进而得到答案.【解答】解:由题意得:y=2⊕x=,当x>0时,反比例函数y=在第一象限,当x<0时,反比例函数y=﹣在第二象限,又因为反比例函数图象是双曲线,因此D选项符合.故选:D.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数的图象是双曲线.二、填空题11.计算(﹣π)0﹣(﹣1)2020的值是0.【分析】根据零指数幂的意义以及实数的运算法则即可求出答案.【解答】解:原式=1﹣1=0,故答案为:0【点评】本题考查实数的运算,解题的关键熟练运用实数的运算法则,本题属于基础题型.12.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是.【分析】利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好.【解答】解:方法一:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组可整理为:解得:方法二:关于x、y的二元一次方程组的解是,由关于a、b的二元一次方程组可知解得:故答案为:【点评】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.13.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式.若,则x=2.【分析】根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x的值.【解答】解:根据题意化简=8,得:(x+1)2﹣(1﹣x)2=8,整理得:x2+2x+1﹣(1﹣2x+x2)﹣8=0,即4x=8,解得:x=2.故答案为:2【点评】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键.14.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起8分钟该容器内的水恰好放完.【分析】先根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论.【解答】解:由函数图象得:进水管每分钟的进水量为:20÷4=5升设出水管每分钟的出水量为a升,由函数图象,得20+8(5﹣a)=30,解得:a=,故关闭进水管后出水管放完水的时间为:30÷=8分钟.故答案为:8.【点评】本题考查利用函数的图象解决实际问题和用一元一次方程求出水管的出水量的运用,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.15.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为1200(﹣1)米(结果保留根号).【分析】在Rt△ACH和Rt△HCB中,利用锐角三角函数,用CH表示出AH、BH的长,然后计算出AB的长.【解答】解:由于CD∥HB,∴∠CAH=∠ACD=45°,∠B=∠BCD=30°在Rt△ACH中,∵∴∠CAH=45°∴AH=CH=1200米,在Rt△HCB,∵tan∠B=∴HB====1200(米).∴AB=HB﹣HA=1200﹣1200=1200(﹣1)米故答案为:1200(﹣1)【点评】本题考查了锐角三角函数的仰角、俯角问题.题目难度不大,解决本题的关键是用含CH的式子表示出AH和BH.16.一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为cm.【分析】由题意易得△ABC∽△A1B1C1,根据相似比求A1B1即可.【解答】解:∵∠ACB=90°,BC=12cm,AC=8cm,∴AB=4,∵△ABC∽△A1B1C1,∴A1B1:AB=B1C1:BC=2:1,即A1B1=8cm.【点评】本题综合考查了中心投影的特点和规律以及相似三角形性质的运用.解题的关键是利用中心投影的特点可知在这两组三角形相似,利用其相似比作为相等关系求出所需要的线段.三、解答题17.先化简,再求值(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣【分析】利用平方差公式、单项式乘多项式及完全平方公式去括号,再合并同类项化简后,再将x的值代入计算可得.【解答】解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5,当x=﹣时,原式=(﹣)2﹣5=3﹣5=﹣2.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.18.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【分析】(1)设每千克核桃降价x元,利用销售量×每件利润=2240元列出方程求解即可;(2)为了让利于顾客因此应下降6元,求出此时的销售单价即可确定几折.【解答】(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),设按原售价的m折出售,则有:60×=54,解得m=9答:该店应按原售价的九折出售.【点评】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.19.如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=的图象经过点E,与AB交于点F.(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF﹣AE=2,求反比例函数的表达式.【分析】(1)根据矩形的性质,可得A,E点坐标,根据待定系数法,可得答案;(2)根据勾股定理,可得AE的长,根据线段的和差,可得FB,可得F点坐标,根据待定系数法,可得m的值,可得答案.【解答】解:(1)点B坐标为(﹣6,0),AD=3,AB=8,E为CD的中点,∴点A(﹣6,8),E(﹣3,4),函数图象经过E点,∴m=﹣3×4=﹣12,设AE的解析式为y=kx+b,,解得,∴一次函数的解析式为y=﹣x;(2)AD=3,DE=4,∴AE==5,∵AF﹣AE=2,∴AF=7,BF=1,设E点坐标为(a,4),则F点坐标为(a﹣3,1),∵E,F两点在函数y=图象上,∴4a=a﹣3,解得a=﹣1,∴E(﹣1,4),∴m=﹣1×4=﹣4,∴y=﹣.【点评】本题考查了反比例函数,解(1)的关键是利用待定系数法,又利用了矩形的性质;解(2)的关键利用E,F两点在函数y=图象上得出关于a的方程.20.某商场为缓解我市“停车难”问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果.(参考数据:sin18°=0.31,cos18°=0.95,tan18°=0.325)(结果精确到0.1m)【分析】先根据CE⊥AE,判断出CE为高,再根据解直角三角形的知识解答.【解答】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=,∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5=2.75(m).在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=,∴CE=sin∠CDE×CD=sin72°×2.75=cos18°×2.75=0.95×2.75=2.6125≈2.6(m),∵2.6m<2.75m,且CE⊥AE,∴小亮说的对.答:小亮说的对,CE为2.6m.【点评】此题考查了三角函数的基本概念,主要是正弦、正切概念及运算,关键把实际问题转化为数学问题加以计算.21.某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1152a3b45(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?【分析】(1)根据题意和统计图中的数据可以求得m、a、b的值;(2)根据统计图中的数据可以求得该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本.【解答】解:(1)由题意可得,m=15÷30%=50,b=50×40%=20,a=50﹣15﹣20﹣5=10,即m的值是50,a的值是10,b的值是20;(2)(1×15+2×10+3×20+4×5)×=1150(本),答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.【点评】本题考查扇形统计图、用样本估计总体、统计表,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.(1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=AM;(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.【分析】(1)在RT△OAB中,利用勾股定理OA=求解,(2)由四边形ABCD是菱形,求出△AFM为等边三角形,∠M=∠AFM=60°,再求出∠MAC =90°,在Rt△ACM中tan∠M=,求出AC.(3)求出△AEM≌△ABF,利用△AEM的面积为40求出BF,在利用勾股定理AF===,得出△AFM的周长为3.【解答】解:(1)∵四边形ABCD是菱形,∴AC⊥BD,OB=OD=BD,∵BD=24,∴OB=12,在Rt△OAB中,∵AB=13,∴OA===5.(2)如图2,∵四边形ABCD是菱形,∴BD垂直平分AC,∴FA=FC,∠FAC=∠FCA,由已知AF=AM,∠MAF=60°,∴△AFM为等边三角形,∴∠M=∠AFM=60°,∵点M,F,C三点在同一条直线上,∴∠FAC+∠FCA=∠AFM=60°,∴∠FAC=∠FCA=30°,∴∠MAC=∠MAF+∠FAC=60°+30°=90°,在Rt△ACM中∵tan∠M=,∴tan60°=,∴AC=AM.(3)如图,连接EM,∵△ABE是等边三角形,∴AE=AB,∠EAB=60°,由(2)知△AFM为等边三角形,∴AM=AF,∠MAF=60°,∴∠EAM=∠BAF,在△AEM和△ABF中,,∴△AEM≌△ABF(SAS),∵△AEM的面积为40,△ABF的高为AO∴BF•AO=40,BF=16,∴FO=BF﹣BO=16﹣12=4AF===,∴△AFM的周长为3.【点评】本题主要考查四边形的综合题,解题的关键是灵活运用等边三角形的性质及菱形的性质.23.在平面直角坐标系中xOy中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图的方式放置.点A1,A2,A3…、A n和点C1,C2,C3…、∁n分别落在直线y=x+1和x轴上.抛物线L1过点A1、B1,且顶点在直线y=x+1上,抛物线L2过点A2、B2,且顶点在直线y=x+1上,…,按此规律,抛物线L n过点A n、B n,且顶点也在直线y=x+1上,其中抛物线L1交正方形A1B1C1O的边A1B1于点D1,抛物线L2交正方形A2B2C2C1的边A2B2于点D2…,抛物线L n交正方形A n B n∁n C n﹣1的边A n B n于点D n(其中n≥2且n为正整数).(1)直接写出下列点的坐标:B1(1,1),B2(3,2),B3(7,4);(2)写出抛物线L2,、L3的解析式,并写出其中一个解析式的求解过程,再猜想抛物线L n的顶点坐标(3×2n﹣2﹣1,3×2n﹣2);(3)①设A1D1=k•D1B1,A2D2=k2•D2B2,试判断k1与k2的数量关系并说明理由;②点D1、D2、…,D n是否在一条直线上?若是,直接写出这条直线与直线y=x+1的交点坐标;若不是,请说明理由.【分析】(1)先求出直线y=x+1与y轴的交点坐标即可得出A1的坐标,故可得出OA1的长,根据四边形A1B1C1O是正方形即可得出B1的坐标,再把B1的横坐标代入直线y=x+1即可得出A1的坐标,同理可得出B2,B3的坐标;(2)根据四边形A1B1C1O是正方形得出C1的坐标,再由点A2在直线y=x+1上可知A2(1,2),B2的坐标为(3,2),由抛物线L2的对称轴为直线x=2可知抛物线L2的顶点为(2,3),再用待定系数法求出直线L2的解析式;根据B3的坐标为(7,3),同上可求得点A3的坐标为(3,4),抛物线L3的对称轴为直线x=5,同理可得出直线L2的解析式;(3)①同(2)可求得L2的解析式为y=(x﹣2)2+3,当y=1时,求出x的值,由A1D1=﹣D1B1,可得出k1的值,同理可得出k2的值,由此可得出结论;②由①中的结论可知点D1、D2、…,D n是否在一条直线上,再用待定系数法求出直线D1D2的解析式,求出与直线y=x+1的交点坐标即可.【解答】解:(1)∵令x=0,则y=1,∴A1(0,1),∴OA1=1.∵四边形A1B1C1O是正方形,∴A1B1=1,∴B1(1,1).∵当x=1时,y=1+1=2,∴B2(3,2);同理可得,B3(7,4).故答案为:(1,1),(3,2),(7,4);(2)抛物线L2、L3的解析式分别为:y=﹣(x﹣2)2+3;,y=﹣(x﹣5)2+6;抛物线L2的解析式的求解过程:对于直线y=x+1,设x=0,可得y=1,A1(0,1),∵四边形A1B1C1O是正方形,∴C1(1,0),又∵点A2在直线y=x+1上,∴点A2(1,2),又∵B2的坐标为(3,2),∴抛物线L2的对称轴为直线x=2,∴抛物线L2的顶点为(2,3),设抛物线L2的解析式为:y=a(x﹣2)2+3,∵L2过点B2(3,2),∴当x=3时,y=2,∴2=a(3﹣2)2+3,解得:a=﹣1,∴抛物线L2的解析式为:y=﹣(x﹣2)2+3;抛物线L3的解析式的求解过程:又∵B3的坐标为(7,3),同上可求得点A3的坐标为(3,4),∴抛物线L3的对称轴为直线x=5,∴抛物线L3的顶点为(5,6),设抛物线L3的解析式为:y=a(x﹣5)2+6,∵L3过点B3(7,4),∴当x=7时,y=﹣4,∴4=a×(7﹣5)2+6,解得:a=﹣,∴抛物线L3的解析式为:y=﹣(x﹣5)2+6;猜想抛物线L n的顶点坐标为(3×2n﹣2﹣1,3×2n﹣2);(猜想过程:方法1:可由抛物线L1、L2、L3…的解析式:∵y=﹣2(x﹣)2+,y=﹣(x﹣2)2+3,y=﹣(x﹣5)2+6…,归纳总结;方法2:可由正方形A n B n∁n C n﹣1顶点A n、B n的坐标规律A n(2n﹣1﹣1,2n﹣1)与B n(2n,2n﹣1),再利用对称性可得抛物线L n的对称轴为直线x=,即x==3×2n﹣2﹣1,又顶点在直线y=x+1上,所以可得抛物线L n的顶点坐标为(3×2n﹣2﹣1,3×2n﹣2).故答案为:(3×2n﹣2﹣1,3×2n﹣2);(3)①、k1与k1的数量关系为:k1=k2,理由如下:同(2)可求得L2的解析式为y=(x﹣2)2+3,当y=1时,1=﹣(x﹣2)2+3解得:x1=2﹣,x2=2+,∴x=2﹣,∴A1D1=2﹣=(﹣1),∴D1B1=1﹣(2﹣)=﹣1,∴A1D1=﹣D1B1,即k1=;同理可求得A2D2=4﹣2=2(﹣1),D2B2=2﹣(4﹣2)=2﹣2=2(﹣1),A2D2=﹣D2B2,即k2=,∴k1=k2;②∵由①知,k1=k2,∴点D1、D2、…,D n在一条直线上;∵抛物线L2的解析式为y=﹣(x﹣2)2+3,∴当y=1时,x=2﹣,∴D1(2﹣,1);同理,D2(5﹣2,2),∴设直线D1D2的解析式为y=kx+b(k≠0),则,解得,∴直线D1D2的解析式为y=(3+)x+﹣3,∴,解得,∴这条直线与直线y=x+1的交点坐标为(﹣1,0).。
北京师范大学附属实验中学2020-2021学年九年级上学期开学摸底测试数学试题(解析版)
![北京师范大学附属实验中学2020-2021学年九年级上学期开学摸底测试数学试题(解析版)](https://img.taocdn.com/s3/m/5cd0643c580102020740be1e650e52ea5518ce63.png)
C、是轴对称图形,不是中心对称图形,故此选项错误;
D、是轴对称图形,也是中心对称图形,故此选项正确.
故选D.
【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
A.2B.3C.2.5D.4
【答案】B【解析】
【分析】根据中位数的计算方法计算即可;
【详解】把数据从小到大排序为2,2,3,4,5,
所以中位数是3.
【点睛】本题主要考查了中位数的计算,准确计算是解题的关键.
4.如图, 中, , , ,则 的长为()
A.2B. C. D.
【答案】D
【解析】
【分析】根据勾股定理计算即可;
二、填空题(每小题3分,共18分)
11.若关于 一元二次方程 的一根为1,则 的值是________.
【答案】1
【解析】
【分析】把方程的根代入方程可以求出字母系数的值.
【详解】解:把x=1代入方程有:1+m−2m=0
m=1.
故答案为:1.
【点睛】本题考查的是一元二次方程的解,把方程的解代入方程可以求出字母系数的值.
【详解】解:A、 属于最简二次根式,符合题意;
B、 属于三次根式,不合题意;
C、 =|x|,不属于最简二次根式,不合题意;
D、 =3,不属于最简二次根式,不合题意;
故选:A.
【点睛】本题主要考查了最简二次根式,最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方x(x−4)+2(x−4)=0,
(x−4)(x+2)=0,
北京师范大学附属中学2020届数学中考模拟试卷
![北京师范大学附属中学2020届数学中考模拟试卷](https://img.taocdn.com/s3/m/cf67076b312b3169a451a4e0.png)
北京师范大学附属中学2020届数学中考模拟试卷一、选择题1.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?” 如图所示,请根据所学知识计算:圆形木材的直径AC 是( )A.13寸B.20寸C.26寸D.28寸2.岳池医药招商保持良好态势,先后签约成都百裕制药、济南爱思、重庆泰濠、四川源洪福科技、四川恒康科技、成都天瑞炳德、南充金方堂、药融园8个亿元以上医药项目和科伦药业、人福药业CS0两个医贸项目,协议投资额约51.5亿元。
将51.5亿元用科学计数法表示为( )元 A .95.1510⨯B .851.510⨯C .105.1510⨯D .751510⨯3.若二次函数2(2)4y ax a x a =+++的图像与x 轴有两个交点12(,0),(,0)x x ,且121x x <<,则a 的取值范围是() A .2153a -<<- B .103a -<< C .203a <<D .1233a << 4.某市去年完成了城市绿化面积共8210000m 2,将8210000用科学记数法表示应为( ) A .821×102B .82.1×105C .8.21×106D .0.821×1075.抛物线y=ax 2+bx+c 交x 轴于A (-1,0),B (3,0),交y 轴的负半轴于C ,顶点为D .下列结论:①2a+b=0;②2c <3b ;③当m≠1时,a+b <am 2+bm ;④当△ABD 是等腰直角三角形时,则a=12;其中正确的有( )个.A.4B.3C.2D.16.如图所示物体的俯视图是( )A .B .C .D .7.如图,在锐角ABC 中,延长BC 到点D ,点O 是AC 边上的一个动点,过点O 作直线MN BC ,MN 分别交ACB ∠、ACD ∠的平分线于E ,F 两点,连接AE 、AF .在下列结论中.①OE OF =;②CE CF =;③若12CE =,5CF =,则OC 的长为6;④当AO CO =时,四边形AECF 是矩形.其中正确的是( )A .①④B .①②C .①②③D .②③④8.联欢会主持人小亮、小莹、大明三位同学随机地站成一排,小亮恰好站在中间的概率是( ) A .16B .12C .13D .239.对于二次函数y=ax 2-(2a-1)x+a-1(a≠0),有下列结论:①其图象与x 轴一定相交;②若a <0,函数在x >1时,y 随x 的增大而减小;③无论a 取何值,抛物线的顶点始终在同一条直线上;④无论a 取何值,函数图象都经过同一个点.其中正确结论的个数是( ) A .1B .2C .3D .410.下表是摄氏温度和华氏温度之间的对应表,则字母a 的值是( )11.下列图形是由同样大小的三角形按一定规排列面成的.其中第①个图形有3个三角形,第②个图形有6个三角形,第③个图形有11个三角形,第④个图形有18个三角形,……按此规律,则第⑦个图形中三角形的个数为( )A .47B .49C .51D .5312.不等式12x-≥1的解集在数轴上表示正确的是( )A .B .C .D .二、填空题13.如图,点A ,C 在反比例函数()2y x 0x =-<的图象上,点B ,D 在反比例函数()ky k 0x=<的图象上,AB ∥CD ∥X 轴,已知AB =2CD ,△OAB 与△ACD 的面积之和为3,则k 的值为__________.14.若代数式1x有意义,则实数x 的取值范围是_____. 15.如图,某中学综合楼入口处有两级台阶,台阶高AD =BE =15cm ,深DE =30cm ,在台阶处加装一段斜坡作为无障碍通道,设台阶起点为A ,斜坡的起点为C ,若斜坡CB 的坡度i =1:9,则AC 的长为____cm .16.已知△ABC 的三边长分别为5,7,8,△DEF 的三边分别为5,2x ,3x ﹣5,若两个三角形全等,则x=__.17.如图,DE ∥BC ,DE :BC =3:4,那么AE :CE =_____.18.一个圆锥的底面积是40cm 2,高12cm ,体积是__________cm 3. 三、解答题19.已知:如图,在梯形ABCD 中,AD ∥BC ,BC=DC ,CF 平分∠BCD ,DF ∥AB ,BF 的延长线交DC 于点E 。
2019-2020北京师范大学附属中学数学中考一模试卷带答案
![2019-2020北京师范大学附属中学数学中考一模试卷带答案](https://img.taocdn.com/s3/m/2e50053527d3240c8447ef73.png)
2019-2020北京师范大学附属中学数学中考一模试卷带答案一、选择题1.如图是由5个相同大小的正方体搭成的几何体,则它的俯视图是( )A .B .C .D .2.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-3.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( ) A . B .C .D .4.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为( )A .5B .4C .213D .4.85.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC 5BC =2,则sin ∠ACD 的值为( )A .5B .25C .5D .23 6.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是()A .54k ≤B .54k > C .514k k ≠<且 D .514k k ≤≠且 7.观察下列图形中点的个数,若按其规律再画下去,可以得到第9个图形中所有点的个数为( )A .61B .72C .73D .868.估6的值应在( ) A .3和4之间 B .4和5之间 C .5和6之间 D .6和7之间 9.根据以下程序,当输入x =2时,输出结果为( )A .﹣1B .﹣4C .1D .11 10.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A .15.5,15.5B .15.5,15C .15,15.5D .15,1511.如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A.23π﹣23B.13π﹣3C.43π﹣23D.43π﹣312.已知关于x的方程2x+a-9=0的解是x=2,则a的值为A.2 B.3 C.4 D.5二、填空题13.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为____.14.分解因式:2x3﹣6x2+4x=__________.15.不等式组125x ax x->⎧⎨->-⎩有3个整数解,则a的取值范围是_____.16.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.17.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数kyx =在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为_____.18.已知反比例函数的图象经过点(m,6)和(﹣2,3),则m的值为________.19.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为_____.20.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.三、解答题21.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y1(元/件),销量y2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量).(1)求y1与y2的函数解析式.(2)求每天的销售利润W与x的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?22.解分式方程:232 11xx x+= +-23.已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=12.(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE=16.若反比例函数y=kx的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.24.如图1,在直角坐标系中,一次函数的图象l与y轴交于点A(0 , 2),与一次函数y =x﹣3的图象l交于点E(m ,﹣5).(1)m=__________;(2)直线l与x轴交于点B,直线l与y轴交于点C,求四边形OBEC的面积;(3)如图2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的边PQ在x 轴上平移,若矩形MNPQ与直线l或l有交点,直接写出a的取值范围_____________________________25.直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.(1)求证:直线FG是⊙O的切线;(2)若FG=4,⊙O的半径为5,求四边形FGDE的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】从上边看第一列是一个小正方形,第二列是一个小正方形,第三列是两个小正方形,故选:B .【点睛】本题考查了简单几何体的三视图,从上边看上边看得到的图形是俯视图.2.A解析:A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.3.D解析:D【解析】【分析】【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等;B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1.故选:D4.C解析:C【解析】【分析】先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到142CD AD AC ===,然后利用勾股定理计算BD 的长. 【详解】 ∵AB 为直径,∴90ACB ︒∠=,∴6BC ==,∵OD AC ⊥, ∴142CD AD AC ===,在Rt CBD ∆中,BD ==故选C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.5.A解析:A【解析】【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B .【详解】在直角△ABC 中,根据勾股定理可得:AB 222252AC BC =+=+=()3. ∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B 5AC AB ==. 故选A .【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.6.D解析:D【解析】【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( , 解得:k ≤54且k ≠1. 故选:D .【点睛】 此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键7.C解析:C【解析】【分析】设第n 个图形中有a n 个点(n 为正整数),观察图形,根据各图形中点的个数的变化可得出变化规律“a n =n 2+n+1(n 为正整数)”,再代入n =9即可求出结论.设第n个图形中有a n个点(n为正整数),观察图形,可知:a1=5=1×2+1+2,a2=10=2×2+1+2+3,a3=16=3×2+1+2+3+4,…,∴a n=2n+1+2+3+…+(n+1)=n2+n+1(n为正整数),∴a9=×92+×9+1=73.故选C.【点睛】本题考查了规律型:图形的变化类,根据各图形中点的个数的变化找出变化规律“a n=n2+n+1(n为正整数)”是解题的关键.8.C解析:C【解析】【分析】先化简后利用的范围进行估计解答即可.【详解】=6-3=3,∵1.7<<2,∴5<3<6,即5<<6,故选C.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.9.D解析:D【解析】【分析】根据流程图所示顺序,逐框分析代入求值即可.【详解】当x=2时,x2﹣5=22﹣5=﹣1,结果不大于1,代入x2﹣5=(﹣1)2﹣5=﹣4,结果不大于1,代入x2﹣5=(﹣4)2﹣5=11,故选D.【点睛】本题考查了代数式求值,正确代入求值是解题的关键.10.D解析:D【分析】【详解】根据图中信息可知这些队员年龄的平均数为: 132146158163172181268321⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁, 该足球队共有队员2+6+8+3+2+1=22人,则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁,故选D .11.C 解析:C【解析】分析:连接OB 和AC 交于点D ,根据菱形及直角三角形的性质先求出AC 的长及∠AOC 的度数,然后求出菱形ABCO 及扇形AOC 的面积,则由S 菱形ABCO ﹣S 扇形AOC 可得答案. 详解:连接OB 和AC 交于点D ,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC 是菱形,∴OB ⊥AC ,OD=12OB=1, 在Rt △COD 中利用勾股定理可知:22213-=,3 ∵sin ∠COD= 3CD OC = ∴∠COD=60°,∠AOC=2∠COD=120°,∴S 菱形ABCO =12B×AC=12×2×33 S 扇形AOC =2120243603ππ⨯⨯=, 则图中阴影部分面积为S 菱形ABCO ﹣S 扇形AOC =4233π- 故选C .点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b(a、b是两条对角线的长度);扇形的面积=2360n rπ,有一定的难度.12.D解析:D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选D.二、填空题13.12【解析】【详解】解:设点A的坐标为(a)则点B的坐标为()∵AB∥x 轴AC=2CD∴∠BAC=∠ODC∵∠ACB=∠DCO∴△ACB∽△DCO∴∵OD=a则AB=2a∴点B的横坐标是3a∴3a=解析:12【解析】【详解】解:设点A的坐标为(a,4a),则点B的坐标为(ak4,4a),∵AB∥x轴,AC=2CD,∴∠BAC=∠ODC,∵∠ACB=∠DCO,∴△ACB∽△DCO,∴AB AC2 DA CD1==,∵OD=a,则AB=2a,∴点B的横坐标是3a,∴3a=ak4,解得:k=12.故答案为12.14.2x(x﹣1)(x﹣2)【解析】分析:首先提取公因式2x再利用十字相乘法分解因式得出答案详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2)故答案为2x(x﹣1)(x﹣2)点解析:2x(x﹣1)(x﹣2).【解析】分析:首先提取公因式2x,再利用十字相乘法分解因式得出答案.详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).故答案为2x (x ﹣1)(x ﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.15.﹣2≤a<﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a 的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a 的不等式从而求出a 的范围【详解】解不等式x ﹣a >0得 解析:﹣2≤a <﹣1.【解析】【分析】先解不等式组确定不等式组的解集(利用含a 的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解不等式x ﹣a >0,得:x >a ,解不等式1﹣x >2x ﹣5,得:x <2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、 0、1,则﹣2≤a <﹣1,故答案为:﹣2≤a <﹣1.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式解析:3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.17.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E ∴2x =x+2 解析:12x x 【解析】【分析】设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.【详解】解:设D (x ,2)则E (x+2,1),∵反比例函数kyx=在第一象限的图象经过点D、点E,∴2x=x+2,解得x=2,∴D(2,2),∴OA=AD=2,∴OD==故答案为:【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D、E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.18.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1解析:-1【解析】试题分析:根据待定系数法可由(-2,3)代入y=kx,可得k=-6,然后可得反比例函数的解析式为y=-6x,代入点(m,6)可得m=-1.故答案为:-1.19.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为24∴ED+DC+EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-(AE+ED+DC+AC解析:6【解析】试题解析:∵DE是BC边上的垂直平分线,∴BE=CE.∵△EDC的周长为24,∴ED+DC+EC=24,①∵△ABC与四边形AEDC的周长之差为12,∴(AB+AC+BC)-(AE+ED+DC+AC)=(AB+AC+BC)-(AE+DC+AC)-DE=12,∴BE+BD-DE=12,②∵BE=CE,BD=DC,∴①-②得,DE=6.考点:线段垂直平分线的性质.20.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.三、解答题21.(1)y2与x的函数关系式为y2=-2x+200(1≤x<90);(2)W=22x180x2?000(1x50),120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)销售这种文化衫的第45天,销售利润最大,最大利润是6050元.【解析】【分析】(1)待定系数法分别求解可得;(2)根据:销售利润=(售价-成本)×销量,分1≤x<50、50≤x<90两种情况分别列函数关系式可得;(3)当1≤x<50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x<90时,依据一次函数性质可得最值情况,比较后可得答案.【详解】(1)当1≤x<50时,设y1=kx+b,将(1,41),(50,90)代入,得k b41,50k b90,+=⎧⎨+=⎩解得k1,b40,=⎧⎨=⎩∴y1=x+40,当50≤x<90时,y1=90,故y1与x的函数解析式为y1=x40(1x50), 90(50x90);+≤<⎧⎨≤<⎩ 设y2与x的函数解析式为y2=mx+n(1≤x<90),将(50,100),(90,20)代入,得50m n100,90m n20,+=⎧⎨+=⎩解得:m2,n200,=-⎧⎨=⎩故y2与x的函数关系式为y2=-2x+200(1≤x<90).(2)由(1)知,当1≤x<50时,W=(x+40-30)(-2x+200)=-2x2+180x+2000;当50≤x<90时,W=(90-30)(-2x+200)=-120x+12000;综上,W=22x180x2?000(1x50), 120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)当1≤x<50时,∵W=-2x2+180x+2000=-2(x-45)2+6050,∴当x=45时,W取得最大值,最大值为6050元;当50≤x<90时,W=-120x+12000,∵-120<0,W随x的增大而减小,∴当x=50时,W取得最大值,最大值为6000元;综上,当x=45时,W取得最大值6050元.答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.22.x=-5【解析】【分析】本题考查了分式方程的解法,把方程的两边都乘以最简公分母(x+1)( x-1),化为整式方程求解,求出x的值后不要忘记检验.【详解】解:方程两边同时乘以(x+1)( x-1)得: 2x (x-1)+3(x+1)=2(x+1)( x-1)整理化简,得x=-5经检验,x=-5是原方程的根∴原方程的解为:x=-5.23.(1)(-8,0)(2)k=-19225(3)(﹣1,3)或(0,2)或(0,6)或(2,6)【解析】【分析】(1)解方程求出OB的长,解直角三角形求出OA即可解决问题;(2)求出直线DE、AB的解析式,构建方程组求出点C坐标即可;(3)分四种情形分别求解即可解决问题;【详解】解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,∴OB=4,在Rt△AOB中,tan∠BAO=12 OBOA=,∴OA=8,∴A(﹣8,0).(2)∵EC⊥AB,∴∠ACD=∠AOB=∠DOE=90°,∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,∴∠OAB=∠DEO,∴△AOB∽△EOD,∴OA OB OE OD=,∴OE:OD=OA:OB=2,设OD=m,则OE=2m,∵12•m•2m=16,∴m=4或﹣4(舍弃),∴D(﹣4,0),E(0,﹣8),∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),∴直线AB的解析式为y=12x+4,由28142y xy x--⎧⎪⎨+⎪⎩==,解得24585xy⎧-⎪⎪⎨⎪⎪⎩==,∴C(245-,85),∵若反比例函数y=kx的图象经过点C,∴k=﹣192 25.(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,2,∴P(﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P (0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);【点睛】考查反比例函数综合题、一次函数的应用、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.24.(1)-2;(2);(3)≤a≤或3≤a≤6.【解析】【分析】(1)根据点E在一次函数图象上,可求出m的值;(2)利用待定系数法即可求出直线l1的函数解析式,得出点B、C的坐标,利用S四边形OBEC=S△OBE+S△OCE即可得解;(3)分别求出矩形MNPQ在平移过程中,当点Q在l1上、点N在l1上、点Q在l2上、点N在l2上时a的值,即可得解.【详解】解:(1)∵点E(m,−5)在一次函数y=x−3图象上,∴m−3=−5,∴m=−2;(2)设直线l1的表达式为y=kx+b(k≠0),∵直线l1过点A(0,2)和E(−2,−5),∴,解得,∴直线l1的表达式为y=x+2,当y=x+2=0时,x=∴B点坐标为(,0),C点坐标为(0,−3),∴S四边形OBEC=S△OBE+S△OCE=××5+×2×3=;(3)当矩形MNPQ的顶点Q在l1上时,a的值为;矩形MNPQ向右平移,当点N在l1上时,x+2=1,解得x=,即点N(,1),∴a的值为+2=;矩形MNPQ继续向右平移,当点Q在l2上时,a的值为3,矩形MNPQ继续向右平移,当点N在l2上时,x−3=1,解得x=4,即点N(4,1),∴a的值为4+2=6,综上所述,当≤a≤或3≤a≤6时,矩形MNPQ与直线l1或l2有交点.【点睛】本题主要考查求一次函数解析式,两条直线相交、图形的平移等知识的综合应用,在解决第(3)小题时,只要求出各临界点时a的值,就可以得到a的取值范围.25.(1)证明见解析(2)48【解析】【分析】(1)利用角平分线的性质以及等腰三角形的性质得出∠OFC=∠FCG,继而得出∠GFC+∠OFC=90°,即可得出答案;(2)首先得出四边形FGDH是矩形,进而利用勾股定理得出HO的长,进而得出答案.【详解】(1)连接FO,∵ OF=OC,∴∠OFC=∠OCF.∵CF平分∠ACE,∴∠FCG=∠FCE.∴∠OFC=∠FCG.∵ CE是⊙O的直径,∴∠EDG=90°,又∵FG//ED,∴∠FGC=180°-∠EDG=90°,∴∠GFC+∠FCG=90°∴∠GFC+∠OFC=90°,即∠GFO=90°,∴OF⊥GF,又∵OF是⊙O半径,∴FG与⊙O相切.(2)延长FO,与ED交于点H,由(1)可知∠HFG=∠FGD=∠GDH=90°,∴四边形FGDH是矩形.∴FH⊥ED,∴HE=HD.又∵四边形FGDH是矩形,FG=HD,∴HE=FG=4.∴ED=8.∵在Rt△OHE中,∠OHE=90°,∴OH=22OE HE-=2254-=3.∴FH=FO+OH=5+3=8.S四边形FGDH=12(FG+ED)•FH=12×(4+8)×8=48.。
2020年北京市首都师大附中中考数学模拟试卷(4月份) (含答案解析)
![2020年北京市首都师大附中中考数学模拟试卷(4月份) (含答案解析)](https://img.taocdn.com/s3/m/3550a8fab0717fd5370cdc0f.png)
2020年北京市首都师大附中中考数学模拟试卷(4月份)一、选择题(本大题共7小题,共14.0分)1.近几年来,我国经济规模不断扩大,综合国力显著增强.2019年我国国内生产总值约991000亿元,则数991000用科学记数法可表示为()A. 991×103B. 99.1×104C. 9.91×105D.9.91×1062.一个几何体的侧面展开图如图所示,则该几何体的底面是()A. B. C. D.3.实数m,n在数轴上对应点的位置如图所示,则下列判断正确的是()A. |m|<1B. 1−m>1C. mn>0D. m+1>04.将两个全等的直角三角形纸片构成如下的四个图形,这四个图形中是中心对称图形的是()A. B.C. D.5.在线教育使学生足不出户也能连接全球优秀的教育资源.下面的统计图反映了我国在线教育用户规模的变化情况.(以上数据摘自《2017年中国在线少儿英语教育白皮书》)根据统计图提供的信息,下列推断一定不合理的是()A. 2015年12月至2017年6月,我国在线教育用户规模逐渐上升B. 2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升C. 2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万D. 2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%6.如果a+b=2,那么代数式(1+2ba−b )⋅a−ba2+2ab+b2的值是()A. 12B. 1C. √2D. 27.下图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断: ①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616; ②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618; ③若再次用计算机模拟此试验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.其中合理的是()A. ①B. ②C. ① ②D. ① ③二、填空题(本大题共8小题,共16.0分)8.已知:△ABC∽△DEF,且∠A=∠D,AB=8,AC=6,DE=2,那么DF=______ .9.柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:种子数n307513021048085612502300发芽数m287212520045781411872185发芽频率mn0.93330.96000.96150.95240.95210.95090.94960.95000.01).10.化简:(a−b 2a )÷a−ba=________.11.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE//BC,EF//AB,且AD:DB=3:5,那么CF:CB等于______ .12.京−沈高速铁路河北承德段通过一隧道,估计从车头进入隧道到车尾离开隧道共需45秒,整列火车完全在隧道的时间为32秒,车身长180米,设隧道长为x米,可列方程为______ .13.若点(−3,2)、(a,a+1)在函数y=kx−1的图象上,则k=_______,a=______.14.要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是______ 运动员.(填“甲”或“乙”)15.如图,已知△ABC,BA=BC,BD平分∠ABC,若∠C=40°,则∠ABE为度三、解答题(本大题共12小题,共68.0分)16.计算:|−√2|+(2016+π)0+(12)−2−2sin45°.17. 解不等式组{1−x >0x+52>1.18. 如图所示,在△ABC 中,AB =AC ,∠B =30°,点D 为BC 上一点,且∠DAB =45°.求∠DAC 的度数.19. 关于x 的一元二次方程x 2−(2m −3)x +m 2+1=0.(1)若m 是方程的一个实数根,求m 的值; (2)若m 为负数,判断方程根的情况.20.如图,在△ABC中,AB=AC,点D是BC上一点,点E是AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.21.关于x的一元二次方程x2−2mx+(m−1)2=0有两个相等的实数根.(1)求m的值;(2)求此方程的根.22.为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点,不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示.抽取的学生活动后视力频数分布表分组频数4.0≤x<4.224.2≤x<4.434.4≤x<4.654.6≤x<4.884.8≤x<5.0175.0≤x<5.25(1)求所抽取的学生人数.(2)若视力达到4.8及以上为达标,估计活动前该校学生的视力达标率.(3)请选择适当的统计量,从两个不同的角度分析活动前后的相关数据,并评价视力保健活动的效果.23.如图,已知OA是⊙O的半径,AB为⊙O的弦,过点O作OP⊥OA,交AB的延长线上一点P,OP交⊙O于点D,连接AD,BD,过点B作⊙O的切线BC交OP于点C(1)求证:∠CBP=∠ADB;(2)若O4=4,AB=2,求线段BP的长.24.如图,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,点P从点B出发,沿B→C→A以每秒1厘米的速度匀速运动到点A.设点P的运动时间为x秒,B、P两点间的距离为y厘米.小新根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小新的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x(s)01234567y(cm)0 1.0 2.0 3.0 2.7 2.7m 3.6(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC中画出点P所在的位置.25.已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点.(1)求C1的顶点坐标;(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(−3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;(3)若P(n,y1),Q(2,y2)是C1上的两点,且y1>y2,求实数n的取值范围.26.如图,在正方形ABCD中,点E,F分别在边BC,CD上,且CE=CF,连接AE,AF,EF.求证:∠BAF=∠DAE.27.对于平面直角坐标系xOy中的图形P和直线AB,给出如下定义:M为图形P上任意一点,N为直线AB上任意一点,如果M,N两点间的距离有最小值,那么称这个最小值为图形P和直线AB之间的“确定距离”,记作d(P,直线AB).已知A(2,0),B(0,2).(1)求d(点O,直线AB);(2)⊙T的圆心为T(t,0),半径为1,若d(⊙T,直线AB)≤1,直接写出t的取值范围;(3)记函数y=kx,(−1≤x≤1,k≠0)的图象为图形Q.若d(Q,直线AB)=1,直接写出k的值.四、选择题(本大题共1小题,共2.0分)28.若xy =45,则2x−yx+y的值为()A. 13B. 23C. 1D. 32-------- 答案与解析 --------1.答案:C解析:解:将991000用科学记数法表示为:9.91×105.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.2.答案:B解析:解:由题意可知,该几何体为四棱锥,所以它的底面是四边形.故选:B.根据几何体的侧面展开图可知该几何体为四棱锥,所以它的底面是四边形.本题主要考查了几何体的展开图,熟练掌握棱锥的展开图是解答本题的关键.3.答案:B解析:【分析】本题考查了实数与数轴:数轴上的点与实数一一对应;右边的数总比左边的数大.利用数轴表示数的方法得到m<0<1<n,|m|>1,然后对各选项进行判断.【解答】解:利用数轴得m<0<1<n,|m|>1,所以−m>0,1−m>1,mn<0,m+1<0.故选B.4.答案:C解析:解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C.根据中心对称图形的概念求解.此题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.答案:B解析:【分析】本题考查的是折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.根据折线统计图表示出数量的增减变化情况解答.【解答】解:2015年12月至2017年6月,我国在线教育用户规模逐渐上升,A推断合理;2015年12月至2016年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例下降,B 推断不合理;2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值为(5303+4987+9798+ 11990)÷4=8019.5万,超过7000万,C推断合理;2017年6月,14426×70%=10098.2<11990,故我国手机在线教育课程用户规模超过在线教育用户规模的70%,D推断合理;故选:B.6.答案:A解析:【分析】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.根据分式的加法和乘法可以化简题目中的式子,然后将a+b=2代入化简后的式子即可解答本题.【解答】解:(1+2ba−b )⋅a−ba2+2ab+b2=a−b+2ba−b⋅a−b(a+b)2=a+b(a+b)2=1a+b,当a+b=2时,原式=12,故选:A.7.答案:B解析:【分析】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.根据图形和各个小题的说法可以判断是否正确,从而可以解答本题.【解答】解:当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以此时“钉尖向上”的频率是0.616,但“钉尖向上”的概率不一定是0.616,故 ①不合理;随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618,故 ②合理;若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上”的频率可能是0.620,但不一定是0.620,故 ③不合理.故选B.8.答案:32解析:解:∵△ABC∽△DEF,∴ABDE =ACDF,∵AB=8,AC=6,DE=2,∴82=6DF,解得DF=32.故答案为:32.根据相似三角形对应边成比例列出比例式进行计算即可得解.本题考查了相似三角形对应边成比例的性质,根据相似三角形对应顶点的字母写在对应位置上确定出对应边是解题的关键.9.答案:0.95解析:解:概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即试验次数越多的频率越接近于概率.∴这种种子在此条件下发芽的概率约为0.95.故答案为:0.95概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即试验次数越多的频率越接近于概率.此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.10.答案:a+b解析:【分析】本题考查分式的化简,解答本题的关键是掌握运算法则.先算括号内的减法,再把除法转化成乘法约分化简.【解答】解:原式=a2−b2a ×aa−b=(a+b)(a−b)a×aa−b=a+b.故答案为a+b.11.答案:5:8解析:【分析】本题考查的是平行线分线段对应成比例有关知识,根据平行线分线段成比例定理,由DE//BC得到AE:EC=AD:DB=3:5,则利用比例性质得到CE:CA=5:8,然后利用EF//AB可得到CF:CB=5:8.【解答】解:∵DE//BC,∴AE:EC=AD:DB=3:5,∴CE:CA=5:8,∵EF//AB,∴CF:CB=CE:CA=5:8,故答案为5:8.12.答案:x−18032=x+18045解析:解:根据题意,得车头进入隧道到车尾离开隧道共需45秒,则其速度是x+18045米/秒,整列火车完全在隧道的时间为32秒,则其速度是x−18032米/秒.则有方程:x−18032=x+18045.此题分别根据车头进入隧道到车尾离开隧道共需45秒和整列火车完全在隧道的时间为32秒表示出火车的速度,根据速度不变列方程即可.列方程解应用题的关键是找出题目中的相等关系.此题关键是能够理解每一次所走的路程.13.答案:−1;−1解析:【分析】本题考查的知识点是:在这条直线上的各点的坐标一定满足这条直线的解析式.将点(−3,2),(a,a+ 1)代入到函数y=kx−1中,即可解得k和a的值.【解答】解:把(−3,2)代入y=kx−1,得−3k−1=2,∴k=−1,∴解析式为:y=−x−1,把(a,a+1)代入y=−x−1,得:−a−1=a+1,解得a=−1.故答案为−1;−1.14.答案:乙解析:解:因为S甲2=0.024>S乙2=0.008,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.根据方差的定义,方差越小数据越稳定.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.答案:80解析:【分析】本题考查了等腰三角形的性质,三角形外角的性质,关键是熟悉等腰三角形的两个底角相等.根据等腰三角形的性质得到∠A=40°,再根据三角形外角的性质得到∠ABE的度数.【解答】解:∵△ABC 中,BA =BC ,∠C =40°,∴∠A =40°,∴∠ABE =40°+40°=80°.故答案为80.16.答案:解:原式=√2+1+4−2×√22=√2+1+4−√2=5.解析:直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案. 此题主要考查了实数运算,正确化简各数是解题关键.17.答案:解:{1−x >0①x+52>1②, 解不等式①得到:x <1;解不等式②得到:x >−3;所以,不等式组的解集是−3<x <1.解析:分别解出两不等式的解集,再求其公共解.本题考查了解一元一次不等式组,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.答案:解:∵AB =AC ,∴∠B =∠C =30°,∵∠C +∠BAC +∠B =180°,∴∠BAC =180°−30°−30°=120°,∵∠DAB =45°,∴∠DAC =∠BAC −∠DAB =120°−45°=75°.解析:本题主要考查等腰三角形的性质以及三角形内角和定理.由AB =AC ,根据等腰三角形的两底角相等得到∠B =∠C =30°,再根据三角形的内角和定理可计算出∠BAC =120°,而∠DAB =45°,则∠DAC 即可求出.19.答案:解:(1)∵m 是方程的一个实数根,∴m 2−(2m −3)m +m 2+1=0,整理得,3m =−1,∴m =−13;(2)Δ=b2−4ac=−12m+5,∵m<0,∴−12m>0.∴Δ=−12m+5>0.∴此方程有两个不相等的实数根.解析:本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.(1)由方程根的定义,代入可得到关于m的方程,则可求得m的值;(2)计算方程根的判别式,判断判别式的符号即可.20.答案:解:∵AB=AC,∴∠B=∠C,∵∠B=50°,∴∠C=50°,∴∠BAC=180°−50°−50°=80°,∵∠BAD=55°,∴∠DAE=25°,∵DE⊥AD,∴∠ADE=90°,∴∠DEC=∠DAE+∠ADE=115°.解析:本题主要考查了等腰三角形的性质,三角形的内角和定理以及外角性质.根据等腰三角形的性质得到∠C=50°,进而得到∠BAC=80°,由∠BAD=55°,得到∠DAE=25°,由DE⊥AD,进而求出结论.21.答案:解:(1)由题意可知△=0,即(−2m)2−4(m−1)2=0,解得m=1;2(2)把m=1代入方程得2=0.原方程化为x 2−x+14.解得x 1=12.所以原方程的根为x 1=x 2=12解析:本题考查了一元二次方程根的判别式和一元二次方程的解法.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.(1)根据原方程根的情况,利用根的判别式求出m的值,即可确定原一元二次方程,(2)把m值代入方程,得到一元二次方程,再解这个一元二次方程即可.22.答案:解:(1)∵3+6+7+9+10+5=40,∴所抽取的学生人数40人;=37.5%;(2)活动前该校学生的视力达标率=1540(3)①视力4.2≤x<4.4之间活动前有6人,活动后只有3人,人数明显减少.②活动前合格率37.5%,活动后合格率55%,视力保健活动的效果比较好.解析:本题考查频数直方图、用样本估计总体的思想、统计量的选择等知识,解题的关键是搞清楚频数、合格率等概念,属于基础题,中考常考题型.(1)求出频数之和即可;×100%即可解决问题;(2)根据合格率=合格人数总人数(3)从两个不同的角度分析即可,答案不唯一.23.答案:(1)证明:连接OB,∵BC为⊙O的切线,∴OB⊥BC,∴∠ABO+∠CBP=180°−∠CBO,=180°−90°=90°,∵OB=OA,∴∠OAB=∠ABO,∵∠OAB+∠ABO+∠AOB=180°∴2∠OAB+∠AOB=180°,∵∠AOB=2∠ADB,∴∠ABO+∠ADB=90°,∴∠CBP=∠ADB;(2)解:延长AO交⊙O于E,连接BE.∵AE为直径,∴∠ABE=90°,∵OP⊥AO,∴∠AOP=90°在Rt△ABE和Rt△AOP中,∵∠EAB=∠PAO,∴Rt△ABE∽Rt△AOP,∴OAAB =APAE,∵AB=2,AO=4,AE=8,∴42=AP8,解得,AP=16.∴BP=AP−AB=16−2=14.所以BP的长为14.解析:(1)连接OB,根据切线的性质得到OB⊥BC,根据等腰三角形的性质得到∠OAB=∠ABO,得到2∠OAB+∠AOB=180°,于是得到结论;(2)延长AO交⊙O于E,连接BE.由圆周角定理得到∠ABE=90°,根据相似三角形的性质即可得到结论.本题考查了切线的性质,相似三角形的判定和性质,等腰三角形的性质,正确的作出辅助线是解题的关键.24.答案:(1)3.0(2)描点、连线,画出图象,如图1所示.(3)在曲线部分的最低点时,BP⊥AC,如图2所示.解析:(1)经过测量可找出BP的长(利用等边三角形的判定定理可得出:当t=6时,△BCP为等边三角形);解:(1)经测量,当t=6时,BP=3.0.(当t=6时,CP=6−BC=3,∴BC=CP.∵∠C=60°,∴当t=6时,△BCP为等边三角形.)故答案为:3.0.(2)描点、连线,画出函数图象;(3)由点到直线之间垂线段最短,可得出:在曲线部分的最低点时,BP⊥AC,依此即可画出图形.本题考查了动点问题的函数图象、等边三角形的判定、函数图象及垂直.25.答案:(1)y=x2+2x+m=(x+1)2+m−1,对称轴为直线x=−1,∵与x轴有且只有一个公共点,∴顶点的纵坐标为0,∴C1的顶点坐标为(−1,0);(2)设C2的函数关系式为y=(x+1)2+k,把A(−3,0)代入上式得(−3+1)2+k=0,得k=−4,∴C2的函数关系式为y=(x+1)2−4.∵抛物线的对称轴为直线x=−1,与x轴的一个交点为A(−3,0),由对称性可知,它与x轴的另一个交点坐标为(1,0);(3)当x≥−1时,y随x的增大而增大,当n≥−1时,∵y1>y2,∴n>2.当n<−1时,P(n,y1)的对称点坐标为(−2−n,y1),且−2−n>−1,∵y1>y2,∴−2−n>2,∴n<−4.综上所述:n>2或n<−4.解析:(1)由于二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点,那么顶点的纵坐标为0,由此可以确定m.(2)首先设所求抛物线解析式为y=(x+1)2+k,然后把A(−3,0)代入即可求出k,也就求出了抛物线的解析式;(3)由于图象C1的对称轴为直线x=−1,所以知道当x≥−1时,y随x的增大而增大,然后讨论n≥−1和n≤−1两种情况,利用前面的结论即可得到实数n的取值范围.此题比较复杂,首先考查抛物线与x轴交点个数与其判别式的关系,接着考查抛物线平移的性质,最后考查抛物线的增减性.26.答案:证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠D=90°,∵CE=CF,∴BE=DF,在△ABE和△ADF中,{AB=AD ∠B=∠D BE=DF,∴△ABE≌△ADF,∴∠BAE=∠DAF,∵∠BAF=∠BAE+∠EAF,∠DAE=∠DAF+∠EAF,∴,∠DAE=∠BAF.解析:本题考查了正方形的性质、全等三角形的判定和性质.先证△ABE≌△ADF,则∠BAE=∠DAF,再由∠BAF=∠BAE+∠EAF,∠DAE=∠DAF+∠EAF可得.27.答案:解:(1)如图1中,作OH⊥AB于H.∵A(2,0),B(0,2),∴OA=OB=2,AB=2√2,∵12×OA×OB=12×AB×OH,∴OH=√2,∴d(点O,直线AB);(2)如图2中,作TH⊥AB于H,交⊙T于D.当d(⊙T,直线AB)=1时,DH=1,∴TH=2,AT=2√2,∴OT=2√2−2,∴T(2−2√2,0),根据对称性可知,当⊙T在直线AB的右边,满足d(⊙T,直线AB)=1时,T(2+2√2,0),∴满足条件的t的值为2−2√2≤t≤2+2√2.(3)如图3中,当直线经过点D(2−√2,0)与直线AB平行时,此时两直线之间的距离为1,该直线的解析式为y=−x+2−√2,当直线y=kx经过E(1,1−√2)时,k=1−√2,当直线y=kx经过F(−1,3−√2),k=−3+√2,综上所述,满足条件的k的值为−3+√2或1−√2.解析:(1)如图1中,作OH⊥AB于H.求出OH即可解决问题.(2)如图2中,作TH⊥AB于H,交⊙T于D.分两种情形求出d(⊙T,直线AB)=1时,点T的坐标即可.(3)当直线经过点D(2−√2,0)与直线AB平行时,此时两直线之间的距离为1,该直线的解析式为y=−x+2−√2,求出直线y=kx经过点E,点F时,k的值即可.本题属于圆综合题,考查了直线与圆的位置关系,图形P 和直线AB 之间的“确定距离”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.28.答案:B解析:【分析】本题考查了比例的性质,利用等式的性质得出y =54x 是解题关键,又利用了分式的性质.根据等式的性质,可用x 表示y ,根据分式的性质,可得答案.【解答】解:由x y =45,得y =54x .∴2x−y x+y =2x−54x x+54x =32x 94x =23. 故选B .。
北师大版2020年中考数学模拟试题及答案(含详解) (4)
![北师大版2020年中考数学模拟试题及答案(含详解) (4)](https://img.taocdn.com/s3/m/f673051a3c1ec5da50e270c0.png)
中考数学模拟试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3.00分)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣D.2.(3.00分)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2 D.x2•x3.(3.00分)若一个角为65°,则它的补角的度数为()A.25°B.35°C.115° D.125°4.(3.00分)已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b5.(3.00分)若分式的值为0,则x的值是()A.2或﹣2 B.2 C.﹣2 D.06.(3.00分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:甲乙丙丁平均数(米)11.111.110.910.9方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁7.(3.00分)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<48.(3.00分)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B. C.7 D.9.(3.00分)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°10.(3.00分)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤二、填空题:本大题共8小题,每小题3分,共24分.11.(3.00分)计算:2sin30°+(﹣1)2018﹣()﹣1=.12.(3.00分)使得代数式有意义的x的取值范围是.13.(3.00分)若正多边形的内角和是1080°,则该正多边形的边数是.14.(3.00分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.15.(3.00分)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=.16.(3.00分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为.17.(3.00分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为.18.(3.00分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为.三、解答题(一):本大题共5小题,满分26分,解答应写出必要的文字说明、证明过程或演算步骤.19.(4.00分)计算:÷(﹣1)20.(4.00分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.21.(6.00分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.(6.00分)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁,可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)23.(6.00分)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率.四、解答题(二):本大题共5小题,满分40分.解答应写出必要的文宇说明、证明过程或演算步骤.24.(7.00分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?25.(7.00分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k ≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP =S△BOC,求点P的坐标.26.(8.00分)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.27.(8.00分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sinA=时,求AF的长.28.(10.00分)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x 轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C 为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3.00分)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2018的相反数是:2018.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3.00分)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2 D.x2•x【分析】根据同底数幂的除法、乘法及同类项的定义逐一计算即可得.【解答】解:A、x6÷x2=x4,不符合题意;B、x4﹣x不能再计算,不符合题意;C、x+x2不能再计算,不符合题意;D、x2•x=x3,符合题意;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的除法、乘法及同类项的定义.3.(3.00分)若一个角为65°,则它的补角的度数为()A.25°B.35°C.115° D.125°【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.【解答】解:180°﹣65°=115°.故它的补角的度数为115°.故选:C.【点评】本题考查了余角和补角,解决本题的关键是熟记互为补角的和等于180°.4.(3.00分)已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】解:由=得,3a=2b,A、由原式可得:3a=2b,正确;B、由原式可得2a=3b,错误;C、由原式可得:3a=2b,正确;D、由原式可得:3a=2b,正确;故选:B.【点评】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.5.(3.00分)若分式的值为0,则x的值是()A.2或﹣2 B.2 C.﹣2 D.0【分析】直接利用分式的值为零则分子为零进而得出答案.【解答】解:∵分式的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.6.(3.00分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:甲乙丙丁平均数(米)11.111.110.910.9方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁【分析】根据平均数和方差的意义解答.【解答】解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.【点评】本题考查了平均数和方差,熟悉它们的意义是解题的关键.7.(3.00分)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<4【分析】根据判别式的意义得△=42﹣4k≥0,然后解不等式即可.【解答】解:根据题意得△=42﹣4k≥0,解得k≤4.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.8.(3.00分)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B. C.7 D.【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【解答】解:∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE==.故选:D.【点评】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.9.(3.00分)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°【分析】连接DC,利用三角函数得出∠DCO=30°,进而利用圆周角定理得出∠DBO=30°即可.【解答】解:连接DC,∵C(,0),D(0,1),∴∠DOC=90°,OD=1,OC=,∴∠DCO=30°,∴∠OBD=30°,故选:B.【点评】此题考查圆周角定理,关键是利用三角函数得出∠DCO=30°.10.(3.00分)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a ﹣b+c;然后由图象确定当x取何值时,y>0.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.【点评】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b 同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).二、填空题:本大题共8小题,每小题3分,共24分.11.(3.00分)计算:2sin30°+(﹣1)2018﹣()﹣1=0.【分析】根据特殊角的三角函数值、幂的乘方和负整数指数幂可以解答本题.【解答】解:2sin30°+(﹣1)2018﹣()﹣1=2×+1﹣2=1+1﹣2=0,故答案为:0.【点评】本题考查实数的运算、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.12.(3.00分)使得代数式有意义的x的取值范围是x>3.【分析】二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.【解答】解:∵代数式有意义,∴x﹣3>0,∴x>3,∴x的取值范围是x>3,故答案为:x>3.【点评】本题主要考查了二次根式有意义的条件,如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.13.(3.00分)若正多边形的内角和是1080°,则该正多边形的边数是8.【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.14.(3.00分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为108.【分析】观察该几何体的三视图发现该几何体为正六棱柱,然后根据提供的尺寸求得其侧面积即可.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,所以其侧面积为3×6×6=108,故答案为:108.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够根据三视图判断几何体的形状及各部分的尺寸,难度不大.15.(3.00分)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=7.【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.【解答】解:∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴6<c<8,又∵c为奇数,∴c=7,故答案是:7.【点评】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.16.(3.00分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为﹣2<x<2.【分析】先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m 落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.故答案为﹣2<x<2.【点评】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.17.(3.00分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为πa.【分析】首先根据等边三角形的性质得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧长公式求出的长=的长=的长==,那么勒洛三角形的周长为×3=πa.【解答】解:如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长==,∴勒洛三角形的周长为×3=πa.故答案为πa.【点评】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),也考查了等边三角形的性质.18.(3.00分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为1.【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】解:当x=625时,x=125,当x=125时,x=25,当x=25时,x=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,…(2018﹣3)÷2=1007.5,即输出的结果是1,故答案为:1【点评】本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键.三、解答题(一):本大题共5小题,满分26分,解答应写出必要的文字说明、证明过程或演算步骤.19.(4.00分)计算:÷(﹣1)【分析】先计算括号内分式的减法,再计算除法即可得.【解答】解:原式=÷(﹣)=÷=•=.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.20.(4.00分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.【分析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,【点评】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出d=r是解题关键.21.(6.00分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.【分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:,解得:.答:合伙买鸡者有9人,鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.(6.00分)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁,可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)【分析】过点C作CD⊥AB于点D,利用锐角三角函数的定义求出CD及AD的长,进而可得出结论.【解答】解:过点C作CD⊥AB于点D,在Rt△ADC和Rt△BCD中,∵∠CAB=30°,∠CBA=45°,AC=640,∴CD=320,AD=320,∴BD=CD=320,BC=320,∴AC+BC=640+320≈1088,∴AB=AD+BD=320+320≈864,∴1088﹣864=224(公里),答:隧道打通后与打通前相比,从A地到B地的路程将约缩短224公里.【点评】本题考查的是解直角三角形的应用﹣方向角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记锐角三角函数的定义.23.(6.00分)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到新图案是轴对称图形的结果数,利用概率公式计算可得.【解答】解:(1)∵正方形网格被等分成9等份,其中阴影部分面积占其中的3份,∴米粒落在阴影部分的概率是=;(2)列表如下:A B C D E FA(B,A)(C,A)(D,A)(E,A)(F,A)B(A,B)(C,B)(D,B)(E,B)(F,B)C(A,C)(B,C)(D,C)(E,C)(F,C)D(A,D)(B,D)(C,D)(E,D)(F,D)E(A,E)(B,E)(C,E)(D,E)(F,E)F(A,F)(B,F)(C,F)(D,F)(E,F)由表可知,共有30种等可能结果,其中是轴对称图形的有10种,故新图案是轴对称图形的概率为=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二):本大题共5小题,满分40分.解答应写出必要的文宇说明、证明过程或演算步骤.24.(7.00分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是117度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在B等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?【分析】(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得.【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(7.00分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k ≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP =S△BOC,求点P的坐标.【分析】(1)利用点A在y=﹣x+4上求a,进而代入反比例函数y=求k.(2)联立方程求出交点,设出点P坐标表示三角形面积,求出P点坐标.【解答】解:(1)把点A(﹣1,a)代入y=x+4,得a=3,∴A(﹣1,3)把A(﹣1,3)代入反比例函数y=∴k=﹣3,∴反比例函数的表达式为y=﹣(2)联立两个函数的表达式得解得或∴点B的坐标为B(﹣3,1)当y=x+4=0时,得x=﹣4∴点C(﹣4,0)设点P的坐标为(x,0)∵S△ACP =S△BOC∴解得x1=﹣6,x2=﹣2∴点P(﹣6,0)或(﹣2,0)【点评】本题是一次函数和反比例函数综合题,考查利用方程思想求函数解析式,通过联立方程求交点坐标以及在数形结合基础上的面积表达.26.(8.00分)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.【分析】(1)根据三角形中位线定理和全等三角形的判定证明即可;(2)利用正方形的性质和矩形的面积公式解答即可.【解答】解:(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=.【点评】此题考查正方形的性质,关键是根据全等三角形的判定和正方形的性质解答.27.(8.00分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sinA=时,求AF的长.【分析】(1)连接OE,BE,因为DE=EF,所以,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA===,从而可求出r的值.【解答】解:(1)连接OE,BE,∵DE=EF,∴∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA===∴r=∴AF=5﹣2×=【点评】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.28.(10.00分)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x 轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C 为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.【分析】(1)根据待定系数法,可得函数解析式;(2)根据菱形的对角线互相垂直且平分,可得P点的纵坐标,根据自变量与函数值的对应关系,可得P点坐标;(3)根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.【解答】解:(1)将点B和点C的坐标代入函数解析式,得,解得,二次函数的解析是为y=﹣x2+2x+3;(2)若四边形POP′C为菱形,则点P在线段CO的垂直平分线上,如图1,连接PP′,则PE⊥CO,垂足为E,∵C(0,3),∴E(0,),∴点P的纵坐标,当y=时,即﹣x2+2x+3=,解得x1=,x2=(不合题意,舍),∴点P的坐标为(,);(3)如图2,P在抛物线上,设P(m,﹣m2+2m+3),设直线BC的解析式为y=kx+b,将点B和点C的坐标代入函数解析式,得,解得.直线BC的解析为y=﹣x+3,设点Q的坐标为(m,﹣m+3),PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,OA=1,AB=3﹣(﹣1)=4,S四边形ABPC=S△ABC+S△PCQ+S△PBQ=AB•OC+PQ•OF+PQ•FB=×4×3+(﹣m2+3m)×3=﹣(m﹣)2+,当m=时,四边形ABPC的面积最大.当m=时,﹣m2+2m+3=,即P点的坐标为(,).当点P的坐标为(,)时,四边形ACPB的最大面积值为.【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用菱形的性质得出P点的纵坐标,又利用了自变量与函数值的对应关系;解(3)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重点高中提前招生模拟考试数学试卷学校:___________姓名:___________班级:___________考号:___________ 注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一.选择题(本大题共12小题,每小题3分,共36分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑...............) 1.16的平方根是( )A.4B.-4C.±4D.±82.下列运算正确的是( )A .743)(x x =B .532)(x x x =⋅-C .34)(x x x -=÷- D. 23x x x += 3.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )A.1个B.2个C.3个D.4个 4.如图,桌面上有一个一次性纸杯,它的俯视图应是( )5.某学习小组为了解本城市500万成年人中大约有多少人吸烟,随机调查了50个成年人,结果其中有10个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是( )A.该调查的方式是普查B.本地区只有40个成年人不吸烟C.样本容量是50D.本城市一定有100万人吸烟6 杭州银泰百货对上周女装的销售情况进行了统计,如下表所示:A B C D经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是( ) A .平均数B . 众数C .中位数D .方差7.两圆的半径分别为3和7,圆心距为7,则两圆的位置关系是( ) A. 内切 B.相交 C.外切 D.外离8.在△ABC 中,D 、E 分别是边AB 、AC 的中点,若BC =5,则DE 的长是( ) A.2.5B.5C.10D.159.如右图,一次函数y =kx +b 的图象经过A 、B 两点, 则不等式kx +b < 0的解集是( ) A.x <0 B. 0< x <1 C.x <1 D. x >110.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要( )A.12120元B.12140元C.12160元D.12200元 11.若2-=+b a ,且a ≥2b ,则( )A.a b 有最小值21 B.a b有最大值1 C.b a 有最大值2 D.b a 有最小值98- 12.在矩形ABCD 中,有一个菱形BFDE (点E ,F 分别在线段AB ,CD 上),记它们的面积分别为ABCD S 和BFDE S ,现给出下列命题: ①若232+=BFDE ABCD S S ,则33tan =∠EDF ; ②若EF BD DE ⋅=2,则DF=2AD.则( )A. ①是真命题,②是真命题B. ①是真命题,②是假命题C. ①是假命题,②是真命题D. ①是假命题,②是假命题二.填空题(本大题共6小题,每小题4分,共计24分.请把答案直接填写在答题..卡相应位置.....上.) 13.函数2+=x y 中,自变量x 的取值范围是 .14.农科院对甲、乙两种甜玉米各10块试验田进行试验后,得到甲、乙两个品种每公顷的平均产量相同,而甲、乙两个品种产量的方差分别为,,则产量较为稳定的品种是_____________(填“甲”或“乙”).15.如图,早上10点小东测得某树的影长为2m,到了下午5时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度约为_________m.16.已知圆锥的底面半径为1cm,母线长为1cm,则它的侧面积是 cm 2. 17.如图,在平面直角坐标系中,A ⊙与y A ⊙于M 、N 两点,若点M 的坐标是(42)--,,则弦M N 的长为 .18.如图,已知△OP 1A 1△、A 1P 2A 2、△A 2P 3A 3……均为等腰直角三角形,直角顶点P 1、P 2 、P 3……在函数4y x=(x >0)图象上,点A 1、A 2、A 3……在x轴的正半轴上,则点P 2011的横坐标为 .三.解答题(本大题共10小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分16分)20.01S ≈甲20.002S ≈乙10下午5时早上10时第15题第17题(1)计算:︒-+---30cos 4)21(|1|123(2)化简2)1(111-÷⎪⎭⎫ ⎝⎛--+x x x x x20.(本小题满分12分)有A 、B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2;B 布袋中有三个完全相同的小球,分别标有数字2-,3-和-4.小明从A 布袋中随机取出一个小球,记录其标有的数字为x,再从B 布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q 的一个坐标为(x,y ). (1)用列表或画树状图的方法写出点Q 的所有可能坐标; (2)求点Q 落在直线y =2x --上的概率.21.(本题满分12分)如图,一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA =30°和∠DCB =60°,如果斑马线的宽度是AB =3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x 是多少?22.(本题满分12分)已知:如图,AB 是⊙O 的直径,C 、D 为⊙O 上两点,CF ⊥AB 于点F ,CE ⊥AD 的延长线于点E ,且 CE =CF . (1)求证:CE 是⊙O 的切线;(2)若AD =CD =6,求四边形ABCD 的面积.23.(本题满分12分)已知在图1、2、3中AC 均平分∠MAN.⑴ 在图1中,若∠MAN =120°,∠ABC =∠ADC =90°,我们可得结论:AB +AD =AC ; 在图2中,若∠MAN =120°,∠ABC +∠ADC =180°,则上面的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由; (2)在图3中:(只要填空,不需要证明).①若∠MAN =60°,∠ABC +∠ADC =180°,则AB +AD = AC ;②若∠MAN =α(0°<α<180°),∠ABC +∠ADC =180°,则AB +AD = AC (用含α的三角函数表示).24.(本题满分12分)有六个学生分成甲、乙两组(每组三个人),分乘两辆出租车同时从学校出发去距学校60km 的博物馆参观,10分钟后到达距离学校12km 处有一辆汽车出现故障,接着正常行驶的一辆车先把第一批学生送到博物馆再回头接第二批学生,同时第二批学生步行12km 后停下休息10分钟恰好与回头接他们的小汽车相遇,当第二批学生到达博物馆时,恰好已到原计划时间.设汽车载人和空载时的速度分别保持不变,学生步行速度不变,汽车离开学校的路程s (千米)与汽车行驶时间t (分钟)之间的函数关系如图,假设学生上下车时间忽略不计. (1)汽车载人时的速度为_______km/min;第一批学生到达博物馆用了_____分钟;AM NBD CCABBNNMMD D AC第23题图1 第23题图2第23题图3原计划从学校出发到达博物馆的时间是______分钟; (2)求汽车在回头接第二批学生途中(即空载时)的速度;(3)假设学生在步行途中不休息且步行速度每分钟减小0.04km,汽车载人时和空载时速度不变,问能否经过合理的安排,使得学生从学校出发全部到达目的地的时间比原计划时间早10分钟?如果能,请简要说出方案,并通过计算说明;如果不能,简要说明理由.25.(本题满分14分)如图,Rt △AOB 中,∠A =90°,以O 为坐标原点建立直角坐标系,使点A 在x 轴正半轴上,OA =2,AB =8,点C 为AB 边的中点,抛物线的顶点是原点O ,且经过C 点.(1)填空:直线OC 的解析式为 _______ ; 抛物线的解析式为 _______ ;(2)现将该抛物线沿着线段OC 移动,使其顶点M 始终在线段OC 上(包括端点O 、C ),抛物线与y 轴的交点为D ,与AB 边的交点为E ;①是否存在这样的点D ,使四边形BDOC 为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由;②设△BOE 的面积为S ,求S 的取值范围.数学参考答案及评分意见一.选择题:1 2 3 4 5 6 7 8 9 10 11 12 C B C B C B B A D C CA二.填空题(本大题共6小题,每小题4分,共计24分.)13.x ≥-2 14.甲15.4 16.π 17.3 18.2011220102+三.解答题:19.(本题满分16分) (1)︒-+---30cos 4)21(|1|123=23-1+8-23………………………………6分=7……………………………………………………8分(2)2)1(111-÷⎪⎭⎫⎝⎛--+x x x x x =)1(122---x x x x ×)1(-x ………………………………5分=xx-1………………………………8分20.(本小题满分12分)(1)………………………………6分或…………………………6分 在直线y =2x --上的点Q(2)落有:(1,-3);(2,-4)∴P=62=31………………………………12分 21.解:如图,∵CD ∥AB,∴∠CAB=30°,∠CBF=60°; ……………………2分∴∠BCA=60-30=30°,即∠BAC=∠BCA; ………………………………4分 ∴BC=AB=3米; ………………………………6分Rt △BCF 中,∠CBF=3米,∠CBF=60°; ………………………………8分 ∴BF= BC=1.5米; ………………………………10分 故x=BF-EF=0.7米. ………………………………12分 22.(1)连结OC .∵CF ⊥AB ,CE ⊥AD ,且CE=CF ∴∠CAE =∠CAB ∵ OC =OA ∴ ∠CAB =∠O CA ∴∠CAE =∠O CA∴∠O CA +∠ECA =∠CAE +∠ECA =90°……………………4分 又∵OC 是⊙O 的半径∴CE 是⊙O 的切线………………………………6分 (2)∵AD =CD∴∠DAC =∠DCA =∠CAB ∴DC //AB ∵∠CAE =∠O CA ∴OC//AD∴四边形AOCD 是平行四边形∴OC =AD =6,AB =12重点高中提前招生模拟考试数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.不等式的解集是()A.﹣<x≤2 B.﹣3<x≤2 C.x≥2 D.x<﹣32.一个质地均匀的正方体骰子的六个面上分别刻有1到6的点数,将骰子抛掷两次,掷第一次,将朝上一面的点数记为x,掷第二次,将朝上一面的点数记为y,则点(x,y)落在直线y=﹣x+5上的概率为()A.B.C.D.3.如图所示,在正方形铁皮中,剪下一个圆和一个扇形,使余料尽量少.用圆做圆锥的底面,用扇形做圆锥的侧面,正好围成一个圆锥,若圆的半径为r,扇形的半径为R,那么()A.R=2r B.R=r C.R=3r D.R=4r4.如图所示,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.a2+ab=a(a+b)5.若直线x+2y=2m与直线2x+y=2m+3(m为常数)的交点在第四象限,则整数m的值为()A.﹣3,﹣2,﹣1,0 B.﹣2,﹣1,0,1 C.﹣1,0,1,2 D.0,1,2,3 二、填空题(每小题4分,共24分)6.定义新运算:a⊕b=,则函数y=3⊕x的图象大致是.7.|π﹣3.14|+sin30°+3.14﹣8=.8.函数y=的自变量x的取值范围是.9.将边长为a的正三角形各边三等分,以这六个分点为顶点构成一个正六边形,则这个正六边形的面积为.10.如图,AB是⊙O的直径,C,D为⊙0上的两点,若∠CDB=30°,则∠ABC的度数为,cos∠ABC=.11.已知实数x,y满足x2+3x+y﹣3=0,则x+y的最大值为.12.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律.若把第一个数记为a1,第二数记为a2,…,第n个数记为a n.计算a2﹣a1,a3﹣a2,a4﹣a3,…,由此推算a10﹣a9=,a2012=.三.解答题:(共52分)13.先化简:÷﹣,然后在0,1,2,3中选一个你认为合格的a值,代入求值.1012•桃源县校级自主招生)关于x的一元二次议程x2﹣x+p+1=0有两个实数根x1,x2.(1)求p的取值范围.(2)[1+x1(1﹣x2)][1+x2(1﹣x1)]=9,求p的值.15.某服装厂批发应夏季T恤衫,其单价y(元)与批发数量x(件)(x为正整数)之间的函数关系如图所示,(1)直接写出y与x的函数关系式;(2)一个批发商一次购进250件T恤衫,所花的钱数是多少元?(其他费用不计);(3)若每件T恤衫的成本价是20元,当100<x≤400件,(x为正整数)时,求服装厂所获利润w (元)与x(件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少?16.如图,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,A点到原点的距离为2,梯形的高为3,C点到y轴的距离为1,(1)求抛物线的解析式;(2)点M为y轴上的任意一点,求点M到A,B两点的距离之和的最小值及此时点M的坐标;(3)在第(2)的结论下,抛物线上的P的使S△PAD=S△ABM成立,求点P的坐标.1012•桃源县校级自主招生)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣+b交折线OAB于点E.记△ODE的面积为S.(1)当点E在线段OA上时,求S与b的函数关系式;并求出b的范围;(2)当点E在线段AB上时,求S与b的函数关系式;并求出b的范围;(3)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.参考答案与试题解析一、选择题1.不等式的解集是()A.﹣<x≤2 B.﹣3<x≤2 C.x≥2 D.x<﹣3考点:解一元一次不等式组.分析:先解不等式组中的每一个不等式的解集,再利用求不等式组解集的口诀“大小小大中间找”来求不等式组的解集.解答:解:由①得:x>﹣3,由②得:x≤2,所以不等式组的解集为﹣3<x≤2.故选B.点评:解不等式组是考查学生的基本计算能力,求不等式组解集的时候,可先分别求出组成不等式组的各个不等式的解集,然后借助数轴或口诀求出所有解集的公共部分.2.一个质地均匀的正方体骰子的六个面上分别刻有1到6的点数,将骰子抛掷两次,掷第一次,将朝上一面的点数记为x,掷第二次,将朝上一面的点数记为y,则点(x,y)落在直线y=﹣x+5上的概率为()A.B.C.D.考点:列表法与树状图法;一次函数图象上点的坐标特征.分析:列举出所有情况,看落在直线y=﹣x+5上的情况占总情况的多少即可.解答:解:共有36种情况,落在直线y=﹣x+5上的情况有(1,4)(2,3)(3,2)(4,1)4种情况,概率是,故选C.1 2 3 4 5 61 (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5 (5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)(6,6)点评:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验.3.如图所示,在正方形铁皮中,剪下一个圆和一个扇形,使余料尽量少.用圆做圆锥的底面,用扇形做圆锥的侧面,正好围成一个圆锥,若圆的半径为r,扇形的半径为R,那么()A.R=2r B.R=r C.R=3r D.R=4r考点:圆锥的计算;弧长的计算.专题:压轴题.分析:让扇形的弧长等于圆的周长即可.解答:解:根据扇形的弧长等于圆的周长,∴扇形弧长等于小圆的周长,即:=2πr,解得R=4r,故选D.点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.4.如图所示,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.a2+ab=a(a+b)考点:平方差公式的几何背景.专题:计算题.分析:可分别在正方形和梯形中表示出阴影部分的面积,两式联立即可得到关于a、b的恒等式.解答:解:正方形中,S阴影=a2﹣b2;梯形中,S阴影=(2a+2b)(a﹣b)=(a+b)(a﹣b);故所得恒等式为:a2﹣b2=(a+b)(a﹣b).故选:C.点评:此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.5.若直线x+2y=2m与直线2x+y=2m+3(m为常数)的交点在第四象限,则整数m的值为()A.﹣3,﹣2,﹣1,0 B.﹣2,﹣1,0,1 C.﹣1,0,1,2 D.0,1,2,3考点:两条直线相交或平行问题.专题:计算题;压轴题.分析:由直线x+2y=2m与直线2x+y=2m+3(m为常数)的交点在第四象限,则交点坐标的符号为(+,﹣),解关于x、y的方程组,使x>0,y<0,即可求得m的值.解答:解:由题意得,解得,∵直线x+2y=2m与直线2x+y=2m+3(m为常数)的交点在第四象限,∴,解得:﹣3,又∵m的值为整数,∴m=﹣2,﹣1,0,1,故选B.点评:考查了平面直角坐标系中点的符号,是一道一次函数综合性的题目,是中档题.二、填空题(每小题4分,共24分)6.定义新运算:a⊕b=,则函数y=3⊕x的图象大致是.考点:一次函数的图象;反比例函数的图象.专题:新定义.分析:根据题意可得y=3⊕x=,再根据反比例函数的性质可得函数图象所在象限和形状,进而得到答案.解答:解:由题意得y=3⊕x=,当x≥3时,y=2;当x<3且x≠0时,y=﹣,图象如图:,故答案为:点评:此题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.|π﹣3.14|+sin30°+3.14﹣8=π.考点:实数的运算;特殊角的三角函数值.专题:计算题.分析:原式第一项利用绝对值的代数意义化简,第二项利用特殊角的三角函数值计算,最后一项利用负整数指数幂法则计算即可得到结果.解答:解:原式=π﹣3.14++3.14﹣=π,故答案为:π点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.8.函数y=的自变量x的取值范围是x<﹣1或x≥4.考点:函数自变量的取值范围.分析:根据被开方数为非负数和分母不能为0计算即可.解答:解:由题意得,x2﹣3x﹣4≥0,x+1≠0,解得,x<﹣1或x≥4,故答案为:x<﹣1或x≥4.点评:本题考查的是函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.9.将边长为a的正三角形各边三等分,以这六个分点为顶点构成一个正六边形,则这个正六边形的面积为a2.考点:正多边形和圆.分析:由于正三角形各边三等分,就把整个三角形平均分成9个小正三角形,以这六个分点为顶点构成一个正六边形正好相当于6个小正三角形的面积.解答:解:如图所示:∵新的正六边形有三个顶点在正三角形的三边上,且是三边的等分点,∴连接正三角形的顶点与它对边的中点,可以看出新的正六边形的面积是六个小正三角形的面积之和,∵边长为a的正三角形各边三等分,∴小正三角形的边长为a,∴每个小正三角形的面积是×a×=a×a=a2,∴新的正六边形的面积=a2×6=a2;故答案为:a2.点评:此题考查了正三角形的性质、正三角形面积的计算方法;熟练掌握正三角形的性质,并能进行推理计算是解决问题的关键.10.如图,AB是⊙O的直径,C,D为⊙0上的两点,若∠CDB=30°,则∠ABC的度数为60°,cos∠ABC=.考点:圆周角定理;特殊角的三角函数值.分析:由于AB是⊙O的直径,由圆周角定理可知∠ACB=90°,则∠A和∠ABC互余,欲求∠ABC需先求出∠A的度数,已知了同弧所对的圆周角∠CDB的度数,则∠A=∠CDB,由此得解.解答:解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,即∠A+∠ABC=90°;又∵∠A=∠CDB=30°,∴∠ABC=90°﹣∠A=60°,∴cos∠ABC=.故答案为:60°.点评:此题主要考查了圆周角定理及其推论,半圆(弧)和直径所对的圆周角是直角,同弧所对的圆周角相等,还考查了三角函数,掌握圆周角定理是解题的关键.11.已知实数x,y满足x2+3x+y﹣3=0,则x+y的最大值为4.考点:二次函数的应用.专题:压轴题.分析:将函数方程x2+3x+y﹣3=0代入x+y,把x+y表示成关于x的函数,根据二次函数的性质求得最大值.解答:解:由x2+3x+y﹣3=0得y=﹣x2﹣3x+3,把y代入x+y得:x+y=x﹣x2﹣3x+3=﹣x2﹣2x+3=﹣(x+1)2+4≤4,∴x+y的最大值为4.故答案为:4.点评:本题考查了二次函数的性质及求最大值的方法,即完全平方式法.12.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律.若把第一个数记为a1,第二数记为a2,…,第n个数记为a n.计算a2﹣a1,a3﹣a2,a4﹣a3,…,由此推算a10﹣a9=10,a2012=2025078.考点:规律型:数字的变化类.分析:先计算a2﹣a1=3﹣1=2;a3﹣a2=6﹣3=3;a4﹣a3=10﹣6=4,则a10﹣a9=10,a2=1+2,a3=1+2+3,a4=1+3+4,即第n个三角形数等于1到n的所有整数的和,然后计算n=2012的a的值.解答:解:∵a2﹣a1=3﹣1=2;a3﹣a2=6﹣3=3;a4﹣a3=10﹣6=4,∴a10﹣a9=10∵a2=1+2,a3=1+2+3,a4=1+2+3+4,…∴a2012=1+2+3+4+…+2012==2025078.故答案为:10,2025078.点评:本题考查了规律型:数字的变化类,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况是解答此题的关键.三.解答题:(共52分)13.先化简:÷﹣,然后在0,1,2,3中选一个你认为合格的a值,代入求值.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再选出合适的x的值代入进行计算即可.解答:解:原式=•+a=a+a=2a.当a=2时,原式=4a.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.1012•桃源县校级自主招生)关于x的一元二次议程x2﹣x+p+1=0有两个实数根x1,x2.(1)求p的取值范围.(2)[1+x1(1﹣x2)][1+x2(1﹣x1)]=9,求p的值.考点:根的判别式;根与系数的关系.分析:(1)根据题意得出△≥0,求出即可;(2)根据根与系数的关系得出x1+x2=1,x1•x2=p+1,整理后得出(1﹣x1•x2)2+(x1+x2)(1﹣x1•x2)+x1•x2=9,代入求出即可.解答:解:(1)△=(﹣1)2﹣4(p+1)=﹣3﹣4p,当﹣3﹣4p≥0,即p≤﹣时,方程有两个实数根,即p的取值范围是p≤﹣;(2)根据根与系数的关系得:x1+x2=1,x1•x2=p+1,∵[1+x1(1﹣x2)][1+x2(1﹣x1)]=9,∴(1﹣x1•x2)2+(x1+x2)(1﹣x1•x2)+x1•x2=9,∴[1﹣(p+1)]2+1×[1﹣(p+1)]+(p+1)=9,解得:p±2,∵p≤﹣,∴p=﹣2.点评:本题考查了根与系数的关系,根的判别式的应用,能正确利用知识点进行计算是解此题的关键,题目比较典型.15.某服装厂批发应夏季T恤衫,其单价y(元)与批发数量x(件)(x为正整数)之间的函数关系如图所示,(1)直接写出y与x的函数关系式;(2)一个批发商一次购进250件T恤衫,所花的钱数是多少元?(其他费用不计);(3)若每件T恤衫的成本价是20元,当100<x≤400件,(x为正整数)时,求服装厂所获利润w (元)与x(件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少?考点:二次函数的应用.分析:(1)由题意设出一次函数的解析式,再根据点在直线上待定系数法求出函数解析式;(2)列出总利润的函数表达式,转化为求函数最值问题,最后求出最大利润;(3)根据利润=单件利润×批发数量,列出二次函数表达式,再运用二次函数性质解决最值问题.解答:解:(1)当0≤x<100时,y=60;当x≥100时,设y=kx+b,由图象可以看出过(100,60),(400,40),则,,∴y=;(2)∵250>100,∴当x=250件时,y=﹣×250+=50元,∴批发商一次购进250件T恤衫,所花的钱数是:50×250=12500元;(3)W=(﹣x+﹣20)×x=﹣x2+x=﹣(x﹣350)2+,∴当一次性批发350件时,所获利润最大,最大利润是元.点评:本题考查了待定系数法求函数关系式以及运用函数的性质解决问题,根据题意列出函数表达式是解决问题的关键.16.如图,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,A点到原点的距离为2,梯形的高为3,C点到y轴的距离为1,(1)求抛物线的解析式;(2)点M为y轴上的任意一点,求点M到A,B两点的距离之和的最小值及此时点M的坐标;(3)在第(2)的结论下,抛物线上的P的使S△PAD=S△ABM成立,求点P的坐标.考点:二次函数综合题.分析:(1)易知A(﹣2,0),C(1,﹣3),将A、C两点的坐标代入y=ax2+c,利用待定系数法即可求出抛物线的解析式;(2)由于A、D关于抛物线对称轴即y轴对称,那么连接BD,BD与y轴的交点即为所求的M点,可先求出直线BD的解析式,即可得到M点的坐标;(3)设直线BC与y轴的交点为N,那么S△ABM=S梯形AONB﹣S△BMN﹣S△AOM,由此可求出△ABM和△PAD的面积;在△PAD中,AD的长为定值,可根据其面积求出P点纵坐标的绝对值,然后代入抛物线的解析式中即可求出P点的坐标.解答:解:(1)由题意可得:A(﹣2,0),C(1,﹣3),∵抛物线y=ax2+c(a>0)经过A、C两点,∴,解得,∴抛物线的解析式为:y=x2﹣4;(2)由于A、D关于抛物线的对称轴(即y轴)对称,连接BD,则BD与y轴的交点即为M点;设直线BD的解析式为:y=kx+b(k≠0),∵B(﹣1,﹣3),D(2,0),∴,解得,∴直线BD的解析式为y=x﹣2,当x=0时,y=﹣2,∴点M的坐标是(0,﹣2);(3)设BC与y轴的交点为N,则有N(0,﹣3),∵M(0,﹣2),B(﹣1,﹣3),∴MN=1,BN=1,ON=3,∴S△ABM=S梯形AONB﹣S△BMN﹣S△AOM=(1+2)×3﹣×1×1﹣×2×2=2,∴S△PAD=S△ABM=2.∵S△PAD=AD•|y P|=2,AD=4,∴|y P|=1.当P点纵坐标为1时,x2﹣4=1,解得x=±,∴P1(,1),P2(﹣,1);当P点纵坐标为﹣1时,x2﹣4=﹣1,解得x=±,∴P3(,﹣1),P4(﹣,﹣1);故存在符合条件的P点,且P点坐标为:P1(,1),P2(﹣,1),P3(,﹣1),P4(﹣,﹣1).点评:此题是二次函数的综合题型,其中涉及到二次函数解析式的确定、函数图象交点及图形面积的求法,轴对称的性质等.当所求图形不规则时,一般要将不规则图形转换为几个规则图形面积的和差来求.1012•桃源县校级自主招生)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣+b 交折线OAB于点E.记△ODE的面积为S.(1)当点E在线段OA上时,求S与b的函数关系式;并求出b的范围;(2)当点E在线段AB上时,求S与b的函数关系式;并求出b的范围;(3)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.考点:一次函数综合题.专题:压轴题.分析:(1)要表示出△ODE的面积,要分两种情况讨论,①如果点E在OA边上,只需求出这个三角形的底边OE长(E点横坐标)和高(D点纵坐标),代入三角形面积公式即可;(2)如果点E在AB边上,这时△ODE的面积可用长方形OABC的面积减去△OCD、△OAE、△BDE的面积;(3)重叠部分是一个平行四边形,由于这个平行四边形上下边上的高不变,因此决定重叠部分面积是否变化的因素就是看这个平行四边形落在OA边上的线段长度是否变化.解答:解:(1)∵四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),∴B(3,1),若直线经过点A(3,0)时,则b=若直线经过点B(3,1)时,则b=若直线经过点C(0,1)时,则b=1①若直线与折线OAB的交点在OA上时,即1<b≤,如图1,此时E(2b,0)∴S=OE•CO=×2b×1=b;(2)若直线与折线OAB的交点在BA上时,即<b<,如图2此时E(3,),D(2b﹣2,1),∴S=S矩﹣(S△OCD+S△OAE+S△DBE)=3﹣[(2b﹣2)×1+×(5﹣2b)•(﹣b)+×3(b﹣)]=b﹣b2,∴S=;(3)如图3,设O1A1与CB相交于点M,OA与C1B1相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积.由题意知,DM∥NE,DN∥ME,∴四边形DNEM为平行四边形根据轴对称知,∠MED=∠NED,又∠MDE=∠NED,∴∠MED=∠MDE,∴MD=ME,∴平行四边形DNEM为菱形.过点D作DH⊥OA,垂足为H,由题易知,D(2b﹣2,1),对于y=﹣+b,令y=0,得x=2b,则E(2b,0),∴DH=1,HE=2b﹣(2b﹣2)=2,设菱形DNEM的边长为a,则在Rt△DHN中,由勾股定理知:a2=(2﹣a)2+12,∴a=,∴S四边形DNEM=NE•DH=.∴矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为.点评:本题是一个动态图形中的面积是否变化的问题,看一个图形的面积是否变化,关键是看决定这个面积的几个量是否变化,本题题型新颖,是个不可多得的好题,有利于培养学生的思维能力,但难度较大,具有明显的区分度.重点高中提前招生模拟考试数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.不等式的解集是()A.﹣<x≤2 B.﹣3<x≤2 C.x≥2 D.x<﹣32.一个质地均匀的正方体骰子的六个面上分别刻有1到6的点数,将骰子抛掷两次,掷第一次,将朝上一面的点数记为x,掷第二次,将朝上一面的点数记为y,则点(x,y)落在直线y=﹣x+5上的概率为()A.B.C.D.3.如图所示,在正方形铁皮中,剪下一个圆和一个扇形,使余料尽量少.用圆做圆锥的底面,用扇形做圆锥的侧面,正好围成一个圆锥,若圆的半径为r,扇形的半径为R,那么()A.R=2r B.R=r C.R=3r D.R=4r4.如图所示,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.a2+ab=a(a+b)5.若直线x+2y=2m与直线2x+y=2m+3(m为常数)的交点在第四象限,则整数m的值为()A.﹣3,﹣2,﹣1,0 B.﹣2,﹣1,0,1 C.﹣1,0,1,2 D.0,1,2,3 二、填空题(每小题4分,共24分)6.定义新运算:a⊕b=,则函数y=3⊕x的图象大致是.7.|π﹣3.14|+sin30°+3.14﹣8=.8.函数y=的自变量x的取值范围是.9.将边长为a的正三角形各边三等分,以这六个分点为顶点构成一个正六边形,则这个正六边形的面积为.10.如图,AB是⊙O的直径,C,D为⊙0上的两点,若∠CDB=30°,则∠ABC的度数为,cos∠ABC=.11.已知实数x,y满足x2+3x+y﹣3=0,则x+y的最大值为.。