圆的方程题型总结(按题型-含详细答案)
高中数学圆的方程 经典例题(含详细解析)
![高中数学圆的方程 经典例题(含详细解析)](https://img.taocdn.com/s3/m/95a6165c77232f60ddcca1d8.png)
高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a 解之得:1-=a ,202=r . 所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x .又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程. 解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:.圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x . 例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切,∴圆心C 在这两条直线的交角平分线上, 又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r .则P 到x 轴、y 轴的距离分别为b 和a . 由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2.∴222b r =又圆截y 轴所得弦长为2.∴122+=a r . 又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=abb a 4422-+=)(242222b a b a +-+≥1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r 故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=.将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a .由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x 因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D . 练习:1.求过点(3,1)M ,且与圆22(1)4x y -+=相切的直线l 的方程. 解:设切线方程为1(3)y k x -=-,即310kx y k --+=, ∵圆心(1,0)到切线l 的距离等于半径2, ∴()22|31|21k k k -+=+-,解得34k =-,∴切线方程为31(3)4y x -=--,即34130x y +-=, 当过点M 的直线的斜率不存在时,其方程为3x =,圆心(1,0)到此直线的距离等于半径2, 故直线3x =也适合题意。
高中数学圆与方程知识点归纳与常考题型专题练习(附解析)
![高中数学圆与方程知识点归纳与常考题型专题练习(附解析)](https://img.taocdn.com/s3/m/7f13ef61a26925c52cc5bfcd.png)
高中数学圆与方程知识点归纳与常考题型专题练习(附解析) 知识点:4.1.1 圆的标准方程1、圆的标准方程:222()()x a y b r -+-=圆心为A(a,b),半径为r 的圆的方程2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在圆外(2)2200()()x a y b -+-=2r ,点在圆上(3)2200()()x a y b -+-<2r ,点在圆内4.1.2 圆的一般方程1、圆的一般方程:022=++++F Ey Dx y x ,圆心为半径为2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(E D --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点: (1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切;(3)当r d <时,直线l 与圆C 相交;直线、圆的位置关系注意:1.直线与圆的位置关系 直线与圆相交,有两个公共点d R ⇔<⇔方程组有两组不同实数解(0)∆> 直线与圆相切,只有一个公共点d R ⇔=⇔方程组有唯一实数解(0)∆=直线与圆相离,没有公共点d R ⇔>⇔方程组无实数解(0)∆<2.求两圆公共弦所在直线方程的方法:将两圆方程相减。
圆的标准方程与一般方程题型归纳总结
![圆的标准方程与一般方程题型归纳总结](https://img.taocdn.com/s3/m/f1a68c8a011ca300a7c39072.png)
圆的标准方程与一般方程题型归纳总结(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--圆的标准方程与一般方程【重难点精讲】重点一、圆基本 要素 当圆心的位置与半径的大小确定后,圆就唯一确定了,因此,确定一个圆的基本要素是圆心和半径标准 方程圆心为C (a ,b ),半径为r 的圆的标准方程是(x -a )2+(y -b )2=r 2图示说明若点M (x ,y )在圆C 上,则点M 的坐标适合方程(x -a )2+(y -b )2=r 2;反之,若点M (x ,y )的坐标适合方程(x -a )2+(y -b )2=r 2,则点M 在圆C 上重点二、点与圆的位置关系圆C :(x -a )2+(y -b )2=r 2(r >0),其圆心为(a ,b ),半径为r ,点P (x 0,y 0),设d =|PC |=2200()()x a y b -+-.位置关系d 与r的大小图示 点P 的坐标的特点点在圆外 d >r(x 0-a )2+(y 0-b )2>r 2点在圆上 d =r(x 0-a )2+(y 0-b )2=r 2点在圆内 d <r(x 0-a )2+(y 0-b )2<r 2重点三、圆的一般方程(1)方程:当D 2+E 2-4F >0时,方程x 2+y 2+Dx +Ey +F =0叫做圆的一般方程,其中圆心为C (-D 2,-E2),半径为r =12D 2+E 2-4F .(2)说明:方程x 2+y 2+Dx +Ey +F =0不一定表示圆.当且仅当D 2+E 2-4F >0时,表示圆:当D 2+E 2-4F =0时,表示一个点(-D 2,-E2);当D 2+E 2-4F <0时,不表示任何图形.(3)用“待定系数法”求圆的方程的大致步骤: ①根据题意,选择圆的标准方程或圆的一般方程; ②根据条件列出关于a 、b 、r 或D 、E 、F 的方程组; ③解出a 、b 、r 或D 、E 、F ,代入标准方程或一般方程. 重点四、二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的条件是:A =C ≠0,B =0,D 2+E 2-4F >0. 重点五、求轨迹方程的五个步骤:①建系:建立适当的坐标系,用(x ,y )表示曲线上任意一点M 的坐标; ②设点:写出适合条件P 的点M 的集合P ={M |p (M )}; ③列式:用坐标(x ,y )表示条件p (M ),列出方程F (x ,y )=0; ④化简:化方程F (x ,y )=0为最简形式;⑤查漏、剔假:证明以化简后的方程的解为坐标的点都是曲线上的点.【典题精练】考点1、求圆的标准方程例1.已知三角形ABC 的顶点坐标分别为A (4,1),B (1,5),C (3,2)-; (1)求直线AB 方程的一般式; (2)证明△ABC 为直角三角形; (3)求△ABC 外接圆方程. 【解析】(1)直线AB 方程为:y 1x-45-11-4-=,化简得:43y-19=0x +; (2)AB514-1-43k -==;BC 5231--34k -==(), ∴AB BC =-1k k ,则AB BC ⊥ ∴△ABC 为直角三角形(3)∵△ABC 为直角三角形,∴△ABC 外接圆圆心为AC 中点M 1322⎛⎫⎪⎝⎭,,半径为r=|AC |22, ∴△ABC 外接圆方程为221325x-+y-=222⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭考点点睛:(1)要确定圆的标准方程需要两个条件(包含三个代数量):圆的圆心坐标和圆的半径长;反之如果已知圆的标准方程也能直接得到圆的圆心坐标和半径;(2)求解圆的标准方程时,一般先求出圆心和半径,再写方程.考点2、判断点与圆的位置关系例2.已知圆过两点()1,4A 、()3,2B ,且圆心在直线0y =上. (1)求圆的标准方程; (2)判断点()2,4P 与圆的关系.【解析】(1)圆心在直线0y =上,∴设圆心坐标为(),0C a ,则AC BC ==,即()()2211634a a -+=-+,解得1a =-,即圆心为()1,0-,半径r AC ====则圆的标准方程为()22120x y ++=(2)PC ===5=r >∴点()2,4P 在圆的外面.考点点睛:点与圆的位置关系的判断方法:(1)几何法:利用圆心到该点的距离d 与圆的半径r 比较; (2)代数法:直接利用下面的不等式判定: ①(x 0-a )2+(y 0-b )2>r 2,点在圆外; ②(x 0-a )2+(y 0-b )2=r 2,点在圆上; ③(x 0-a )2+(y 0-b )2<r 2,点在圆内.考点3、圆的标准方程的综合应用例3.已知一圆的圆心C 在直线210x y +-=上,且该圆经过()3,0和()1,2-两点. (1)求圆C 的标准方程;(2)若斜率为1-的直线l 与圆C 相交于A ,B 两点,试求ABC 面积的最大值和此时直线l 的方程.【解析】(1)方法一:()3,0和()1,2-两点的中垂线方程为:10x y +-=,圆心必在弦的中垂线上,联立21010x y x y +-=⎧⎨+-=⎩得()1,0C ,半径2r,所以圆C 的标准方程为:()2214x y -+=.方法二:设圆C 的标准方程为:()()222x a y b r -+-=,由题得:()()()()2222222103012a b a b r a b r ⎧+-=⎪⎪-+-=⎨⎪-+--=⎪⎩,解得:102a b r =⎧⎪=⎨⎪=⎩所以圆C 的标准方程为:()2214x y -+=.(2)设直线l 的方程为0x y m ++=,圆心C 到直线l 的距离为d ,∴d =()0,2d ∈,AB ==ABC面积12S d AB ==== ∴当22d=,()0,2d =时,S 取得最大值2=1m =或3-所以,直线l 的方程为:10x y ++=或30x y +-=. 考点点睛:确定圆的标准方程,从思路上可分为两种:几何法和待定系数法.(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程,常用的几何性质有:①圆的弦的垂直平分线过圆心;②两条弦的垂直平分线的交点为圆心;③圆心与切点的连线垂直于切线;④圆心到切点的距离等于圆的半径;⑤圆的半径、半弦长、弦心距构成直角三角形;⑥直径所对圆周角为直角等.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设:设所求圆的方程为(x-a)2+(y-b)2=r2;②列:由已知条件,建立关于a、b、r的方程组;③解:解方程组,求出a、b、r;④代:将a、b、r代入所设方程,得所求圆的方程.考点4、二元二次方程与圆的关系例4.已知方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0(t∈R)表示的图形是圆.(1)求t的取值范围;(2)求其中面积最大的圆的方程;(3)若点P(3,4t2)恒在所给圆内,求t的取值范围.【解析】(1)已知方程可化为(x﹣t﹣3)2+(y+1﹣4t2)2=(t+3)2+(1﹣4t2)2﹣16t4﹣9∴r2=﹣7t2+6t+1>0,即7t2﹣6t﹣1<0,解得﹣<t<1,t的取值范围是(﹣,1).(2)r==,当t=∈(﹣,1)时,r=,max此时圆的面积最大,对应的圆的方程是:(x﹣)2+(y+)2=.(3)圆心的坐标为(t+3,4t2﹣1).半径 r2=(t+3)2+(1﹣4t2)2﹣(16t4+9)=﹣7t2+6t+1∵点P恒在所给圆内,∴(t+3﹣3)2+(4t2﹣1﹣4t2)2<﹣7t2+6t+1,即4t2﹣3t<0,解得0<t<.考点点睛:形如x2+y2+Dx+Ey+F=0的二元二次方程,判定其是否表示圆时可有两种方法:①由圆的一般方程的定义,若D2+E2-4F>0,则表示圆,否则不表示圆;②将方程配方,根据圆的标准方程的特征求解.应用这两种方法时,要注意所给方程是不是x 2+y 2+Dx +Ey +F =0这种标准形式.若不是,则要化为这种形式再求解. 考点5、用待定系数法求圆的方程 例5.分别根据下列条件,求圆的方程. (1)过点(4,0)A -,(0,2)B 和原点;(2)与两坐标轴均相切,且圆心在直线2350x y -+=上. 【解析】(1)设圆的方程为220x y Dx Ey F ++++=,由题意,04201640F E F D F =⎧⎪++=⎨⎪-+=⎩,解得024F E D =⎧⎪=-⎨⎪=⎩,故所求圆的方程为22420x y x y ++-=.(2)由圆心在直线2350x y -+=上,设圆心的坐标为25(,)3a a +, 因为圆与两坐标轴均相切,所以25||||3a a +=,解得5a =或1a =-. 当5a =时,圆心为(5,5),半径为5,则圆的方程为22(5)(5)25x y -+-=; 当1a =-时,圆心为(1,1)-,半径为1,则圆的方程为22(1)(1)1x y ++-=; 故所求圆的方程为22(5)(5)25x y -+-=或22(1)(1)1x y ++-=. 考点6、求轨迹方程的常用方法:例6.已知()1,0A -,()2,0B ,动点(),M x y 满足12MA MB =.设动点M 的轨迹为C . (1)求动点M 的轨迹方程,并说明轨迹C 是什么图形; (2)求动点M 与定点B 连线的斜率的最小值;(3)设直线:l y x m =+交轨迹C 于,P Q 两点,是否存在以线段PQ 为直径的圆经过A 若存在,求出实数m 的值;若不存在,说明理由.【解析】(112=,化简可得:()2224x y ++=, 所以动点M 的轨迹方程为()2224x y ++=.轨迹C 是以()2,0-为圆心,2为半径的圆.(2)设过点B 的直线为()2y k x =-,圆心到直线的距离为2421k d k -=≤+.∴33k -≤≤,即min 3k =-. (3)假设存在,联立方程得()2224y x m x y =+⎧⎪⎨++=⎪⎩,得()222220x m x m +++=, 0,∆>即222222m -<<+.设()()1122,,,P x y Q x y ,则122x x m +=--,2122m x x =,由题意知PA QA ⊥,∴()()()()()()1212121211110x x y y x x x m x m +++=+++++=.∴()()212122110x x m x x m +++++=,得2310m m --=,313m ±=且满足0∆>,∴存在以线段PQ 为直径的圆经过A ,此时3132m ±=. 考点点睛:求轨迹方程的常用方法包括:(1)直接法:能直接根据题目提供的条件列出方程.步骤如下:(2)代入法(也称相关点法)若动点P (x ,y )跟随某条曲线(直线)C 上的一个动点Q (x 0,y 0)的运动而运动,则找到所求动点与已知动点的关系,代入已知动点所在的方程.具体步骤如下: ①设所求轨迹上任意一点P (x ,y ),与点P 相关的动点Q (x 0,y 0);②根据条件列出x ,y 与x 0、y 0的关系式,求得x 0、y 0(即用x ,y 表示出来);③将x 0、y 0代入已知曲线的方程,从而得到点D (x ,y )满足的关系式即为所求的轨迹方程. (3)定义法:动点的运动轨迹符合圆的定义时,可利用定义写出动点的轨迹方程.。
必修二圆的方程题型归纳非常完美
![必修二圆的方程题型归纳非常完美](https://img.taocdn.com/s3/m/59ee8b8949649b6648d747c1.png)
圆的方程题型一:圆的方程典例1、若圆C 的方程为222440x x y y +++-=,则该圆的圆心坐标为________. 【详解】圆的方程为222440x x y y +++-=,化为:22(1)(2)9x y +++=. 圆的圆心坐标为:(1,2)--.故答案为:(1,2)--.典例2、求满足下列条件的各圆的标准方程:(1)圆心在原点,半径长为3;(2)圆心为点()3,4C ,半径长是5(3)圆心为点(8,3)C -,且经过点(5,1)P【详解】(1)设圆的标准方程为222()()x a y b r -+-=,因为圆心在原点,即0,0a b ==,又由半径长为3,即3r =,圆的标准方程为229x y +=.(2)设圆的标准方程为222()()x a y b r -+-=,以为圆心为点()3,4C ,即3,4a b ==,半径长是5,即5r =,所以圆的标准方程为22(3)(4)5x y -+-=.(3)设圆的标准方程为222()()x a y b r -+-=,因为圆心为点(8,3)C -,即8,3a b ==-,又由圆经过点(5,1)P ,则22(85)(31)5r PC ==-+--=所以圆的标准方程为22(8)(3)25x y -++=.典例3、已知圆C 的圆心坐标为()3,0C ,且该圆经过点()0,4A .(1)求圆C 的标准方程;(2)若点B 也在圆C 上,且弦AB 长为8,求直线AB 的方程;(3)直线l 交圆C 于M ,N 两点,若直线AM ,AN 的斜率之积为2,求证:直线l 过一个定点,并求出该定点坐标.【详解】(1)圆以(3,0)为圆心,||5AB =为半径, 所以圆的标准方程为()22325x y -+=.(2)①k 不存在时,直线l 的方程为:0x =; ②k 存在时,设直线l 的方程为:4y kx =+,所以直线l 的方程为:724960x y +-=,综上所述,直线l 的方程为0x =或724960x y +-=.(3)设直线MN :y kx t =+,()11,M x kx t +,()22,N x kx t +,联立方程()()()22222126160325y kx t k x kt xt x y =+⎧⎪⇒++-+-=⎨-+=⎪⎩, 得()()()()()()2222216426410k t kt k kt t k --+--++-+=, ,所以直线l 的方程为:,所以过定点()6,12--. 题型二:直线与圆的位置关系 典例1、过原点O 作圆2268200x y x y +--+=的两条切线,设切点分别为P Q 、,则直线PQ 的方程是 ______.解:圆2268200x y x y +--+=可化为22(3)(4)5x y -+-=圆心(3,4)C ,半径为 过原点O 作C 的切线,切点分别为P ,Q ,∴直线PQ 可看作已知圆与以OC 为直径的圆的交线,以OC 为直径的圆的方程为()22325224x y ⎛⎫-+-= ⎪⎝⎭, 即22340x y x y +--=,两式相减得34200x y +-=, 即直线PQ 的方程为34200x y +-=,故答案为:34200x y +-=.典例2、已知圆C :x 2+y 2﹣4x =0.(1)直线l 的方程为30x y -=,直线l 交圆C 于A 、B 两点,求弦长|AB|的值;(2)从圆C 外一点P (4,4)引圆C 的切线,求此切线方程.【详解】(1)化圆C :x 2+y 2﹣4x =0为:(x ﹣2)2+y 2=4,知圆心(2,0)为半径为2, 故圆心到直线的距离2131d ==+,∴22223AB R d =-=; (2)当斜率不存在时,过P (4,4)的直线是x =4,显然是圆的切线;当斜率存在时,设直线方程为y ﹣4=k (x ﹣4).由24221kk -=+,解得34k =. 此时切线方程为3x ﹣4y+4=0.综上所述:切线方程为x =4或3x ﹣4y+4=0.典例3、已知0m >,0n >,若直线()()1120m x n y +++-=与圆222210x y x y +--+=相切,则m n +的取值范围为( )A .)222,⎡++∞⎣B .)222,⎡-+∞⎣C .2,222⎡⎤+⎣⎦D .(0,222⎤+⎦ 【详解】将圆的方程化为标准方程得()()22111x y -+-=,该圆的圆心坐标为()1,1,半径为1,由于直线()()1120m x n y +++-=与圆()()22111x y -+-=相切, 则()()22111m nm n +=+++,化简得1m n mn ++=, 由基本不等式可得212m n m n mn +⎛⎫++=≤ ⎪⎝⎭,即()()2440m n m n +-+-≥, 当且仅当m n =时,等号成立,0m >,0n >,0m n ∴+>,解得222m n +≥+. 因此,m n +的取值范围是)222,⎡++∞⎣.故选:A.【点睛】本题考查利用直线与圆相切求参数的取值范围,解题的关键就是利用基本不等式构造不等式求解,考查运算求解能力,属于中等题.典例4、函数211y x =-+ 与函数(2)y k x =-的图象有两个不同的公共点,则实数k 的取值范围是________. 【详解】由题意可知,函数211y x =-+的图象是以(0,1)为圆心,半径为1r =的上半圆.函数(2)y k x =-的图象是恒过点(2,0)的直线l .如图所示若使得函数211y x =-+ 与函数(2)y k x =-的图象有两个不同的公共点则需直线l 夹在半圆的切线1l 与过点(1,1)的直线2l 之间,即12l l k k k <≤ 直线2l 过点(1,1)与点(2,0)∴221101l k -==-- 又直线1l 为半圆22(1)1y x +-=(1)y ≥的切线∴圆心(0,1)到直线1l :1(2)l y k x =-的距离等于半径1r = 即112|(02)1|1()1l l k k --=+,解得143l k =-∴413k -<≤-故答案为:4(,1]3-- 典例5、已知直线1:0l kx y +=()k R ∈与直线2:220l x ky k -+-=相交于点A ,点B 是圆22(2)(3)2x y +++=上的动点,则||AB 的最大值为( )A .32B .52C .522+D .322+【详解】由0220kx y x ky k +=⎧⎨-+-=⎩,消去参数k 得22(1(1)2x y -+-=), 所以A 在以(1,1)C 为圆心,2为半径的圆上,又点B 是圆22(2)(3)2x y +++=上的动点,此圆圆心为(2,3)D --,半径为2, 22(12))(13)5CD =+++=,∴AB 的最大值为22522CD ++=+.故选:C.题型三:圆与圆的位置关系典例1、已知圆221:2410C x y x y ++-+=,圆222:(3)(1)1C x y -++=,则这两个圆的公切线条数为( )A .1条B .2条C .3条D .4条 【详解】根据题意,圆221:2410C x y x y ++-+=,即22+1+24x y -=()()其圆心为12-(,),半径12r =, 圆222:(3)(1)1C x y -++=,其圆心为31-(,),半径21r =, 则有221212435C C r r =+=>+,两圆外离,有4条公切线;故选:D . 典例2、已知圆22()()8(0)x a y a a -+-=>与圆222x y +=有公共点,则a 的取值范围是________.【详解】因为圆22()()8(0)x a y a a -+-=>与圆222x y +=有公共点,所以两圆位置关系为外切、相交、内切,所以得到22222222a a ≤≤-++,因为0a >,故解得13a ≤≤,即a 的取值范围为[]1,3.故答案为:[]1,3.典例3、点A 、B 分别为圆M :x 2+(y -3)2=1与圆N :(x -3)2+(y -8)2=4上的动点,点C 在直线x +y =0上运动,则|AC|+|BC|的最小值为( )A .7B .8C .9D .10【详解】解:设M(0,3)关于直线的对称点为P(-3,0),且N(3,8) ∴故选A.题型四:轨迹问题典例1、设P ()1,0是圆O :224x y +=内一定点,过P 作两条互相垂直的直线分别交圆O 于A 、B 两点,则弦AB 中点的轨迹方程是_________.【详解】设AB 的中点为(,)M x y ,设11(,)A x y ,22(,)B x y .则12122,2x x x y y y =+=+. (1)由题意,A B 均在圆O 上则有:222211224,4x y x y +=+=. (2) 又由条件有BP AP ⊥,即0BP AP ⋅=.即BP AP ⋅=1122(1,)(1,)x y x y --⋅--=1212121()0x x x x y y +-++= (3)将(1)代入(3)中有:121212121x x y y x x x +=+-=- (4)将(1)中两式平方相加得:2222121244()()x y x x y y +=+++. 即222222112211224422x y x x x x y y y y +=+++++ (5)将(2),(4)代入(5)得:224482(21)x y x +=+-. 即弦AB 中点的轨迹方程是2222230x y x +--=.故答案为:2222230x y x +--= 典例2、在平面直角坐标系中,O 为坐标原点,已知()3,0A ,()0,3B ,动点M 满足,则OM 斜率k 的取值范围是( )A B C 3224⎤⎡-⎥⎢⎦⎣D 2334⎤⎡-⎥⎢⎦⎣解析:设点(,)M x y ,∵MB =,∴2222(3)4[(3)]x y x y +-=-+, 整理得:22(4)(1)8x y -++=,则点M 是以(4,)1-为圆心,2为半径的圆,当直线与圆相切时,圆心到直线的距离等于半径,故选:A 跟踪训练1、圆心为()2,3A -,半径等于5的圆的方程是( )A.22(2)(3)5x y -++=B.22(2)(3)5x y ++-=C.22(2)(3)25x y -++=D.22(2)(3)25x y ++-=解析:因为圆心(),a b 即为()2,3-,半径=5r ,所以圆的标准方程为:()()222325x y -++=,故选:C.【点睛】本题考查根据圆心和半径写出圆的标准方程,难度较易.2、已知圆C 的圆心在直线0x y -=上,过点(2,2)且与直线0x y +=相切,则圆C 的方程是______.【详解】根据题意,圆C 的圆心在直线0x y -=上,设圆C 的圆心为(,)a a ,半径为r . 又由圆C 过点(2,2)且与直线0x y +=相切,解得1a =,故圆心的坐标为(1,1),则222(2)(2)2r a a =-+-=, 则圆C 的方程为22(1)(1)2x y -+-=.故答案为:22(1)(1)2x y -+-=.3、方程22220x y ax y ++++=表示圆,则实数a 的取值范围是__________. 解:方程22220x y ax y ++++=表示圆,222420a ∴+-⨯> 24a ∴>22a a ∴<->或,即()(),22,a ∈-∞-+∞,故答案为:()(),22,-∞-+∞4的直线l 与圆221x y +=有公共点,则直线l 的倾斜角的取值范围是( )k由直线l 与圆221x y +=有公共点得D. 5、已知圆的方程为222880x y x y ++-+=,过点(1,0)P 作该圆的一条切线,切点为A ,那么线段PA 的长度为______.【详解】圆222880x y x y ++-+=,即22(1)(4)9x y ++-=,故(1,4)C -为圆心、半径3R =,6、已知圆C 的方程为222210x y x y ++-+=,当圆心C 到直线40kx y ++=的距离最大时,k 的值为( )A .15- B .-5 C .15 D .5解:因为圆C 的方程为222210x y x y ++-+=,配方可得22(1)(1)1x y ++-=, 所以圆的圆心为(1,1)C -半径1r =,直线40kx y ++=可化为4y kx =--,恒过定点(0,4)B -,当直线与BC 垂直时,圆心C 到直线40kx y ++=的距离最大,由斜率公式可得BC 的斜率为4150(1)--=---, 由垂直关系可得:(5)1k -⨯-=-,解得15k =-,故选:A . 7、知点(),P x y 在圆C :()()22111x y -+-=上,则2y x+的最小值是____________. 【详解】2y x +表示圆上的点和点()0,2-连线的斜率, 设直线2y kx +=,即20kx y --=,如图,当直线与圆相切时,此时直线的斜率最小,21211k k --∴=+ ,解得:43k =故答案为:438、若关于x 的方程222x x kx -+=+有且只有一个实数解,则实数k 的取值范围是____.解析:可设2122,2y x x y kx =-+=+,其中212y x x =-+可转化为()2211x y -+=,[]02x ,∈,可转化成直线与圆的位置关系问题,画出图形,再进行求解。
高考数学一轮复习考点知识与题型讲解42 圆的方程(含解析)
![高考数学一轮复习考点知识与题型讲解42 圆的方程(含解析)](https://img.taocdn.com/s3/m/cabdfb237275a417866fb84ae45c3b3567ecddc8.png)
高考数学一轮复习考点知识与题型讲解考点42 圆的方程一.求圆的方程1.圆的定义:在平面内,到定点的距离等于定长的点的轨迹叫做圆. 2.圆的标准方程(1) 若圆的圆心为C(a,b ),半径为r ,则该圆的标准方程为:. (2) 方程表示圆心为C(a,b ),半径为r 的圆. 3.圆的一般方程(1)任意一个圆的方程都可化为:.这个方程就叫做圆的一般方程. (2) 对方程:. ①若,则方程表示以,为圆心,为半径的圆; ②若,则方程只表示一个点,; ③若,则方程不表示任何图形. 4.点与⊙C 的位置关系(1)|AC |<r ⇔点A 在圆内⇔; (2)|AC |=r ⇔点A 在圆上⇔; (3)|AC |>r ⇔点A 在圆外⇔.二.圆与圆的位置关系设两圆的圆心分别为、,圆心距为,半径分别为、(). (1)两圆相离:无公共点;,方程组无解.222()()x a y b r -+-=222()()x a y b r -+-=220x y Dx Ey F ++++=220x y Dx Ey F ++++=2240D E F +->(2D -)2E -F E D 42122-+0422=-+F E D (2D -)2E-0422<-+F E D 00()A x y ,22200()()x a y b r <-+-22200()()x a y b r =-+-22200()()x a y b r >-+-1C 2C 12d C C =R r R r >d R r >+(2)两圆外切:有一个公共点;,方程组有一组不同的解. (3)两圆相交:有两个公共点;,方程组有两组不同的解. (4)两圆内切:有一公共点;,方程组有一组不同的解.(5)两圆内含:无公共点;,方程组无解.特别地,时,为两个同心圆.三.直线与圆位置关系(或交点个数)的解题思路(1)把圆化成圆的标准方程22200()()x x y y r -+-=找出圆心()00,x y 和半径r (2)利用点到直线到距离公式求圆心到直线的距离d =(3)d 与r 比较大小d r d r d r >⎧⎪=⎨⎪<⎩相离,没有交点相切,一个交点相交,两个交点四.直线与圆弦长解题思路---垂定定理(1)把圆化成圆的标准方程22200()()x x y y r -+-=找出圆心()00,x y 和半径r (2)利用点到直线到距离公式求圆心到直线的距离d =(3)利用弦长公式l =五.圆上的点到直接距离最值的解题思路(1)把圆化成圆的标准方程22200()()x x y y r -+-=找出圆心()00,x y 和半径r(2)利用点到直线到距离公式求圆心到直线的距离d =(3)判断位置关系max min max min max min 200d d rd r d d r d d r r d r d d d r d r d ⎧=+⎧>⎨⎪=-⎩⎪⎪=+=⎧⎪=⎨⎨=⎩⎪⎪=+⎧⎪<⎨=⎪⎩⎩相离,相切,相交,d R r =+R r d R r -<<+d R r =-0d R r ≤<-0d =考点题型分析考点题型一 圆的方程【例1】(1)(2022·浙江杭州市·学军中学)圆22(1)3x y -+=的圆心坐标和半径分别是( ) A .(-1,0),3 B .(1,0),3 C .()1,0-D .()1,0(2)(2022·河南洛阳市)已知圆C 经过原点(0,0)O ,()4,3A ,(1,3)B -三点,则圆C 的方程为( ) A .22430x y x y +--= B .2230x y x y +-+= C .22550x y x +--= D .2270x y x y +-+=【答案】(1)D(2)D【解析】(1)根据圆的标准方程可得,22(1)3x y -+=的圆心坐标为(1,0),故选:D.(2)设圆的方程为220x y Dx Ey F ++++=()2240D E F +->,把点(0,0)O ,(4,3)A ,(1,3)B -代入得16943019300D E F D E F F ++++=⎧⎪++-+=⎨⎪=⎩,解得7D =-,1E =,0F =, 所以圆的方程是2270x y x y +-+=.故选:D . 【举一反三】1.(2022·河北区)圆22221x y x y ++-=的圆心和半径分别是( ) A .()1,1-;1 B .(1,1)-C .()1,1-;1D .()1,1-【答案】D【解析】圆22221x y x y ++-=的标准方程是:()()22113x y ++-=,所以圆的圆心和半径分别是()1,1-故选:D2.(2022·河南周口市)圆224240x y x y +-++=的半径和圆心坐标分别为( ) A .1;(2,1)r =- B .2;(2,1)r =-C .2;(2,1)r =-D .1;(2,1)r =-【答案】D 【解析】22(2)(1)1x y -++=∴半径和圆心坐标分别为()1;2,1r =-,选D3.(2022·全国课时练习)若方程x 2+y 2+2λx +2λy +2λ2―λ+1=0表示圆,则λ的取值范围是( )A .(1,+∞)B .1,15⎡⎤⎢⎥⎣⎦C .(1,+∞)∪1(,)5-∞ D .R【答案】A【解析】因为方程x 2+y 2+2λx +2λy +2λ2―λ+1=0表示圆,所以D 2+E 2―4F >0, 即4λ2+4λ2―4(2λ2―λ+1)>0,解不等式得λ>1,即λ的取值范围是(1,+∞).故选:A. 4.(2022·内蒙古包头市)AOB 顶点坐标分别为()2,0A ,()0,4B ,()0,0O .则AOB 外接圆的标准方程为______. 【答案】()()22125x y -+-=【解析】设圆的标准方程为()()222x a y b r -+-=,因为过点()2,0A ,()0,4B ,()0,0O所以()()()()()()222222222200400a b r a b r a b r ⎧-+-=⎪⎪-+-=⎨⎪-+-=⎪⎩解得2125a b r =⎧⎪=⎨⎪=⎩则圆的标准方程为()()22125x y -+-=故答案为:()()22125x y -+-=考点题型二 点与圆的位置关系【例2】(1)(2022·福建厦门市·大同中学)点()3,4P 与圆的2224x y +=的位置关系是( )A .在圆外B .在圆内C .在圆上D .不确定(2)(2022·黑龙江哈尔滨市)已知圆22:2440C x y x y ++++=,则圆上的点到坐标原点的距离的最大值为( )A B .6C 1D 1【答案】(1)A(2)D 【解析】(1)223424+>,因此,点P 在圆2224x y +=外.故选:A.(2)由222440x y x y ++++=得:()()22121x y +++=,∴圆心()1,2C --,半径1r =,∴圆心到坐标原点的距离d ==∴圆上的点到坐标原点的距离的最大值为1d r +=+.故选:D.【举一反三】1.(2022·山东省济南回民中学)若圆的方程是()()22234x y -+-=,则点()1,2( )A .是圆心B .在圆上C .在圆内D .在圆外【答案】C【解析】圆心()2,3,半径2r ,圆心到点()1,2距离2d ==<,故点()1,2在圆内,故选:C.2.(2022·江苏省苏州中学园区校)点P 在圆()22:34C x y -+=上,点()3,0Q -,则PQ 的最大值为( ) A .6 B .4 C .8 D .3【答案】C【解析】由于()22330364--+=>,所以Q 在圆C 外,圆C 的圆心为()3,0C ,半径2r ,则PQ 的最大值为2628QC r +==+=.故选:C3.(2022·四川宜宾市)若点(2,1)在圆22()5x a y -+=的内部,则实数a 的取值范围是______________. 【答案】()0,4【解析】因为点(2,1)在圆22()5x a y -+=的内部,所以2(2)15a -+<,即240a a -<,解得04a <<故答案为:()0,4考点题型三 直线与圆的位置关系【例3】(1)(2022·天津高三月考)已知直线:1l y kx =-与圆22:430C x y x +-+=相切,则正实数k 的值为___________.(2)2022·黑龙江哈尔滨市·哈尔滨三中高三一模(文))直线l :0x y -=与圆C :()2211x y -+=交于A 、B 两点,则AB =______.【答案】(1)43【解析】(1):110l y kx kx y =-⇒--=,()2222:43021C x y x x y +-+=⇒-+=, 圆心为()2,0,1r =1=,解得43k =或0k =,所以正实数k 的值为43故答案为:43(2)2=,故AB ==【举一反三】1.(2022·黑龙江哈尔滨市)若过点()4,3A 的直线l 与曲线22231x y 有公共点,则直线l的斜率的取值范围为( )A.⎡⎣B.(C.33⎡-⎢⎣⎦ D.33⎛⎫- ⎪ ⎪⎝⎭【答案】C【解析】由题意,易知,直线l 的斜率存在,设直线l 的方程为()34y k x -=-,即340kx y k -+-= 曲线22231x y 表示圆心()2,3,半径为1的圆,圆心()2,3到直线340kx y k -+-=的距离应小于等于半径1,1≤,即2k -≤,解得33k -≤≤.故选:C.2.(2022·林芝市第二高级中学)直线4350x y +-=与圆22(1)(2)9x y -+-=相交于A ,B 两点,则AB 的长度等于__________.【答案】【解析】22(1)(2)9x y -+-=圆心(1,2)C ,半径为3, 圆心C 到直线4350x y +-=的距离为d ,1,||d AB ==∴==.故答案为:3.(2022·宁夏吴忠市·高三其他模拟(文))若直线430x y a ++=与圆22(1)(2)9x y -+-=相交于,A B两点,且||AB =a =________. 【答案】5a =-或15a =- 【解析】直线430x y a ++=与圆22(1)(2)9x y -+-=相交于,A B 两点,且||AB =∴圆心()1,2到直线430x y a ++=1=,即1=,解得5a =-或15a =-.故答案为:5a =-或15a =-考点题型四 圆与圆的位置关系【例4】(2022·沙坪坝区·重庆八中)圆221:4C x y +=与圆()222:11C x y -+=的位置关系是( )A .相离B .外切C .相交D .内切【答案】D【解析】圆1C 的圆心为()10,0C ,半径为12r =,圆2C 的圆心为()21,0C ,半径为21r =,12121C C r r ∴==-,因此,两圆内切.故选:D.【举一反三】1.(2022·云南省大姚县第一中学)圆221:46120O x y x y +--+=与圆222:86160O x y x y +--+=的位置关系是( )A .相交B .相离C .内含D .内切【答案】D【解析】圆221:46120O x y x y +--+=即22231x y ,则圆心为()2,3,半径为1圆222:86160O x y x y +--+=即()()22439x y -+-=,则圆心为()4,3,半径为3两圆心间的距离122d r r ===-,所以两圆的位置关系为内切,故选:D .2.(2022·重庆)已知圆2123:C x y +=和圆()()222:1312C x y ++-=,那么这两个圆的位置关系是( ) A .相离 B .外切 C .相交 D .内切【答案】C【解析】由已知的()()12120,0,1,3,C C r r -==所以2112r r r r =+=-12C C == 所以211212r r C C r r <<+-,故两圆相交.故选:C.3.(2022·河南洛阳市)已知圆221:64120C x y x y +-++=,圆222:142340C x y x y +--+=,两圆公切线的条数为( ) A .1 B .2C .3D .4【答案】C【解析】圆()()221:321C x y -++=,圆心()13,2C -,半径11r =,圆()()222:7116C x y -+-=,圆心()27,1C ,半径24r =,圆心距5d ==,12d r r =+,所以两圆相外切,公切线条数是3条.故选:C4.(2022·四川凉山彝族自治州)已知圆221:1C x y +=和圆()()2222:20C x y r r +-=>,若圆1C 和2C 有公共点,则r 的取值范围是( ) A .(]0,1 B .(]0,3 C .[]1,3D .[)1,+∞【答案】C【解析】由题意可知,圆1C 的圆心为()10,0C ,半径为1,圆2C 的圆心为()20,2C ,半径为r , 所以,122C C =,由于两圆有公共点,则1211r C C r -≤≤+,即1210r r r ⎧-≤≤+⎨>⎩,解得13r ≤≤.故选:C.。
圆的方程(考题猜想,易错必刷30题13种题型)(解析版)—2024-2025学年高二数学上学期
![圆的方程(考题猜想,易错必刷30题13种题型)(解析版)—2024-2025学年高二数学上学期](https://img.taocdn.com/s3/m/e8d3ad6517fc700abb68a98271fe910ef02dae00.png)
圆的方程(易错必刷30题13种题型专项训练)➢ 三角形外接圆方程 ➢ 过两点半径最小圆➢ 含参圆求参 ➢ “残圆”型➢ 元的对称型求参范围➢ 两圆位置关系➢圆过定点➢ 圆上点到圆外点距离最值➢ 圆的“将军饮马”型➢ 圆上点到直线距离最值型➢两圆上点距离最值型➢ 弦长最值➢与圆围成的图形面积一.三角形外接圆方程(共2小题)1.(23-24高二上·天津南开·期中)已知点()4,2A --,()4,2B -,()2,2C -,则ABC V 外接圆的方程是( ).A .22(3)20x y +-=B .22(3)5x y ++=C .22(3)5x y ++=D .22(3)20x y -+=故选:B.2.(23-24高二上·山西运城·期中)已知()()()0,5,0,1,3,4A B C ,则ABC V 外接圆的半径为( )A B .2C D .5二. 过两点半径最小圆(共2小题)3.(23-24高二上·浙江杭州·期中)过(6,0)A 和(0,8)B -两点的面积最小的圆的标准方程为( )A .22(3)(4)10x y -++=B .22(3)(4)100x y ++-=C .222(3)(4)5x y +=-+D .22(3)(4)25x y ++-=【答案】C【分析】求出以AB 为直径的圆的方程可得正确的选项.【详解】设过(6,0)A 和(0,8)B -两点的圆的圆心为则236R MA MB AB =+³=故5R ³,当且仅当M 为AB 中点时等号成立,故过(6,0)A 和(0,8)B -两点的圆的面积最小时直径为此时圆的圆心为(3,―4),故其标准方程为4.(23-24高二上·河北石家庄·期中)过点()()1,1,3,3A B --,半径最小的圆的方程为( )A .22(1)(1)8x y -++=B .22(1)(1)8x y ++-=C .22(1)(1)32x y -++=D .22(1)(1)32x y ++-=三.含参圆求参(共2小题)5.(23-24高二上·福建厦门·期中)若32,1,0,,14a ìüÎ--íýîþ,则方程2222210x y ax ay a a +++++-=表示的圆的个数为( )A .1B .2C .3D .4【答案】B6.(23-24高二上·江苏南通·期中)若方程2224240x y mx y m m ++-+-=表示一个圆,则实数 m 的取值范围是( )A .1m <-B .1m <C .1m >-D .1m ³-四.“残圆”型(共2小题)7.(23-24高二上·河北石家庄·期中)方程()()220x x y y -+-=(x ,y 不同时为0)表示的曲线的长度为( )A .B .C .D .4+8.(22-23高二上·广西贵港·期中)方程1y +=表示的曲线为( )A .圆()()22214x y -++=B .圆()()22214x y -++=的右半部分C .圆()()22214x y ++-=D .圆()()22214x y -++=的上半部分五.圆的对称性求参范围(共2小题)9.(21-22高一下·江西宜春·期中)已知直线:10l ax by ++=,圆22:4210C x y x y ++++=,若圆C 上存在两点关于直线l 对称,则()()2227a b -+-的最小值是( )A .5BC .D .20【答案】D【分析】由题意,直线l 过圆心,有21b a =-+,则()()2222752040a b a a -+-=++,利用配方法求最小值.【详解】圆22:4210C x y x y ++++=的圆心坐标为()2,1C --,圆C 上存在两点关于直线l 对称,则直线l 过圆心,即210a b --+=,有21b a =-+,()()()()()22222227=22652040524a b a a a a a éù-+--+--=++=++ëû,当2a =-时,()()2227a b -+-有最小值20.故选:D10.(2022·内蒙古呼和浩特·一模)已知圆2220x x y ++=关于直线10(ax y b a b ++-=、为大于0的常数)对称,则ab 的最大值为( )A .14B .12C .1D .2六. 两圆位置关系(共2小题)11.(20-21高二上·北京丰台·期中)已知圆221:1C x y +=与圆222:870C x y x +-+=,则圆1C 与圆2C 的位置关系是( )A .相离B .相交C .内切D .外切【答案】D12.(23-24高二上·江西南昌·期中)设圆221:244C x y x y +-+=,圆222:680C x y x y ++-=,则圆12,C C 的位置关系()A .内含B .外切C .相交D .相离七. 圆过定点(共2小题)13.(21-22高二上·浙江温州·期中)点(),P x y 是直线250x y +-=上任意一点,O 是坐标原点,则以OP 为直径的圆经过定点( )A .()0,0和()1,1B .()0,0和()2,2C .()0,0和()1,2D .()0,0和()2,114.(23-24高二上·湖北荆州·期中)圆:²²250C x y ax ay ++--=恒过的定点为( )A .()()2,1,2,1--B .()()1,2,2,1--C .()()1,2,1,2--D .()()2,1,2,1--【答案】D【分析】将方程进行变形整理,解方程组即可求得结果.【详解】圆22:250C x y ax ay ++--=的方程化为()()22250a x y x y -++-=,由222050x y x y -=ìí+-=î得21x y =ìí=î或21x y =-ìí=-î,故圆C 恒过定点()()2,1,2,1--.八. 圆上点到圆外点距离最值(共3小题)15.(23-24高二上·山西大同·期中)已知,x y 满足22(2)(3)2x y -+-=,则222x x y ++的取值范围是( )A .éëB .[]8,32C .1,1éùëûD .[]7,3116.(23-24高二上·四川成都·期中)已知点P 是圆 22:4210C x y x y +--+=上一点,点(1,5)Q -,则线段PQ 长度的最大值为( )A .3B .5C .7D .917.(23-24高二上·重庆北碚·期中)已知点(),a b 在曲线1y =上,则()222a b +-的取值范围是( )A .[]2,26B .2,14é+ëC .1426éù-ëûD .14é-+ë当,,P A C 三点共线时,PA 当P 为半圆的右端点(5,1B 即102,26éùÎ-ëûPA ,则九.圆的“将军饮马”型最值(共2小题)18.(23-24高三上·上海青浦·期中)在平面直角坐标系xOy 中,点()()()()4,0,1,0,1,0,0,1A B C D -,若点P 满足2PA PB =,则12PC PD +的最小值为( ).A.2B C D1【点睛】关键点点睛:设(M-半是解决本题的关键.19.(23-24高二上·浙江杭州·期中)已知圆O:221x y+=和点1,02Pæö-ç÷èø,点()2,1B,M为圆O上的动点,则2MP MB+的最小值为()A B.1C D.3故选:C十.圆上点到直线距离最值型 (共3小题)20.(23-24高二上·江苏宿迁·期中)圆22220x y x y +++=上的点到直线20x y --=的距离的最大值为A B .C D21.(23-24高二上·河北唐山·期中)已知()22112225,24x y x y ++=+=,则()()221212x x y y -+-的最小值为( )A B .15C D .3655故选:B22.(23-24高三上·北京·期中)在平面直角坐标系中,当q ,m 变化时,点()cos ,sin P q q 到直线340x my m -+-=的距离最大值为( )A .3B .4C .5D .6故选:D十一.两圆上点距离最值型(共3小题)23.(23-24高二上·黑龙江哈尔滨·期中)已知点P 为圆1C :()2211x y -+=上一动点,点Q 为圆2C :()()22414x y -+-=上一动点,点R 在直线l :10x y -+=上运动,则PR QR +的最小值为( )A 3B 3-C .3D .2【答案】B【分析】根据圆的几何性质,结合对称的性质、两点间线段最短、两点间距离公式进行求解即可.【详解】圆1C :()2211x y -+=的圆心为()11,0C ,半径为1,圆2C :()()22414x y -+-=的圆心为()24,1C ,半径为2,设圆1C:()2211x y-+=关于直线x-设3C的坐标为(),a b,于是有10101220211a bab b++ì-+=ï=-ìïÞÞíí-=îï´=-24.(23-24高二上·湖北·期中)已知点P是直线1l:50mx ny m n--+=和2l:()2250,R,0nx my m n m n m n+--=Î+¹的交点,点Q是圆C:()223(5)1x y+++=上的动点,则PQ的最大值是()A.9+B.10+C.11+D.12+25.(2023·浙江嘉兴·模拟预测)已知点P 是直线1l :50mx ny m n --+=和2l :()2250,,0nx my m n m n m n +--=Î+¹R 的交点,点Q 是圆C :()2211x y ++=上的动点,则PQ 的最大值是( )A .5+B .6+C .5+D .6+十二.弦长最值(共3小题)26.(23-24高二上·云南昆明·期中)在圆22:4240M x y x y +-+-=内,过点(0,0)O 的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为( )A .6B .8C .12D .24则过点(0,0)O 及圆心(2,M -即6AC =,当OM BD ^时,BD 最短,可得过点(0,0)O 的最短的弦长27.(23-24高二上·重庆渝中·期中)已知圆C 经过()()1,0,2,1A B -两点,且圆心C 在直线0x y +=上,则过点11,2D æö-ç÷èø的直线与圆C 相交所截最短弦长为( )A .1BC .32D .228.(22-23高二上·辽宁大连·期中)当直线()()():121740l m x m y m m +++--=ÎR 被圆()()22:2125C x y -+-=截得的弦最短时,实数m 的值为( )A .34-B .23-C .34D .23【答案】A 【分析】先求得直线l 所过定点A 的坐标,根据l AC ^求得m 的值.【详解】依题意直线()()():121740l m x m y m m +++--=ÎR ,整理得()2740x y m x y +-++-=,所以27040x y x y +-=ìí+-=î,解得13x y =ìí=î,故直线l 过定点()1,3A ,圆()()22:2125C x y -+-=的圆心为()2,1C ,半径为5,()()221231525-+-=<,所以A 在圆C 内.所以当l AC ^时,直线l 被圆C 截得的弦最短,十三.与圆围成的图形面积(共2小题)29.(21-22高二·全国·期中)y x =的图象和圆224x y +=在x 轴上方所围成的图形的面积是( )A .π4B .3π4C .3π2D .π由上得:所求面积是圆x 又圆224x y +=的半径为2所以y x =的图象和圆2x 故选:D.30.(22-23高二上·重庆南岸·期中)数学美的表现形式不同于自然美或艺术美那样直观,它蕴藏于特有的抽象概念,公式符号,推理论证,思维方法等之中,揭示了规律性,是一种科学的真实美.在平面直角坐标系中,曲线22:22C x y x y +=+就是一条形状优美的曲线,求此曲线围成的图形的面积为( )A .88π+B .84π+C .168π+D .816π+因此曲线围成的图形的面积为故选:B。
圆的方程 知识点总结及典例
![圆的方程 知识点总结及典例](https://img.taocdn.com/s3/m/e445ba04bdd126fff705cc1755270722192e59a1.png)
4.1圆的方程基础知识梳理1.圆的标准方程:222)()(r b y a x =-+-,圆心:),(b a ,半径:r ;2.圆的一般方程:)04(,02222>-+=++++F E D F Ey Dx y x .习题巩固一、选择题1.点(sin θ,cos θ)与圆x 2+y 2=12的位置关系是( ) A .在圆上 B .在圆内C .在圆外D .不能确定2.已知以点A (2,-3)为圆心,半径长等于5的圆O ,则点M (5,-7)与圆O 的位置关系是( )A .在圆内B .在圆上C .在圆外D .无法判断3.若直线y =ax +b 通过第一、二、四象限,则圆(x +a )2+(y +b )2=1的圆心位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.圆(x -3)2+(y +4)2=1关于直线y =x 对称的圆的方程是( )A .(x +3)2+(y +4)2=1B .(x +4)2+(y -3)2=1C .(x -4)2+(y -3)2=1D .(x -3)2+(y -4)2=15.方程y =9-x 2表示的曲线是( )A .一条射线B .一个圆C .两条射线D .半个圆6.已知一圆的圆心为点(2,-3),一条直径的两个端点分别在x 轴和y 轴上.则此圆的方程是( )A .(x -2)2+(y +3)2=13B .(x +2)2+(y -3)2=13C .(x -2)2+(y +3)2=52D .(x +2)2+(y -3)2=527.圆2x 2+2y 2+6x -4y -3=0的圆心坐标和半径分别为( )A .⎝⎛⎭⎫-32,1和194B .(3,2)和192C .⎝⎛⎭⎫-32,1和192D .⎝⎛⎭⎫32,-1和1928.方程x 2+y 2+4x -2y +5m =0表示圆的条件是( )A .14<m <1 B .m >1 C .m <14D .m <1 9.M (3,0)是圆x 2+y 2-8x -2y +10=0内一点,过M 点最长的弦所在的直线方程是( )A .x +y -3=0B .x -y -3=0C .2x -y -6=0D .2x +y -6=010.圆x 2+y 2-2x +4y +3=0的圆心到直线x -y =1的距离为( )A .2B .22C .1D .2 11.已知圆x 2+y 2-2ax -2y +(a -1)2=0(0<a <1),则原点O 在( )A .圆内B .圆外C .圆上D .圆上或圆外12.若圆M 在x 轴与y 轴上截得的弦长总相等,则圆心M 的轨迹方程是( )A .x -y =0B .x +y =0C .x 2+y 2=0D .x 2-y 2=0二、填空题13.已知圆的内接正方形相对的两个顶点的坐标分别是(5,6),(3,-4),则这个圆的方程是_____________________________.14.圆O的方程为(x-3)2+(y-4)2=25,点(2,3)到圆上的最大距离为________.15.如果直线l将圆(x-1)2+(y-2)2=5平分且不通过第四象限,那么l的斜率的取值范围是________.16.如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆面积最大时,圆心坐标为________.17.已知圆C:x2+y2+2x+ay-3=0(a为实数)上任意一点关于直线l:x-y+2=0的对称点都在圆C上,则a=________.18.已知圆的方程为x2+y2-6x-8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为________.三、解答题19.已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心C在直线l:x-y+1=0上,求圆心为C的圆的标准方程.20.已知一个圆与y轴相切,圆心在直线x-3y=0上,且该圆经过点A(6,1),求这个圆的方程.21.平面直角坐标系中有A(-1,5),B(5,5),C(6,-2),D(-2,-1)四个点能否在同一个圆上?22.如果方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0表示一个圆.(1)求t的取值范围;(2)求该圆半径r的取值范围.。
圆的标准方程(经典练习及答案详解)
![圆的标准方程(经典练习及答案详解)](https://img.taocdn.com/s3/m/c872eafa09a1284ac850ad02de80d4d8d15a01b3.png)
2.4 圆的方程 2.4.1 圆的标准方程1.已知圆的方程是(x-2)2+(y-3)2=4,则点P (3,2)( )A.是圆心B.在圆上C.在圆内D.在圆外(3-2)2+(2-3)2=2<4,∴点P 在圆内.2.已知点A (-4,-5),B (6,-1),则以线段AB 为直径的圆的方程是( ) A.(x+1)2+(y-3)2=29 B.(x+1)2+(y-3)2=116 C.(x-1)2+(y+3)2=29D.(x-1)2+(y+3)2=116A (-4,-5),B (6,-1),所以线段AB 的中点为C (1,-3),所求圆的半径r=12|AB|=12√102+42=√29,所以以线段AB 为直径的圆的方程是(x-1)2+(y+3)2=29,故选C .3.方程x=√1-y 2表示的图形是( ) A.两个半圆 B.两个圆 C.圆D.半圆x ≥0,方程两边同时平方并整理得x 2+y 2=1,由此确定图形为半圆,故选D .4.一个动点在圆x 2+y 2=1上移动时,它与定点A (3,0)的连线中点的轨迹方程是( ) A.(x+3)2+y 2=4 B.(x-3)2+y 2=1 C.(2x-3)2+4y 2=1D.x+322+y 2=12M (x 0,y 0)为圆上的动点,则有x 02+y 02=1,设线段MA 的中点为P (x ,y ),则x=x 0+32,y=y 0+02,则x 0=2x-3,y 0=2y ,代入x 02+y 02=1,得(2x-3)2+(2y )2=1,即(2x-3)2+4y 2=1.5.圆(x-2)2+(y+3)2=2的圆心是 ,半径是 .-3) √26.圆(x+1)2+y 2=5关于直线y=x 对称的圆的标准方程为 .(x+1)2+y 2=5的圆心坐标为(-1,0),它关于直线y=x 的对称点坐标为(0,-1),即所求圆的圆心坐标为(0,-1),所以所求圆的标准方程为x 2+(y+1)2=5.2+(y+1)2=57.若直线3x-4y+12=0与两坐标轴交点为A ,B ,则以线段AB 为直径的圆的方程是 .解析由题意得A (0,3),B (-4,0),AB 的中点-2,32为圆的圆心,直径AB=5,以线段AB 为直径的圆的标准方程为(x+2)2+y-322=254. 答案(x+2)2+y-322=2548.已知圆M 过A (1,-1),B (-1,1)两点,且圆心M 在直线x+y-2=0上. (1)求圆M 的方程;(2)若圆M 上存在点P ,使|OP|=m (m>0),其中O 为坐标原点,求实数m 的取值范围.设圆M 的方程为(x-a )2+(y-b )2=r 2(r>0),根据题意得{a +b -2=0,(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,解得{a =1,b =1,r =2,所以圆M 的方程为(x-1)2+(y-1)2=4. (2)如图,m=|OP|∈[2-√2,2+√2].关键能力提升练9.若直线y=kx 与圆(x-2)2+y 2=1的两个交点关于直线2x+y+b=0对称,则k ,b 的值分别为( ) A.12,-4B.-12,4C.12,4D.-12,-4y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,直线2x+y+b=0的斜率为-2,所以k=12,并且直线2x+y+b=0经过已知圆的圆心,所以圆心(2,0)在直线2x+y+b=0上,所以4+0+b=0,所以b=-4.故选A.10.已知圆O:x2+y2=1,点A(-2,0)及点B(2,a),从A点观察B点,要使视线不被圆O挡住,则实数a的取值范围是()A.(-∞,-1)∪(-1,+∞)B.(-∞,-2)∪(2,+∞)C.-∞,-4√33∪4√33,+∞D.(-∞,-4)∪(4,+∞)方法1)(直接法)写出直线方程,将直线与圆相切转化为点到直线的距离来解决.过A,B两点的直线方程为y=a4x+a2,即ax-4y+2a=0,令d=√a2+16=1,化简后,得3a2=16,解得a=±4√33.再进一步判断便可得到正确答案为C.(方法2)(数形结合法)如图,设直线AB切圆O于点C在Rt△AOC中,由|OC|=1,|AO|=2,可求出∠CAO=30°.在Rt△BAD中,由|AD|=4,∠BAD=30°,可求得BD=4√33,再由图直观判断,故选C.11.(2020四川成都石室中学高二上期中)已知实数x,y满足x2+y2=1,则√3x+y的取值范围是()A.(-2,2)B.(-∞,2]C.[-2,2]D.(-2,+∞)解析因为x2+y2=1,所以设x=sin α,y=cos α,则√3x+y=√3sin α+cos α=2sinα+π6,所以√3x+y的取值范围是[-2,2].故选C.12.(多选题)若经过点P(5m+1,12m)可以作出圆(x-1)2+y2=1的两条切线,则实数m的取值可能是()A.110B.113C.-113D.-12P 可作圆的两条切线,说明点P 在圆的外部,所以(5m+1-1)2+(12m )2>1,解得m>113或m<-113,对照选项知AD 可能.13.(多选题)设有一组圆C k :(x-k )2+(y-k )2=4(k ∈R ),下列命题正确的是( ) A.不论k 如何变化,圆心C 始终在一条直线上 B.所有圆C k 均不经过点(3,0) C.经过点(2,2)的圆C k 有且只有一个 D.所有圆的面积均为4π(k ,k ),在直线y=x 上,故A 正确;令(3-k )2+(0-k )2=4,化简得2k 2-6k+5=0,∵Δ=36-40=-4<0,∴2k 2-6k+5=0无实数根,故B 正确;由(2-k )2+(2-k )2=4,化简得k 2-4k+2=0,∵Δ=16-8=8>0,有两个不等实根,∴经过点(2,2)的圆C k 有两个,故C 错误;由圆的半径为2,得圆的面积为4π,故D 正确.故选ABD .14.已知点A (8,-6)与圆C :x 2+y 2=25,P 是圆C 上任意一点,则|AP|的最小值是 .82+(-6)2=100>25,故点A 在圆外,从而|AP|的最小值为√82+(-6)2-5=10-5=5.15.已知圆C 的半径为2,圆心在x 轴的正半轴上,且圆心到直线3x+4y+4=0的距离等于半径长,则圆C 的标准方程为 .(a ,0),且a>0,则点(a ,0)到直线3x+4y+4=0的距离为2,即√32+42=2,所以3a+4=±10,解得a=2或a=-143(舍去),则圆C 的标准方程为(x-2)2+y 2=4.x-2)2+y 2=416.矩形ABCD 的两条对角线相交于点M (2,1),AB 边所在直线的方程为x-2y-4=0,点T (-1,0)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.因为AB 边所在直线的方程为x-2y-4=0,且AD 与AB 垂直,所以直线AD 的斜率为-2.又因为点T (-1,0)在直线AD 上,所以AD 边所在直线的方程为y-0=-2(x+1),即2x+y+2=0.(2)由{x -2y -4=0,2x +y +2=0,解得{x =0,y =-2,所以点A 的坐标为(0,-2),因为矩形ABCD 两条对角线的交点为M (2,1),所以M 为矩形外接圆的圆心.又|AM|=√(2-0)2+(1+2)2=√13,从而矩形ABCD 外接圆的方程为(x-2)2+(y-1)2=13.学科素养创新练17.设A(x A,y A),B(x B,y B)为平面直角坐标系内的两点,其中x A,y A,x B,y B∈Z.令Δx=x B-x A,Δy=y B-y A,若|Δx|+|Δy|=3,且|Δx|·|Δy|≠0,则称点B为点A的“相关点”,记作B=τ(A).(1)求点(0,0)的“相关点”的个数.(2)点(0,0)的所有“相关点”是否在同一个圆上?若在,写出圆的方程;若不在,请说明理由.因为|Δx|+|Δy|=3(Δx,Δy为非零整数),所以|Δx|=1,|Δy|=2或|Δx|=2,|Δy|=1,所以点(0,0)的“相关点”有8个.(2)是.设点(0,0)的“相关点”的坐标为(x,y).由(1)知|Δx|2+|Δy|2=5,即(x-0)2+(y-0)2=5,所以所有“相关点”都在以(0,0)为圆心,√5为半径的圆上,所求圆的方程为x2+y2=5.。
圆方程测试题及答案
![圆方程测试题及答案](https://img.taocdn.com/s3/m/b09ccf9af605cc1755270722192e453610665be3.png)
圆方程测试题及答案圆的标准方程是 (x-a)^2 + (y-b)^2 = r^2,其中 (a, b) 是圆心坐标,r 是半径。
以下是一些关于圆方程的测试题及答案。
1. 已知圆的圆心坐标为 (2, 3),半径为 5,求该圆的标准方程。
答案:将圆心坐标 (2, 3) 和半径 5 代入标准方程,得到 (x-2)^2 + (y-3)^2 = 25。
2. 若圆 C 的方程为 x^2 + y^2 - 6x - 8y + 12 = 0,求圆 C 的圆心坐标和半径。
答案:将方程整理为标准形式,得到 (x-3)^2 + (y-4)^2 = 5,所以圆心坐标为 (3, 4),半径为√5。
3. 圆 O 的方程为 x^2 + y^2 = 9,点 P(1, 2) 是否在圆 O 内?答案:将点 P 的坐标代入圆 O 的方程,得到 1^2 + 2^2 = 5,因为 5 < 9,所以点 P 在圆 O 内。
4. 已知圆 A 的方程为 (x-1)^2 + (y+2)^2 = 16,圆 B 的方程为(x+2)^2 + y^2 = 9,求两圆的交点坐标。
答案:解方程组 (x-1)^2 + (y+2)^2 = 16 和 (x+2)^2 + y^2 = 9,得到两圆的交点坐标为 (-1, 0) 和 (3, 0)。
5. 若圆 M 的方程为 x^2 + y^2 - 2x + 4y - 3 = 0,求圆 M 的直径。
答案:将方程整理为标准形式,得到 (x-1)^2 + (y+2)^2 = 8,所以圆 M 的半径为√8,直径为2√8。
结束语:通过以上测试题及答案,可以检验你对圆方程的理解和应用能力。
希望这些题目能帮助你更好地掌握圆方程的相关知识。
圆的方程习题精讲,附有详细答案
![圆的方程习题精讲,附有详细答案](https://img.taocdn.com/s3/m/cbc0147302768e9951e738c8.png)
求证:不论 为何值,所给圆必经过两个定点。
证明:把所给方程写为:
这是经过以下两个圆的交点的圆系的方程:
所以,不论 为何值,所给圆必经过这两个圆的两个交点
轴对称
轴对称是解析几何的一个重要内容,利用它不仅可以解决点、线、曲线等关于直线的对称问题,而且还可以解决诸如最值、光线反射、角平分线等问题,并且常得到意想不到的效果。本文将以数例来谈谈它的应用。
点评:一般通过线心距 与圆半径 相等和待定系数法,或切线垂直于经过切点的半径来处理切线问题.
四、弦长问题
例4 (06天津卷理)设直线 与圆 相交于 两点,且弦 的长为 ,则 .
解由已知圆 ,即得圆心 和半径 .
∵线心距 ,且 ,∴ ,即 ,解得 .
点评:一般在线心距 、弦长 的一半和圆半径 所组成的直角三角形中处理弦长问题: .
∵圆上至少有三个不同的点到直线l:ax+by=0的距离为2 ,
∴圆心到直线的距离小于或等于 .
即 ,亦即 .故
∴15°
故所求角的范围为[15°,75°].
【点评】解析1采用几何法来处理直线与圆的位置关系问题,而解析2是通过代数的方法来处理.
(4)圆与圆的位置关系——由心心距和半径长确定
【例4】已知两圆 和 ,求:
即x2+y2+4x的最大值为7+2 ,最小值为
习题精选精讲圆标准方程
已知圆心 和半径 ,即得圆的标准方程 ;已知圆的标准方程 ,即得圆心 和半径 ,进而可解得与圆有关的任何问题.
一、求圆的方程
例1 (06重庆卷文)以点 为圆心且与直线 相切的圆的方程为( )
(A) (B)
(C) (D)
解已知圆心为 ,且由题意知线心距等于圆半径,即 ,∴所求的圆方程为 ,故选(C).
高二数学(3)圆的标准方程题型总结答案
![高二数学(3)圆的标准方程题型总结答案](https://img.taocdn.com/s3/m/8b0604722cc58bd63086bd23.png)
相互垂直,则实数 a 等于 ( )
A.1
B.3 或 1 3
【答案】D
C.1 或 1 3
D.1 或 3
【题型四】直线与圆位置
9.(2014 秋•宝坻区期中)若曲线 y 1 x2 与直线 kx y 1 3k 有交点,则 k 的取值范围
是( ) A.[0 , 1 ]
2 C. (0, 1)
2 【答案】A
3 分)
由
y y
3 1x 2
1 3
(x
1)
解得
x y
4 2
, 圆心坐标为
(4,
2)பைடு நூலகம்
;
(3
分)
半径 r2 (4 1)2 (2 3)2 10 ; (5 分)
圆 C 的方程为 (x 4)2 ( y 2)2 10 ; (6 分)
(Ⅱ)解法一:以 MN 为直径的圆过原点,OM ON ;(8 分)
(k 1)2 1 k2
6
;
(9
分)
x1
1,
y1
3 , x2
(k
1)2 1 k2
6
,
y2
k2 6k 1 k2
3
, (10
分)
由题意 OM ON , x1x2 y1 y2 0 ;
k2 2k 1 k2
7
3k 2 18k 1 k2
9
0
,解得
k
2
;
(11
分)
当 l 与 x 轴垂直时,解得 N (1,1) ,与题意不符 (12 分)
22 1 圆 C 的标准方程为 (x 1)2 ( y 2)2 5 ;
(Ⅱ) 点 (1, 1) 在圆内,且弦长为 2 2 5 ,应有两条直线. ①当 l 斜率存在时,设 l : y 1 k(x 1) ,即 kx y k 1 0 .
圆的方程知识点总结及相关高考习题详解
![圆的方程知识点总结及相关高考习题详解](https://img.taocdn.com/s3/m/b1c919c910661ed9ac51f3e2.png)
圆的方程1。
圆的定义 :在平面内到定点(圆心)的距离等于定长(半径)的点的集合。
2。
圆的方程标准式:222()()x a y b r -+-=,其中r 为圆的半径,(,)a b 为圆心. 一般式:220x y Dx Ey F ++++=(2240D E F +->)。
其中圆心为,22D E ⎛⎫-- ⎪⎝⎭,半径为22142D E F +- 参数方程:cos sin x r y r αα=⎧⎨=⎩,cos (sin x a r y b r ααα=+⎧⎨=+⎩是参数). 消去θ可得普通方程3。
点与圆的位置关系判断点(,)P x y 与圆2()x a -+22()y b r -=的位置关系代入方程看符号.4。
直线与圆的位置关系直线与圆的位置关系有:相离、相切和相交.判断方法: (1)代数法:(判别式法)0,0,0∆>∆=∆<时分别相离、相交、相切。
(2)几何法:圆心到直线的距离 ,,d r d r d r >=<时相离、相交、相切.5.弦长求法(1)几何法:弦心距d ,圆半径r ,弦长l ,则2222l d r ⎛⎫+= ⎪⎝⎭.(2)解析法:弦长公式= │x1—x2│√(k^2+1)=│y1—y2│√[(1/k^2)+1]6.圆与圆的位置关系:相交、相离、相切直线与圆的经典例题解析1.已知圆x2+y2+x —6y+m=0和直线x+2y —3=0交于P ,Q 两点,且OP ⊥OQ(O 为坐标原点),求该圆的圆心坐标及半径.解: 将x=3—2y 代入方程x2+y2+x —6y+m=0,得5y2—20y+12+m=0.设P (x1,y1),Q(x2,y2),则y1、y2满足条件:y1+y2=4, y1y2=.512m+ ∵OP ⊥OQ , ∴x1x2+y1y2=0。
而x1=3—2y1,x2=3-2y2。
∴x1x2=9-6(y1+y2)+4y1y2。
∴m=3,此时Δ>0,圆心坐标为⎪⎭⎫⎝⎛-321,, 半径r=25.圆的方程1.方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a 的取值范围是 ( D )A 。
(完整版)高中数学圆的方程(含圆系)典型题型归纳总结
![(完整版)高中数学圆的方程(含圆系)典型题型归纳总结](https://img.taocdn.com/s3/m/3cb46bcaad02de80d5d8409d.png)
两条切线的斜率分别是最大、最小值.
2k k 2
33
由d
1,得 k
.
1 k2
4
所以 y 2 的最大值为 3 3 ,最小值为 3 3 .
x1
4
4
令 x 2 y t ,同理两条切线在 x 轴上的截距分别是最大、最小值.
2m
由d
1 ,得 m 2 5 .
5
所以 x 2 y 的最大值为 2 5 ,最小值为 2 5 .
1.
(法 2)圆上点到原点距离的最大值
d 1 等于圆心到原点的距离
d
' 1
加上半径
1,圆上点到原点距离
的最小值 d2 等于圆心到原点的距离
'
d 1 减去半径 1.
所以 d1 32 42 1 6 . d2 32 42 1 4. 所以 dmax 36 . d min 16 .
类型三:圆中的最值问题
例 7:圆 x 2 y 2 4 x 4 y 10 0 上的点到直线 x y 14 0 的最大距离与最小距离的差是
注:方程①可看作经过两直线交点的直线系。 例 4 已知圆 C:(x-1)2+( y- 2)2=25,直线 l:(2m+1)x+(m+1) y- 7m-
4=0(m∈R) .
( 1)证明:不论 m 取什么实数,直线 l 与圆恒交于两点;
( 2)求直线被圆 C 截得的弦长最小时 l 的方程 .
剖析:直线过定点,而该定点在圆内,此题便可解得
2 ∴ l 的方程为 2x- y- 5=0. 评述:若定点 A 在圆外,要使直线与圆相交则需要什么条件呢?
思考讨论
又 r d 3 2 1. ∴与直线 3 x 4 y 11 0 平行的圆的切线的两个切点中有一个切点也符合题意.
高中数学圆的方程典型例题(含答案)
![高中数学圆的方程典型例题(含答案)](https://img.taocdn.com/s3/m/79dc71d201f69e314232947a.png)
高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3.若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a . ∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a . ∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+= )(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=. 将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
圆的方程考点与题型归纳
![圆的方程考点与题型归纳](https://img.taocdn.com/s3/m/819bef8aa21614791611283b.png)
圆的方程考点与题型归纳一、基础知识1.圆的定义及方程❶标准方程强调圆心坐标为(a ,b ),半径为r .❷(1)当D 2+E 2-4F =0时,方程表示一个点⎝⎛⎭⎫-D 2,-E 2; (2)当D 2+E 2-4F <0时,方程不表示任何图形. 2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.二、常用结论(1)二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是⎩⎪⎨⎪⎧A =C ≠0,B =0,D 2+E 2-4AF >0.(2)以A (x 1,y 1),B (x 2,y 2)为直径端点的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.考点一 求圆的方程[典例] (1)圆心在y 轴上,半径长为1,且过点A (1,2)的圆的方程是( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1 D .x 2+(y -3)2=4(2)圆心在直线x -2y -3=0上,且过点A (2,-3),B (-2,-5)的圆的方程为________. [解析] (1)根据题意可设圆的方程为x 2+(y -b )2=1,因为圆过点A (1,2),所以12+(2-b )2=1,解得b =2,所以所求圆的方程为x 2+(y -2)2=1.(2)法一:几何法设点C 为圆心,因为点C 在直线x -2y -3=0上,所以可设点C 的坐标为(2a +3,a ). 又该圆经过A ,B 两点,所以|CA |=|CB |, 即(2a +3-2)2+(a +3)2=(2a +3+2)2+(a +5)2,解得a =-2,所以圆心C 的坐标为(-1,-2),半径r =10, 故所求圆的方程为(x +1)2+(y +2)2=10. 法二:待定系数法设所求圆的标准方程为(x -a )2+(y -b )2=r 2,由题意得⎩⎪⎨⎪⎧(2-a )2+(-3-b )2=r 2,(-2-a )2+(-5-b )2=r 2,a -2b -3=0,解得a =-1,b =-2,r 2=10, 故所求圆的方程为(x +1)2+(y +2)2=10. 法三:待定系数法设圆的一般方程为x 2+y 2+Dx +Ey +F =0, 则圆心坐标为⎝⎛⎭⎫-D 2,-E2,由题意得⎩⎪⎨⎪⎧-D2-2×⎝⎛⎭⎫-E2-3=0,4+9+2D -3E +F =0,4+25-2D -5E +F =0,解得D =2,E =4,F =-5.故所求圆的方程为x 2+y 2+2x +4y -5=0. [答案] (1)A (2)x 2+y 2+2x +4y -5=0[题组训练]1.已知圆E 经过三点A (0,1),B (2,0),C (0,-1),且圆心在x 轴的正半轴上,则圆E 的标准方程为( )A.⎝⎛⎭⎫x -322+y 2=254 B.⎝⎛⎭⎫x +342+y 2=2516 C.⎝⎛⎭⎫x -342+y 2=2516D.⎝⎛⎭⎫x -342+y 2=254解析:选C 法一:根据题意,设圆E 的圆心坐标为(a,0)(a >0),半径为r ,则圆E 的标准方程为(x -a )2+y 2=r 2(a >0).由题意得⎩⎪⎨⎪⎧a 2+12=r 2,(2-a )2=r 2,a 2+(-1)2=r 2,解得⎩⎨⎧a =34,r 2=2516,所以圆E 的标准方程为⎝⎛⎭⎫x -342+y 2=2516. 法二:设圆E 的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则由题意得⎩⎪⎨⎪⎧1+E +F =0,4+2D +F =0,1-E +F =0,解得⎩⎪⎨⎪⎧D =-32,E =0,F =-1,所以圆E 的一般方程为x 2+y 2-32x -1=0,即⎝⎛⎭⎫x -342+y 2=2516. 法三:因为圆E 经过点A (0,1),B (2,0),所以圆E 的圆心在线段AB 的垂直平分线y -12=2(x -1)上.又圆E 的圆心在x 轴的正半轴上,所以圆E 的圆心坐标为⎝⎛⎭⎫34,0. 则圆E 的半径为|EB |=⎝⎛⎭⎫2-342+(0-0)2=54,所以圆E 的标准方程为⎝⎛⎭⎫x -342+y 2=2516. 2.已知圆心在直线y =-4x 上,且圆与直线l :x +y -1=0相切于点P (3,-2),则该圆的方程是________________.解析:过切点且与x +y -1=0垂直的直线方程为x -y -5=0,与y =-4x 联立可求得圆心为(1,-4).所以半径r =(3-1)2+(-2+4)2=22,故所求圆的方程为(x -1)2+(y +4)2=8. 答案:(x -1)2+(y +4)2=83.已知圆C 经过P (-2,4),Q (3,-1)两点,且在x 轴上截得的弦长等于6,则圆C 的方程为________________.解析:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 将P ,Q 两点的坐标分别代入得⎩⎪⎨⎪⎧ 2D -4E -F =20,3D -E +F =-10.①②又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根, 由|x 1-x 2|=6,得D 2-4F =36,④联立①②④,解得D =-2,E =-4,F =-8,或D =-6,E =-8,F =0. 故所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0. 答案:x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0 考点二 与圆有关的轨迹问题[典例] (1)点P (4,-2)与圆x 2+y 2=4上任意一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1(2)已知圆C :(x -1)2+(y -1)2=9,过点A (2,3)作圆C 的任意弦,则这些弦的中点P 的轨迹方程为________.[解析](1)设圆上任意一点为(x 1,y 1),中点为(x ,y ),则⎩⎪⎨⎪⎧x =x 1+42,y =y 1-22,即⎩⎪⎨⎪⎧x 1=2x -4,y 1=2y +2,代入x 2+y 2=4,得(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1.(2)设P (x ,y ),圆心C (1,1).因为P 点是过点A 的弦的中点,所以P A ―→⊥PC ―→. 又因为P A ―→=(2-x,3-y ),PC ―→=(1-x,1-y ). 所以(2-x )·(1-x )+(3-y )·(1-y )=0. 所以点P 的轨迹方程为⎝⎛⎭⎫x -322+(y -2)2=54. [答案] (1)A (2)⎝⎛⎭⎫x -322+(y -2)2=54[变透练清]1.(变条件)若将本例(2)中点A (2,3)换成圆上的点B (1,4),其他条件不变,则这些弦的中点P 的轨迹方程为________.解析:设P (x ,y ),圆心C (1,1).当点P 与点B 不重合时,因为P 点是过点B 的弦的中点,所以PB ―→⊥PC ―→.又因为PB ―→=(1-x,4-y ),PC ―→=(1-x,1-y ). 所以(1-x )·(1-x )+(4-y )·(1-y )=0. 所以点P 的轨迹方程为(x -1)2+⎝⎛⎭⎫y -522=94; 当点P 与点B 重合时,点P 满足上述方程. 综上所述,点P 的轨迹方程为(x -1)2+⎝⎛⎭⎫y -522=94.答案:(x -1)2+⎝⎛⎭⎫y -522=942.已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PB Q =90°,求线段P Q 中点的轨迹方程.解:(1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4.故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设P Q 的中点为N (x ,y ). 在Rt △PB Q 中,|PN |=|BN |,设O 为坐标原点,连接ON ,则ON ⊥P Q , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段P Q 中点的轨迹方程为x 2+y 2-x -y -1=0.[课时跟踪检测]A 级1.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的方程为( ) A .(x +1)2+(y +1)2=2 B .(x -1)2+(y -1)2=2 C .(x +1)2+(y +1)2=8D .(x -1)2+(y -1)2=8解析:选B 直径的两端点分别为(0,2),(2,0),所以圆心为(1,1),半径为2,故圆的方程为(x -1)2+(y -1)2=2.2.若圆x 2+y 2+2ax -b 2=0的半径为2,则点(a ,b )到原点的距离为( ) A .1 B .2 C. 2D .4解析:选B 由半径r =12D 2+E 2-4F =124a 2+4b 2=2,得a 2+b 2=2.∴点(a ,b )到原点的距离d =a 2+b 2=2,故选B.3.以(a,1)为圆心,且与两条直线2x -y +4=0与2x -y -6=0同时相切的圆的标准方程为( )A .(x -1)2+(y -1)2=5B .(x +1)2+(y +1)2=5C .(x -1)2+y 2=5D .x 2+(y -1)2=5解析:选A 由题意知,圆心到这两条直线的距离相等,即圆心到直线2x -y +4=0的距离d =|2a -1+4|5=|2a -1-6|5,解得a =1,d =5,∵直线与圆相切,∴r =d =5, ∴圆的标准方程为(x -1)2+(y -1)2=5.4.(2019·银川模拟)方程|y |-1=1-(x -1)2表示的曲线是( ) A .一个椭圆 B .一个圆 C .两个圆D .两个半圆解析:选D 由题意知|y |-1≥0,则y ≥1或y ≤-1,当y ≥1时,原方程可化为(x -1)2+(y -1)2=1(y ≥1),其表示以(1,1)为圆心、1为半径、直线y =1上方的半圆;当y ≤-1时,原方程可化为(x -1)2+(y +1)2=1(y ≤-1),其表示以(1,-1)为圆心、1为半径、直线y =-1下方的半圆.所以方程|y |-1=1-(x -1)2表示的曲线是两个半圆,选D.5.已知a ∈R ,若方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则此圆的圆心坐标为( )A .(-2,-4)B.⎝⎛⎭⎫-12,-1 C .(-2,-4)或⎝⎛⎭⎫-12,-1 D .不确定解析:选A ∵方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,∴a 2=a +2≠0,解得a =-1或a =2.当a =-1时,方程化为x 2+y 2+4x +8y -5=0.配方,得(x +2)2+(y +4)2=25,所得圆的圆心坐标为(-2,-4),半径为5.当a =2时,方程化为x 2+y 2+x +2y +52=0,此时方程不表示圆.故选A.6.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为( )A .(x +1)2+y 2=2B .(x +1)2+y 2=8C .(x -1)2+y 2=2D .(x -1)2+y 2=8解析:选A 直线x -y +1=0与x 轴的交点(-1,0). 根据题意,圆C 的圆心坐标为(-1,0).因为圆与直线x +y +3=0相切,所以半径为圆心到切线的距离, 即r =d =|-1+0+3|12+12=2,则圆的方程为(x +1)2+y 2=2.7.圆C 的直径的两个端点分别是A (-1,2),B (1,4),则圆C 的标准方程为________. 解析:设圆心C 的坐标为(a ,b ),则a =-1+12=0,b =2+42=3,故圆心C (0,3).半径r =12|AB |=12[1-(-1)]2+(4-2)2= 2.∴圆C 的标准方程为x 2+(y -3)2=2. 答案:x 2+(y -3)2=28.已知圆C 的圆心在x 轴上,并且经过点A (-1,1),B (1,3),若M (m ,6)在圆C 内,则m 的取值范围为________.解析:设圆心为C (a,0),由|CA |=|CB |, 得(a +1)2+12=(a -1)2+32,解得a =2. 半径r =|CA |=(2+1)2+12=10.故圆C 的方程为(x -2)2+y 2=10. 由题意知(m -2)2+(6)2<10, 解得0<m <4. 答案:(0,4)9.若一个圆的圆心是抛物线x 2=4y 的焦点,且该圆与直线y =x +3相切,则该圆的标准方程是________________.解析:抛物线x 2=4y 的焦点为(0,1),即圆心为(0,1),设该圆的标准方程是x 2+(y -1)2=r 2(r >0),因为该圆与直线y =x +3相切,所以r =d =|-1+3|2=2,故该圆的标准方程是x 2+(y -1)2=2.答案:x 2+(y -1)2=210.(2019·德州模拟)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的标准方程为________________. 解析:因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0,所以圆心到直线2x -y =0的距离d =2a 5=455,解得a =2,所以圆C 的半径r =|CM |=4+5=3,所以圆C 的标准方程为(x -2)2+y 2=9.答案:(x -2)2+y 2=911.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2). 所以直线CD 的方程为y -2=-(x -1), 即x +y -3=0.(2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.① 又直径|CD |=410, 所以|P A |=210. 所以(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2,所以圆心P (-3,6)或P (5,-2),所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40. 12.已知Rt △ABC 的斜边为AB ,且A (-1,0),B (3,0).求: (1)直角顶点C 的轨迹方程;(2)直角边BC 的中点M 的轨迹方程.解:(1)法一:设C (x ,y ),因为A ,B ,C 三点不共线, 所以y ≠0.因为AC ⊥BC ,所以k AC ·k BC =-1, 又k AC =y x +1,k BC =yx -3,所以y x +1·yx -3=-1,化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).法二:设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知|CD |=12|AB |=2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y . 由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0),将x 0=2x -3,y 0=2y 代入得(2x -4)2+(2y )2=4,即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).B 级1.(2019·伊春三校联考)已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -1)2=1B .(x -2)2+(y +2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1解析:选B 圆C 1:(x +1)2+(y -1)2=1,圆心C 1为(-1,1),半径为1.易知点C 1(-1,1)关于直线x -y -1=0对称的点为C 2,设C 2(a ,b ),则⎩⎪⎨⎪⎧ b -1a +1=-1,a -12-b +12-1=0,解得⎩⎪⎨⎪⎧ a =2,b =-2,所以C 2(2,-2),所以圆C 2的圆心为C 2(2,-2),半径为1,所以圆C 2的方程为(x -2)2+(y +2)2=1.故选B.2.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________________.解析:因为直线mx -y -2m -1=0(m ∈R )恒过点(2,-1),所以当点(2,-1)为切点时,半径最大,此时半径r =2,故所求圆的标准方程为(x -1)2+y 2=2.答案:(x -1)2+y 2=23.已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程.解:(1)把圆C 1的方程化为标准方程得(x -3)2+y 2=4,∴圆C 1的圆心坐标为C 1(3,0).(2)设M (x ,y ),∵A ,B 为过原点的直线l 与圆C 1的交点,且M 为AB 的中点,∴由圆的性质知:MC 1⊥MO ,∴MC 1―→·MO ―→=0.又∵MC 1―→=(3-x ,-y ),MO ―→=(-x ,-y ),∴x 2-3x +y 2=0.易知直线l 的斜率存在,故设直线l 的方程为y =mx ,当直线l 与圆C 1相切时,圆心到直线l 的距离d =|3m -0|m 2+1=2, 解得m =±255. 把相切时直线l 的方程代入圆C 1的方程化简得9x2-30x+25=0,解得x=5 3.当直线l经过圆C1的圆心时,M的坐标为(3,0).又∵直线l与圆C1交于A,B两点,M为AB的中点,∴53<x≤3.∴点M的轨迹C的方程为x2-3x+y2=0,其中53<x≤3,其轨迹为一段圆弧.。
圆的方程题型总结
![圆的方程题型总结](https://img.taocdn.com/s3/m/2a638524866fb84ae45c8d4c.png)
CD的延长线与⊙O的直径BE的延长线交于A点,连OC,ED.
(1)探索OC与ED的位置关系,并加以证明; (2)若OD=4,CD=6,求tan∠ADE的值. 【备考10】如图1-3-52,在△ABC中,BC=9,CA =12,BA=15, ∠ABC的平分线BD交AC于点 D,ED⊥DB交AB于点E. (1)求证:△ADC是直角三角形; (2)设⊙O是△BDE的外接圆,求证:AC是⊙O的切线.
C.
D.
16.已知直线过点,当直线与圆有两个交点时,其斜率的取值范围是
()
A. B. C. D.
17.圆在点处的切线方程为( )
A.
B.
C.
D.
18.过点P(2,1)作圆C:x2+y2-ax+2ay+2a+1=0的切线有两条,则a
取值范围是( )
A.a>-3
B.a<-3
C.-3<a<-
D.-3<a<-或a>2
【备考11】在足球比赛中,甲、乙两名队员互相配合向对方球门MN进 攻,当甲带球冲到A点时,乙已跟随冲到B点,如图1-3-53,此时甲 自己直接射门好,还是迅速将球传给乙,让乙射门好吗?
圆 专项练习题
1圆的方程
1.的圆心坐标
,半径
.
2.点()在圆x+y-2y-4=0的内部,则的取值范围是( )
A.-1<<1 B. 0<<1 C.–1<< D.-<<1
A.1条 B.2条 C.3条 D.4条 27.已知圆的方程为,且在圆外,圆的方程为 =,则与圆一定( )
A.相离 B.相切 C.同心圆 28.求圆心在直线上,且过两圆,
圆的方程经典题目带答案
![圆的方程经典题目带答案](https://img.taocdn.com/s3/m/b9c253571eb91a37f1115cbe.png)
圆的方程经典题目1.求满足下列条件的圆的方程(1)过点A(5,2)和B(3,-2),且圆心在直线32-=x y 上;(2)圆心在835=-y x 上,且与两坐标轴相切;(3)过ABC ∆的三个顶点)5,5()2,2()5,1(C B A 、、---;(4)与y 轴相切,圆心在直线03=-y x 上,且直线 x y =截圆所得弦长为72;(5)过原点,与直线1:=x l 相切,与圆1)2()1(:22=-+-y x C 相外切;(6)以C(1,1)为圆心,截直线2-=x y 所得弦长为22;(7)过直线042:=++y x l 和圆0142:22=+-++y x y x C 的交点,且面积最小的圆的方程. (8)已知圆满足①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为1:3③圆心到直线02:=-y x l 的距离为52.0,求该圆的方程. (9)求经过)3,1()2,4(-B A 两点且在两坐标轴上的四个截距之和是2的圆的方程2、已知方程0916)41(2)3(24222=++-++-+m y m x m y x 表示一个圆(1)求实数m的取值范围 (2)求该圆半径r 的取值范围(3)求面积最大的圆的方程(4)求圆心的轨迹方程1. 已知圆2522=+y x , 求下列相应值(1)过)4,3(-的切线方程(2)过)7,5(的切线方程、切线长;切点弦方程、切点弦长 (3)以)2,1(为中点的弦的方程 (4)过)2,1(的弦的中点轨迹方程 (5)斜率为3的弦的中点的轨迹方程2. 已知圆 0622=+-++m y x y x 与直线032=-+y x 相交于Q P 、两点,O 为坐标原点,若OQ OP ⊥,求实数m 的值.3、已知直线b x y l +=:与曲线21:x y C -=有两个公共点,求b 的取值范围4、一束光线通过点)18,25(M 射到x 轴上,被反射到圆25)7(:22=-+y x C 上.求: (1)通过圆心的反射线方程,(2)在x 轴上反射点A 的活动范围.5、圆034222=-+++y x y x 上到直线0=++m y x 的距离为2的点的个数情况已知两圆01010:221=--+y x y x O 和04026:222=--++y x y x O (1)判断两圆的位置关系 (2)求它们的公共弦所在的方程 (3)求公共弦长 (4)求公共弦为直径的圆的方程.题型五、最值问题思路1:几何意义 思路2:参数方程 思路3、换元法 思路4、函数思想 1. 实数y x ,满足0124622=+--+y x y x(1)求x y 的最小值 (2)求22y x ++32-y 的最值;(3)求y x 2-的最值(4)|143|-+y x 的最值 2. 圆25)2()1(:22=-+-y x C 与)(047)1()12(:R m m y m x m l ∈=--+++.(1)证明:不论m 取什么实数直线l与圆C 恒相交(2)求直线l 被圆C 截得最短弦长及此时的直线方程3、平面上有A (1,0),B (-1,0)两点,已知圆的方程为()()222342x y -+-=.⑴在圆上求一点1P 使△AB 1P 面积最大并求出此面积;⑵求使22AP BP +取得最小值时的点P 的坐标.4、已知P 是0843:=++y x l 上的动点,PB PA ,是圆012222=+--+y x y x 的两条切线,A 、B 是切点,C 是圆心,那么四边形PACB 的面积的最小值为5、已知圆的方程为08622=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为_________6、已知圆的方程为08622=--+y x y x .设该圆过点(3,5)的互相垂直的弦分别为AC 和BD ,则四边形ABCD 的面积为_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的方程题型总结一、基础知识1.圆的方程圆的标准方程为___________________;圆心_________,半径________.圆的一般方程为___________ _________ ____;圆心________ ,半径__________. 二元二次方程220Ax Cy Dx Ey F ++++=表示圆的条件为: (1)_______ _______; (2) _______ __ . 2.直线和圆的位置关系:直线0Ax By C ++=,圆222()()x a y b r -+-=,圆心到直线的距离为d. 则:(1)d=_________________;(2)当______________时,直线与圆相离;当______________时,直线与圆相切; 当______________时,直线与圆相交; (3)弦长公式:____________________. 3. 两圆的位置关系圆1C :()()222111x a y b r -+-=; 圆2C :()()222222x a y b r -+-=则有:两圆相离⇔ __________________; 外切⇔__________________;相交⇔__________________________; 内切⇔_________________; 内含⇔_______________________.二、题型总结:(一)圆的方程☆1.22310x y x y ++--=的圆心坐标 ,半径 . ☆☆2.点(1,2-a a )在圆x 2+y 2-2y -4=0的内部,则a 的取值范围是( )A .-1<a <1B . 0<a <1C .–1<a <51 D .-51<a <1 ☆☆3.若方程22220(40)x y Dx Ey F D E F ++++=+->所表示的曲线关于直线y x =对称,必有( )A .E F =B .D F =C .DE = D .,,D EF 两两不相等☆☆☆4.圆0322222=++-++a a ay ax y x 的圆心在( )A .第一象限B .第二象限C .第三象限D .第四象限☆ 5.若直线34120x y -+=与两坐标轴交点为A,B,则以线段AB 为直径的圆的方程是 ( )A. 22430x y x y ++-= B. 22430x y x y +--= C. 224340x y x y ++--= D. 224380x y x y +--+=☆☆6.过圆224x y +=外一点()4,2P 作圆的两条切线,切点为,A B ,则ABP ∆的外接圆方程是( )A. 42x y --22()+()=4B. 2x y -22+()=4 C. 42x y ++22()+()=5 D. 21x y -+22()+()=5☆7.过点()1,1A -,()1,1B -且圆心在直线20x y +-=上的圆的方程( )A. ()()22314x y -++=B.()()22314x y ++-= C. ()()22111x y -+-= D. ()()22111x y +++=☆☆8.圆222690x y x y +--+=关于直线250x y ++=对称的圆的方程是 ( )A .22(7)(1)1x y +++=B .22(7)(2)1x y +++=C . 22(6)(2)1x y +++= D .22(6)(2)1x y ++-= ☆9.已知△ABC 的三个项点坐标分别是A (4,1),B (6,-3),C (-3,0),求△ABC 外接圆的方程.☆10.求经过点A(2,-1),和直线1=+y x 相切,且圆心在直线x y 2-=上的圆的方程.2.求轨迹方程☆11.圆224120x y y +--=上的动点Q ,定点()8,0A ,线段AQ 的中点轨迹方程________________ .☆☆☆12.方程()04122=-+-+y x y x 所表示的图形是( ) A .一条直线及一个圆 B .两个点C .一条射线及一个圆D .两条射线及一个圆☆☆13.已知动点M 到点A (2,0)的距离是它到点B (8,0)的距离的一半, 求:(1)动点M 的轨迹方程;(2)若N 为线段AM 的中点,试求点N 的轨迹.3.直线与圆的位置关系☆14.圆()2211x y -+=的圆心到直线33y x =的距离是( ) A.12B. 32C. 1D. 3☆☆15.过点()2,1的直线中,被22240x y x y +-+=截得弦长最长的直线方程为 ( )A. 350x y --=B. 370x y +-=C. 330x y +-=D. 310x y -+=☆☆16.已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是()A. ),(2222-B. ),(22-C.),(4242- D. ),(8181- ☆17.圆0422=-+x y x 在点)3,1(P 处的切线方程为( )A .023=-+y xB .043=-+y xC .043=+-y xD .023=+-y x☆☆18.过点P (2,1)作圆C :x 2+y 2-ax +2ay +2a +1=0的切线有两条,则a 取值范围是( ) A .a >-3 B .a <-3C .-3<a <-52D .-3<a <-52或a >2 ☆☆19.直线032=--y x 与圆9)3()2(22=++-y x 交于E 、F 两点,则EOF ∆(O 为原点)的面积为( )A .32B .34C 65D 35☆☆20.过点M (0,4),被圆4)1(22=+-y x 截得弦长为32的直线方程为 _ _.☆☆☆21.已知圆C :()()252122=-+-y x 及直线()()47112:+=+++m y m x m l .()R m ∈(1)证明:不论m 取什么实数,直线l 与圆C 恒相交;(2)求直线l 与圆C 所截得的弦长的最短长度及此时直线l 的方程.☆☆☆22.已知圆x 2+y 2+x -6y +m =0和直线x +2y -3=0交于P 、Q 两点,且以PQ 为直径的圆恰过坐标原点,求实数m 的值.4.圆与圆的位置关系☆23.圆2220x y x +-=与圆2240x y y ++=的位置关系为☆24.已知两圆01422:,10:222221=-+++=+y x y x C y x C .求经过两圆交点的公共弦所在的直线方程_______ ____.☆25.两圆x 2+y 2-4x +6y =0和x 2+y 2-6x =0的连心线方程为( ) A .x +y +3=0 B .2x -y -5=0C .3x -y -9=0D .4x -3y +7=0☆26.两圆221:2220C x y x y +++-=,222:4210C x y x y +--+=的公切线有且仅有( )A .1条B .2条C .3条D .4条☆☆☆27.已知圆1C 的方程为0),(=y x f ,且),(00y x P 在圆1C 外,圆2C 的方程为),(y x f =),(00y x f ,则1C 与圆2C 一定( )A .相离B .相切C .同心圆D .相交☆☆28.求圆心在直线0x y +=上,且过两圆22210240x y x y +-+-=,22x y +2280x y ++-=交点的圆的方程.5.综合问题☆☆29.点A 在圆222x y y +=上,点B 在直线1y x =-上,则AB 的最小 ( )1 B 1-☆☆30.若点P 在直线23100x y ++=上,直线,PA PB 分别切圆224x y +=于,A B 两点,则四边形PAOB 面积的最小值为( )A 24B 16C 8D 4☆☆31. 直线b x y +=与曲线21y x -=有且只有一个交点,则b 的取值范围是( ) A .2=bB .11≤<-b 且2-=bC .11≤≤-bD .以上答案都不对☆☆32.如果实数,x y 满足22410x y x +-+=求:(1)yx的最大值; (2)y x -的最小值;(3)22x y +的最值.☆☆33.一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70 km 处,受影响的范围是半径长30 km 的圆形区域.已知港口位于台风正北40 km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?圆的方程题型总结参考答案1. 3122(-,);2;2.D ;3.C ;4.D ;5.A ;6.D ;7.C ;8.A ; 9.解:解法一:设所求圆的方程是222()()x a y b r -+-=. ① 因为A (4,1),B (6,-3),C (-3,0)都在圆上, 所以它们的坐标都满足方程①,于是222222222(4)(1),(6)(3),(3)(0).a b r a b r a b r ⎧-+-=⎪-+--=⎨⎪--+-=⎩可解得21,3,25.a b r =⎧⎪=-⎨⎪=⎩所以△ABC 的外接圆的方程是22(1)(3)25x y -++=.解法二:因为△ABC 外接圆的圆心既在AB 的垂直平分线上,也在BC 的垂直平分线上,所以先求AB 、BC 的垂直平分线方程,求得的交点坐标就是圆心坐标.∵31264AB k --==--,0(3)1363BC k --==---, 33(,)22-,线段AB 的中点为(5,-1),线段BC 的中点为∴AB 的垂直平分线方程为11(5)2y x +=-,BC 的垂直平分线方程333()22y x +=-. ②解由①②联立的方程组可得1,3.x y =⎧⎨=-⎩∴△ABC 外接圆的圆心为E(1,-3),半径||5r AE ===.故△ABC 外接圆的方程是22(1)(3)25x y -++=.10.解:因为圆心在直线x y 2-=上,所以可设圆心坐标为(a ,-2a ),据题意得:2|12|)12()2(22--=+-+-a a a a , ∴ 222)1(21)21()2(a a a +=-+-,∴ a =1, ∴ 圆心为(1,-2),半径为2, ∴所求的圆的方程为2)2()1(22=++-y x .11.41x y --22()+()=4;12.D ;13.解:(1)设动点M (x ,y )为轨迹上任意一点,则点M 的轨迹就是集合 P 1{|||||}2M MA MB ==.由两点距离公式,点M 适合的条件可表示为 22221(2)(8)2x y x y -+=-+,平方后再整理,得 2216x y +=. 可以验证,这就是动点M 的轨迹方程.(2)设动点N 的坐标为(x ,y ),M 的坐标是(x 1,y 1).由于A (2,0),且N为线段AM 的中点,所以 122x x +=, 102y y +=.所以有122x x =-,12y y = ① 由(1)题知,M 是圆2216x y +=上的点,所以M 坐标(x 1,y 1)满足:221116x y +=②将①代入②整理,得22(1)4x y -+=.所以N 的轨迹是以(1,0)为圆心,以2为半径的圆(如图中的虚圆为所求).14.解法一:如图,在矩形APBQ 中,连结AB ,PQ 交于M ,显然AB OM ⊥,PQ AB =,在直角三角形AOM 中,若设),(y x Q ,则)2,2(by a x M ++. 由222OA AMOM =+,即22222])()[(41)2()2(r b y a x b y a x =-+-++++, 也即)(222222b a r y x +-=+,这便是Q 的轨迹方程.解法二:设),(y x Q 、),(11y x A 、),(22y x B ,则22121r y x =+,22222r y x =+.又22AB PQ =,即)(22)()()()(2121222122122y y x x r y y x x b y a x +-=-+-=-+-.①又AB 与PQ 的中点重合,故21x x a x +=+,21y y b y +=+,即)(22)()(2121222y y x x r b y a x ++=+++ ②①+②,有)(222222b a r y x +-=+. 这就是所求的轨迹方程.15.A ;16.A ; 17.C ;18.D ; 19.D ;20.C ;21.x =0或15x +8y -32=0;22.解:(1)直线方程()()47112:+=+++m y m x m l ,可以改写为()0472=-++-+y x y x m ,所以直线必经过直线04072=-+=-+y x y x 和的交点.由方程组⎩⎨⎧=-+=-+04,072y x y x 解得⎩⎨⎧==1,3y x 即两直线的交点为A )1,3( 又因为点()1,3A 与圆心()2,1C 的距离55<=d ,所以该点在C 内,故不论m 取什么实数,直线l 与圆C 恒相交.(2)连接AC ,过A 作AC 的垂线,此时的直线与圆C 相交于B 、D .BD 为直线被圆所截得的最短弦长.此时,545252,5,5=-===BD BC AC 所以.即最短弦长为54.又直线AC 的斜率21-=AC k ,所以直线BD 的斜率为2.此时直线方程为:().052,321=---=-y x x y 即23.解:由01220503206222=++-⇒⎩⎨⎧=-+=+-++m y y y x m y x y x ⎪⎩⎪⎨⎧+==+∴51242121m y y y y 又OP ⊥OQ , ∴x 1x 2+y 1y 2=0,而x 1x 2=9-6(y 1+y 2)+4y 1y 2= 5274-m∴05125274=++-mm 解得m =3. 24.相交; 25.02=-+y x ;26.C ;27.B ; 28.C ;29.解法一:(利用圆心到两交点的距离相等求圆心) 将两圆的方程联立得方程组22222102402280x y x y x y x y ⎧+-+-=⎨+++-=⎩,解这个方程组求得两圆的交点坐标A (-4,0),B (0,2).因所求圆心在直线0x y +=上,故设所求圆心坐标为(,)x x -,则它到上面的两上交点 (-4,0)和(0,2)的距离相等,故有2222(4)(0)(2)x x x x --++=++,即412x =-,∴3x =-,3y x =-=,从而圆心坐标是(-3,3).又22(43)310r =-++ 故所求圆的方程为22(3)(3)10x y ++-=.解法二:(利用弦的垂直平分线过圆心求圆的方程) 同解法一求得两交点坐标A (-4,0),B (0,2),弦AB 的中垂线为230x y ++=, 它与直线0x y +=交点(-3,3)就是圆心,又半径10r =故所求圆的方程为22(3)(3)10x y ++-=.解法三:(用待定系数法求圆的方程)同解法一求得两交点坐标为A (-4,0),B (0,2).设所求圆的方程为222()()x a y b r -+-=,因两点在此圆上,且圆心在0x y +=上,所以得方程组222222(4)(3)0a b r a b r a b ⎧--+=⎪+-=⎨⎪+=⎩,解之得3310a b r ⎧=-⎪=⎨⎪=⎩,故所求圆的方程为22(3)(3)10x y ++-=.解法四:(用“圆系”方法求圆的方程.过后想想为什么?) 设所求圆的方程为222221024(228)0x y x y x y x y λ+-+-++++-=(1)λ≠-,即 222(1)2(5)8(3)0111x y x y λλλλλλ-+++-+-=+++. 可知圆心坐标为15(,)11λλλλ-+-++. 因圆心在直线0x y +=上,所以15011λλλλ-+-=++,解得2λ=-.将2λ=-代入所设方程并化简,求圆的方程226680x y x y ++-+=. 30.A ; 31.C ; 32.B ;33.(1)3;(2)62--;(3)()22min43x y+= ;()22max743x y +=+.34解法一:设点P 、Q 的坐标为),(11y x 、),(22y x .一方面,由OQ OP ⊥,得1-=⋅OQ OP k k ,即12211-=⋅x y x y ,也即:02121=+y y x x . ① 另一方面,),(11y x 、),(22y x 是方程组⎩⎨⎧=+-++=-+0603222m y x y x y x 的实数解,即1x 、2x 是方程02741052=-++m x x ②的两个根.∴221-=+x x ,527421-=m x x . ③ 又P 、Q 在直线032=-+y x 上,∴])(39[41)3(21)3(2121212121x x x x x x y y ++-=-⋅-=. 将③代入,得51221+=m y y . ④将③、④代入①,解得3=m ,代入方程②,检验0>∆成立, ∴3=m .解法二:由直线方程可得y x 23+=,代入圆的方程0622=+-++m y x y x ,有0)2(9)6)(2(31222=++-+++y x my x y x y x ,整理,得0)274()3(4)12(22=-+-++y m xy m x m . 由于0≠x ,故可得012)3(4))(274(2=++-+-m xym x y m .∴OP k ,OQ k 是上述方程两根.故1-=⋅OQ OP k k .得127412-=-+m m,解得3=m .经检验可知3=m 为所求.35解:以A 、B 所确定的直线为x 轴,AB 的中点O 为坐标原点,建立如图所示的平面直角坐标系.∵10=AB ,∴)0,5(-A ,)0,5(B .设某地P 的坐标为),(y x ,且P 地居民选择A 地购买商品便宜,并设A 地的运费为a 3元/公里,B 地的运费为a 元/公里.因为P 地居民购货总费用满足条件:价格+A 地运费≤价格+B 地的运费即:2222)5()5(3y x a y x a +-≤++. ∵0>a ,∴2222)5()5(3y x y x +-≤++化简整理得:222)415()425(≤++y x ∴以点)0,425(-为圆心415为半径的圆是两地购货的分界线. 圆内的居民从A 地购货便宜,圆外的居民从B 地购货便宜,圆上的居民从A 、B 两地购货的总费用相等.因此可随意从A 、B 两地之一购货.说明:实际应用题要明确题意,建议数学模型.。