第11章(无穷级数)之内容方法

合集下载

高等数学第11章 无穷级数

高等数学第11章 无穷级数
n→∞
un
=
lim
n→∞
1 n
=
0.

推论3 若 un →/ 0, 则级数 ∑ un必发散 .
n=1
小结:
un → 0
un →/ 0

∑ u n 收敛
n=1 ∞
∑ u n 发散
n=1
二、典型例题
例1
判别级数


ln
n
+
1
的敛散性.
n=1 n
解 部分和
Sn
= ln 2 1
+ ln 3 2
+ ln 4 3
第十一章 无穷级数
本章基本要求
1. 理解无穷级数收敛、发散以及和的概念,了 解无穷级数的基本性质和收敛的必要条件。
2.了解正项级数的比较审敛法以及几何级数与 p—级数的敛散性,掌握正项级数的比值审敛法。
3.了解交错级数的莱布尼茨定理,会估计交错 级数的截断误差。了解绝对收敛与条件收敛的概 念及二者的关系。
设收敛级数
S=

∑ un,σ =

∑ vn,则
n=1
n=1

∑(un ±vn) 也收敛, 其和为 S ± σ .
n=1
注 1º 收敛级数可逐项相加(减) .
2o

∑ ( un ± vn ) 的敛散性规律:
n=1
收收为收,收发为发,发发不一定发.
例如, 取 un = (−1)2n , vn = (−1)2n+1, 而 un + vn = 0
+
L
+
ln
n
+ n
1
拆项相消

高等数学无穷级数111精品文档

高等数学无穷级数111精品文档

的敛散性.
解 由于
nlimun
lim n2 2n5 n(3n1)(3n1)

1 9
0
发散
用级数收敛的必要条件 ln imun 0, 判别级数发散.

判别级数
n1

1 3n

lnn 3 3n

敛散性.

因调和级数
1
n 1 3 n 发散.
1
n1n(n51)21n

n1
5 n(n1)

n1
1 2n
n 1n(n 51)5n 1 n 1n1 1
令gn5kn1k1k11
5(1
1 ), n1
ln im gn5ln i (m 1n1 1)5,
常数项级数的基本概念
级数收敛的必要条件 lnimun 0

记住等比级数(几何级数) aq n 的收敛性
n0
基本审敛法
1. 当ln i m un0,则级数发散
2. 由定义, 若sns,则级数收敛
3. 按基本性质
级数收敛的必要条件: ln im un 0

设 un 为收敛级数, a为非零常数,

性质4 设级数 u n 收敛, 则对其各项任意
n1
加括号所得 新级数仍收敛于原级数的和.
注 ①一个级数加括号后所得新级数发散,
则原级数发散.
事实上, 设级数收敛, 根据性质4 加括后 的级数就应该收敛了.
②一个级数加括号后收敛, 原级数敛散 性不定.
例(如 11)(11)收敛 1111 发散
部分和定义 un 前n项 的 和 n1 S n u 1 u 2 u 3 u n

高等数学第11章 无穷级数

高等数学第11章 无穷级数

18
19
20
21
22
11.4 幂级数
幂级数是函数项级数的一种重要情形,我们首先介 绍函数项级数的几个基本概念。 11.4.1 函数项级数的一些基本概念设{un(x)} 是定义在区间I上的一个函数列,则由这函数列所构成的 表达式
23
11.4.2 幂级数的基本概念
24
25
26
27
28
48
49
50
51
52
53
54
55
56
57
58
59
60
61
35
36
37
38
39
40
41
11.6 函数幂级数展开式的应用
11.6.1 近似计算 例11.28 计算ln2的近似值,误差不超过0.0001. 解 若用展开式
42
43
44
பைடு நூலகம்
45
46
47
11.7 傅立叶级数
11.7.1 三角级数 我们常会碰到周期运动,如描述简谐振动的正弦函 数
29
30
31
32
33
34
11.5 函数展开成幂级数
前面已讨论了幂级数的性质以及求一个收敛的幂级 数的和函数.若给定一个函数,能否找一个幂级数来表示 此函数?如果能找到,函数的幂级数表示式是否唯一? 11.5.1 泰勒级数 高等数学上册讲过泰勒公式,若f(x)在点x0的某 邻域内存在n+1阶的连续导数,则
8
9
10
11
12
13
14
15
11.3 一般项级数
上节我们讨论了正项级数的敛散性,一般级数的敛 散性问题要比正项级数复杂,本节我们只讨论特殊类型 级数的敛散性问题。 11.3.1 交错级数

无穷级数知识点总结

无穷级数知识点总结

无穷级数知识点总结一、无穷级数的定义无穷级数是指由无限个实数或复数项组成的数列之和。

一般地,我们用数列 {a_n} 来表示无穷级数的各项,那么无穷级数就可以表示为:S = a_1 + a_2 + a_3 + ...其中 S 代表无穷级数的和,而 a_1, a_2, a_3, ... 分别代表无穷级数的各项。

无穷级数通常可以用极限的概念来进行定义,即无穷级数的和就是数列的极限。

如果数列 {S_n} 的部分和数列收敛到某个数 L,那么无穷级数 S 的和便为 L,即:S = lim (n->∞) S_n = L这里的 S_n 代表无穷级数的部分和数列,它可以写成:S_n = a_1 + a_2 + ... + a_n无穷级数的定义是无穷数列极限的推广,它引入了无穷个数的概念,因此无穷级数的性质和收敛性等问题相对于有限级数来说更加复杂和多样。

二、无穷级数的性质无穷级数在数学中有着许多重要的性质,这些性质对于研究无穷级数的收敛性、计算方法以及应用等方面都有着重要的作用。

下面我们将详细介绍无穷级数的一些重要性质。

1. 无穷级数的有限项相加结果相同如果无穷级数的有限项相加的结果相同,那么这个无穷级数的和也相同。

即如果无穷级数S = a_1 + a_2 + a_3 + ... 的前 n 项之和等于 S_n,而无穷级数 T = b_1 + b_2 + b_3 + ... 的前 n 项之和等于 T_n,并且 S_n = T_n,那么这两个无穷级数的和也相等,即 S = T。

2. 无穷级数的倒序相加结果相同如果无穷级数的倒序相加的结果与原来的无穷级数相同,那么这个无穷级数的和同样相同,即如果无穷级数 S = a_1 + a_2 + a_3 + ... 的倒序相加的结果也等于 S,那么这个无穷级数的和就等于 S。

3. 无穷级数的部分和数列的有界性如果无穷级数的部分和数列 {S_n} 是有界的,即存在一个正数 M,使得对于所有的正整数n,都有 |S_n| <= M,那么这个无穷级数是收敛的。

高等数学(三)第11章 无穷级数

高等数学(三)第11章 无穷级数

无穷级数是高等数学的一个重要内容,是无限个常量或变量之和的数学模型,它是表示函数、研究函数性态以及进行数值计算的一种有效工具,在数学理论以及工程技术中都有广泛的应用.11.1 数项级数的概念及性质11.1.1 数项级数的概念 实例1 小球运动的时间小球从1米高处自由落下, 每次跳起的高度减少一半, 问小球运动的总时间. 解 由自由落体运动方程221gt s =知g s t 2=.设k t 表示第k 次小球落地的时间, 则小球运动的总时间为+++++=k t t t t T 222321.这里出现了无穷多个数依次相加的式子.在物理、化学等许多学科中,也常能遇到这种无穷多个数或函数相加的情形,在数学上称之为无穷级数.上述级数的定义只是一个形式上的定义,怎样理解无穷级数中无穷多个数相加呢?我们可以从有限项出发,观察它们的变化趋势,由此来理解无穷多个数量相加的含义.令n n u u u S +++= 21,称n S 为级数(11.1.1)的部分和.当n 依次为1,2,3,…,时,得到一个数列1S ,2S ,…,n S ,…,称为级数(11.1.1)的部分和数列.从形式上不难知道∑∞=1n n u =n n S ∞→lim ,所以我们可以根据部分和数列的收敛与发散来定义级数的敛散性. 当级数∑∞=1n n u 收敛于S 时,常用其部分和S n 作为和S 的近似值,其差∑∑∑∞+==∞==-=-111n k knk k k k n u u u S S叫做该级数的余项,记为n r .用部分和S n 近似代替和S 所产生的绝对误差为| r n |.例11.1.1 判定级数 ++⋅++⋅+⋅)1(1321211n n 的敛散性.解 所给级数的一般项为111)1(1+-=+=n n n n u n ,部分和)1(1321211+⋅++⋅+⋅=n n S n 111)111()3121()211(+-=+-++-+-=n n n ,所以1)111(lim lim =+-=∞→∞→n S n n n ,故该级数收敛于1,即1)1(11=+∑∞=n n n . 例11.1.2 考察波尔察诺级数∑∞=--11)1(n n 的敛散性.解 它的部分和数列是1, 0, 1, 0, … ,显然n n S ∞→lim 不存在,∑∞=--11)1(n n 发散.例11.1.3 讨论几何级数(也称等比级数)∑∞=0n naq +++++=n aq aq aq a 2的敛散性,其中a ≠ 0, q 称为级数的公比.解 该几何级数前n 项的部分和21(1),11 ,1n n n a q q qS a aq aq aq na q -⎧-≠⎪-=++++=⎨⎪=⎩, 当q = 1时,由于lim lim n n n S na →∞→∞==∞,所以级数发散;当q = -1时,级数变为 +-+-a a a a ,显然lim n n S →∞不存在,所以级数发散;当| q | > 1时,由于lim n n S →∞=∞,所以级数发散;当| q | < 1时,由于lim 1n n a S q →∞=-,所以级数收敛于1a q-.因此,几何级数0n n aq ∞=∑当| q | < 1时收敛于qa-1;当| q | ≥ 1时发散. 几何级数的敛散性非常重要,许多级数敛散性的判别,都要借助几何级数的敛散性来实现.11.2 .2 数项级数的性质根据级数敛散性的概念,可以得到级数的几个基本性质.12()n n n ku k u u u kS ++=+++=,112)()k k k n k u u u u u u +++++++-+++S S -lim .从性质1的证明可以看出,如果n S 没有极限且k ≠0,则n σ也不可能有极限.换句话说,级数的每一项同乘以一个非零常数,其敛散性不改变.例如,47412)31(1313213231(32(3)1(2111=-=---+-=-+=-+∑∑∑∞=∞=∞=nn nn n n n n .由性质4知,若级数加括号后发散,则原级数必发散.但加括号后收敛的级数,去括号后未必收敛.例如,级数⋅⋅⋅+-+-+-)11()11(11()收敛,但去括号后级数⋅⋅⋅+-+-+-111111却发散.由级数收敛的必要条件可知,如果0lim ≠∞→n n u 或不存在,则级数一定发散.因此可用性质5判定级数∑∞=1n n u 发散性,有时性质5也称为“级数发散的第n 项判别法”.例11.1.4 判定级数∑∞=+112n n n 的敛散性.解 由于02112limlim ≠=+=∞→∞→n n u n n n ,故此级数发散.例11.1.5 证明调和级数 +++++n131211发散. 证明 将调和级数的两项、两项、四项、…、2m 项、… 加括号,得到一个新级数++++++++++++++++)21221121()81716151()4131()211(1m m m .因为 2141414131 ,21211=+>+>+, ,218181818181716151=+++>+++,21212121212211211111=+++>+++++++++m m m m m m , 所以新级数前m + 1项的和大于21+m ,故新级数发散.由性质4知,调和级数发散. 由于调和级数的一般项)(01∞→→=n nu n ,因此例5说明:级数的一般项u n 趋于零仅仅是级数收敛的必要条件,并非充分条件.所以,不可用性质5来判定级数的收敛性.例11.1.6 有甲,乙,丙三人按以下方式分一个苹果:先将苹果分成4份,每人各取一份;然后将剩下的一份又分成4份,每人又取一份;按此方法一直下去.那么最终每人分得多少苹果?解 依题意,每人分得的苹果为+++++n 4141414132. 它是41==q a 的等比级数,因此其和为 3141141=-=S . 即最终每人分得苹果的31.习题 11.11.写出下列级数的一般项.(1) -+-+-5645342312; (2) +-+-97535432a a a a .2.判断下列级数的敛散性. (1))1(1n n n -+∑∞=; (2)∑∞=16sinn n π; (3) ++⋅-++⋅+⋅)12()12(1531311n n ; (4) +++++++41312110021;(5)n n n n-∞=-+-∑)11()1(11; (6))31(1n n n+∑∞=.11.2 数项级数的审敛法11.2.1正项级数及其审敛法对于正项级数∑∞=1n n u ,其部分和S n = S n -1 + u n ≥ S n -1 (n = 2, 3, …),即部分和数列{S n }单调递增.若数列{S n }有界,则由单调有界数列必有极限的准则知,数列{S n }收敛,所以正项级数∑∞=1n n u 必收敛,设其和为S ,则有S n ≤ S .反之,若正项级数∑∞=1n n u 收敛于S ,则由收敛数列必有界的性质知,数列{S n }必有界.于是我们得到下述重要结论:例11.2.1证明正项级数 +++++=∑∞=!1!21!111!10n n n 收敛.证明 因为),2,1( 2122211211!11 ==⋅⋅⋅⋅≤⋅⋅⋅=-n n n n , 于是对任意的n ,有2221212111)!1(1!21!111-+++++≤-++++=n n n S,3213211211121<-=--+=--n n即正项级数∑∞=0!1n n 的部分和数列有界,故级数∑∞=0!1n n 收敛.利用定理11.2.1,可导出正项级数的若干审敛法,这里只介绍其中较为重要的两个.例11.2.2讨论广义调和级数(又称p —级数) +++++=∑∞=pppn pn n13121111 (其中p为常数)的敛散性.解 当 p ≤ 1时,有n n p 11≥,由于∑∞=11n n发散,由定理2.2知,p 级数发散. 当p >1时,取n x n ≤<-1,有ppx n 11≤,得到11111d d (2,3,)n n p pp n n x x n n n x --=≤=⎰⎰ 于是p 级数的部分和111123n p p p S n=++++231211111d d d np p pn x x x x x x -≤++++⎰⎰⎰1111111d 1(11,11n p p x x p n p -=+=+-<+--⎰即部分和数列{S n }有界,由定理11.2.1知,p 级数收敛.综上所述,当p > 1时,p 级数收敛 ;当p ≤ 1时,p 级数发散,以后我们常用p 级数作为比较审敛法时使用的级数.例11.2.3 判定下列级数的敛散性. (1) 2111n n ∞=+∑; (2)n ∞=. 解 (1) 因为22111n n u n ≤+=,而级数∑∞=121n n为p = 2 > 1的p 级数,故收敛,所以由比较审敛法知,级数∑∞=+1211n n 也收敛. (2) 因为n n n u n 111122=≥-=,而调和级数∑∞=11n n 发散,故级数∑∞=-1211n n 也发散.使用比较审敛法时,需要找到一个敛散性已知的正项级数来与所给正项级数进行比较,这对有些正项级数来说是很困难的.自然提出这样的问题:能否仅通过级数自身就能判定级数的敛散性呢?如果正项级数的一般项中含有乘积、幂或阶乘时,常用比值审敛法判定其敛散性. 例11.2.4 判定下列级数的敛散性:(1) 2132nnn n ∞=∑; (2) 11(1)!n n ∞=-∑; (3)11(21)n n n ∞=+∑. 解 (1) 因为123)1(23lim 322)1(3lim lim 2221211>=+=⋅+=∞→++∞→+∞→n n n n u u n n n n n n nn n ,所以级数∑∞=1223n n n n 发散.(2) 因为101lim !)!1(lim lim1<==-=∞→∞→+∞→n n n u u n n nn n ,所以级数∑∞=-1)!1(1n n 收敛. (3) 因为1)32)(1()12(lim lim1=+++=∞→+∞→n n n n u u n nn n ,此时比值审敛法失效,必须改用其他方法判别此级数的敛散性.由于22121)12(1n n n n u n <<+=,而级数∑∞=121n n为p = 2 > 1的p 级数,故收敛,所以由比较审敛法可知,级数∑∞=+1)12(1n n n 也收敛.11.2.2 交错级数及其审敛法交错级数的特点是正负项交替出现.关于交错级数敛散性的判定,有如下重要定理. 例11.2.5 判定交错级数 +-++-+--nn 1)1(41312111的敛散性.解 此交错级数的n u n 1=,且满足 1111+=+>=n n u n n u 且01lim lim ==∞→∞→n u n n n ,由定理11.2.4知,该交错级数收敛,其和小于1.11.2.3 任意项级数及其审敛法设有级数∑∞=1n n u ,其中u n ( n = 1, 2,…)为任意实数,称此级数为任意项级数.对于任意项级数,如何来研究其敛散性?除了用级数定义来判断外,还有什么办法?为此要介绍绝对收敛与条件收敛概念.1,2,)的级数,称为交错级例如,级数2111)1(n n n ∑∞=--绝对收敛,级数n n n 1)1(11∑∞=--条件收敛.定理11.2.5说明,对于任意项级数∑∞=1n n u ,如果它所对应的级数∑∞=1||n n u 收敛,则该级数必收敛,从而将任意项级数的敛散性判别问题转化为正项级数来讨论.但应注意,如果级数∑∞=1||n n u 发散,不能判定级数∑∞=1n n u 也发散.例11.2.6 判定级数∑∞=12)sin(n nn α的敛散性,其中α为常数. 解 由于n nn 212)sin(0≤≤α,而级数∑∞=121n n 是收敛的,由比较审敛法可知,级数∑∞=12)sin(n n n α收敛,即级数∑∞=12)sin(n n n α绝对收敛,由定理11.2.5知,级数∑∞=12)sin(n n n α收敛. 例11.2.7讨论交错p-级数p n n n 1)1(11∑∞=--的绝对收敛与条件收敛性,其中p 为常数.解 当p ≤ 0时,pn n nu 1)1(1--=不趋于)(0∞→n ,故该级数发散.当p >1时,有ppn n n11)1(1=--,且级数∑∞=11n p n收敛,故该级数绝对收敛.当0<p ≤ 1时,级数∑∞=11n p n 发散,但p n n n 1)1(11∑∞=--是交错级数,且满足定理11.2.4的条件,故所给级数条件收敛.习题11.21.用比较审敛法判定下列级数的敛散性. (1) ∑∞=-+133)1(n n n ;(2) )0(111>+∑∞=a an n .2.用比值审敛法判定下列级数的敛散性.(1) ∑∞=⋅1!2n n nnn ; (2) ∑∞=123n n n .3.判定下列级数是否收敛?若收敛,是条件收敛还是绝对收敛?(1) ;3)1(111-∞=-∑-n n n n (2) ∑∞=13sin n nn α. 11.3 幂 级 数11.3.1函数项级数的概念 实例1存款问题设年利率为r (实际上其随时间而改变),依复利计算,想要在第一年末提取1元,第二年末提取4元,第三年末提取9元,第n 年末提取2n 元,要能永远如此提取,问至少需要事先存入多少本金?分析:这里本金为存入的钱,设为A ,则一年后本金与利息之和为一年的本利和,即为)1(r A +,两年后的本利和为2)1(r A +,n 年后的本利和为n r A )1(+.解 若本金A 为n r -+)1(元,n 年后可提取本利和1)1()1(=+⋅+-n n r r (元).从而 若要n 年后提取本利和2n 元,则本金应为n r n -+)1(2元.所以为使第一年末提1元本利和,则要有本金1)1(-+r ;第二年末能提取本利和22=4元,则要有本金22)1(2-+r 元;第三年末能提取本利和32=9元,则要有本金32)1(3-+r 元,…第n 年末能提取2n 元本利和,则要有本金n r n -+)1(2元;如此下去,所需本金总数为∑∞=-+12)1(n n r n.令r x +=11,得∑∑∞=∞=-=+1212)1(n n n nx n r n .实例2中的∑∞=12n n x n 即为一个无穷级数,但通项不再是我们前面所学的常数,而是函数,称为函数项无穷级数.对于区间I 上的任意确定值x 0,函数项级数(3.1)便成为数项级数++++)()()(00201x u x u x u n . (11.3.2) 如果数项级数(11.3.2)收敛,则称点x 0为函数项级数(11.3.1)的收敛点;如果数项级数 (11.3.2)发散,则称点x 0为函数项级数(3.1)的发散点.函数项级数(11.3.1)的全体收敛点(或发散点)的集合叫做该级数的收敛域(或发散域).设函数项级数(11.3.1)的收敛域为D ,则对于任意的x ∈D ,函数项级数(11.3.1)都收敛,其和显然与x 有关,记作S (x ),称为函数项级数(11.3.1)的和函数,并记作D x x u x u x u x S n ∈++++=,)()()()(21 .例如,级数201n n n x x x x ∞==+++++∑的收敛域为(-1,1),和函数为x-11,即 01(1, 1)1n n x x x ∞==∈--∑.把函数项级数(11.3.1)的前n 项的和记作S n (x ),则在收敛域上有)()(lim 1x S x S un n n n==∞→∞=∑.将 r n (x ) = S (x ) -S n (x )称作该函数项级数的余项,则0)(lim =∞→x r n n .11.3.2 幂级数及其收敛性特别地,当x 0 = 0时,+++++=∑∞=n n n nn x a x a x a a x a 22100(11.3.4)称为关于x 的幂级数.本节主要讨论幂级数(11.3.4),幂级数(11.3.3)可通过代换t = x – x 0化成幂级数(11.3.4)来研究.下面首先讨论幂级数(11.3.4)的收敛域问题,即x 取数轴上哪些点时幂级数(11.3 .4) 收敛.0,1,2,),因此.定理11.3.1表明,如果幂级数(11.3.4)在x= x0处收敛(发散),则对于开区间(-| x0 |, | x0 |)内(闭区间[-| x0 |, | x0 |]外)的一切x,幂级数(11.3.4)都收敛(发散) .这样的正数R称为幂级数(11.3.4)的收敛半径.由于幂级数(11.3.4 )在区间(-R, R)一定是绝对收敛的,所以我们把(-R, R)称为幂级数(11.3.4)的收敛区间.幂级数在收敛区间内部有很好的性质.幂级数(11.3.4)在区间(-R, R)的两个端点x = ±R处可能发散也可能收敛,需要把x = ±R代入幂级数(11.3.4),化为数项级数来具体讨论.一旦知道了x =±R处幂级数(3.4)的敛散性,则幂级数(11.3.4)的收敛域为下面四个区间(-R, R), [-R, R) , (-R, R ], [-R, R ]之一.若幂级数(11.3.4)仅在x = 0处收敛,则规定收敛半径R = 0,此时收敛域退缩为一点,即原点;若对一切实数x,幂级数(11.3.4)都收敛,则规定收敛半径R = +∞,此时收敛区间与收敛域都是(-∞, +∞).下面给出幂级数(11.3.4)的收敛半径的求法.例11.3.1求下列幂级数的收敛半径.(1) 1(1)31nn n n x ∞=-+∑ (2) 0!n n x n ∞=∑; (3) 202n n n x ∞=∑.解 (1) 因311313lim 13)1(13)1(lim lim1111=++=+-+-==+∞→++∞→+∞→n n n n n n n n nn n a a ρ,故收敛半径31==ρR . (2) 因011lim !1)!1(1lim lim1=+=+==∞→∞→+∞→n n n a a n n nn n ρ,故收敛半径R = + ∞.(3) 因为该级数缺少奇次幂的项,定理3.2失效,换用比值审敛法求收敛半径.由于2(1)121212limlim 22n n n n n n nnx u x x u +++→∞→∞==,因此,由正项级数的比值审敛法知,当2112x <,即2||<x 时该幂级数绝对收敛;当2112x >,即2||>x 时该幂级数发散.故收敛半径2=R . 例11.3.2 求下列幂级数的收敛区间和收敛域.(1) 11(1)n nn x n +∞=-∑; (2) 21(2)n n x n ∞=-∑. 解 (1) 因为11lim )1(1)1(lim lim121=+=-+-==∞→++∞→+∞→n nnn a a n n n n nn n ρ, 所以收敛半径11==ρR ,收敛区间是(-1, 1),即该级数在(-1, 1)内绝对收敛.在端点x = 1处,级数成为交错级数∑∞=+-11)1(n n n ,这是收敛的级数.在端点x = -1处,级数成为∑∞=-11n n,这是发散的级数,故该级数的收敛域为(-1, 1].(2) 令t = x -2,则所给级数变成∑∞=12n n nt .因为 ,1)1(lim 1)1(1lim lim22221=+=+==∞→∞→+∞→n n n n a a n n nn n ρ故级数∑∞=12n n n t 的收敛半径11==ρR ,即级数∑∞=12n n nt 在区间(-1, 1)内绝对收敛.在端点t = 1处,级数∑∞=12n n n t 变成p 级数∑∞=121n n ,故收敛;在t = -1处,级数∑∞=12n n n t 变成交错级数∑∞=-121)1(n n n 也收敛.因此,幂级数∑∞=12n n n t 的收敛区间为(-1,1),收敛域为[-1, 1],从而级数∑∞=-12)1(n nn x 的收敛区间为(1,3),收敛域为[1, 3].(因为-1 ≤ t ≤ 1,即-1 ≤ x - 2 ≤ 1,所以13x ≤≤).11.3.3幂级数的运算 1. 四则运算设幂级数∑∞=0n n n x a 和∑∞=0n n n x b 的收敛半径分别为R 1和R 2,它们的和函数分别为S 1(x )和S 2( x ),令R = min{ R 1, R 2},则在(-R , R )内有(1) 加法运算(2) 乘法运算2. 分析运算设幂级数∑∞=0n n n x a 的收敛半径为(0)R R >),在(-R , R )内的和函数为S (x ),则有(1) 幂级数∑∞=0n n n x a 的和函数S ( x )在其收敛区间 (-R , R ) 内连续.(2) 幂级数∑∞=0n n n x a 的和函数S ( x )在其收敛区间 (-R , R ) 内可导,且有逐项求导公式:(3) 幂级数∑∞=0n n n x a 的和函数S ( x )在其收敛区间 (-R , R ) 内可积,且有逐项积分公式:注意:逐项求导和逐项积分前后,两幂级数具有相同的收敛半径和收敛区间. 例11.3.3 求下列幂级数的和函数. (1)11(11)n n nx x ∞-=-<<∑; (2)10(11)1n n x x n ∞+=-<<+∑.解 (1) 设11(), (1, 1)n n S x nx x ∞-==∈-∑,两端积分,得111()d d 1xxn n n n xS x x nx x x x∞∞-=====-∑∑⎰⎰, 上式两端对x 求导,得21(), (1, 1)(1)S x x x =∈--.(2) 设10(), (1, 1)1n n x S x x n ∞+==∈-+∑,两端对x 求导,得 ∑∑∞=∞=+-=='+='10111)1()(n n n n x x n n x S .上式两端从0到x 积分,得01()(0)d ln(1)1xS x S x x x-==---⎰, 而S ( 0 ) = 0,所以()ln(1), (1, 1)S x x x =∈---.例11.3.4求幂级数20, (1, 1)21nn x x n ∞=∈-+∑的和函数,并计算()2011212nn n ∞=+∑的值.解 设20(), (1, 1)21nn x S x x n ∞==∈-+∑,两端同时乘以x ,得,12)(012∑∞=++=n n n x x xS 两端对x 求导,得 ,1112])([202012x x n x x xS n nn n -=='⎪⎭⎫ ⎝⎛+='∑∑∞=∞=+ 上式两端从0到x 积分,得 20111()ln ,211xx x x x xx S +==--⎰d 所以 11()ln , (1, 1)21x S x x x x+=∈--.因为21=x 在(-1, 1)内部,代入上式,得 3ln 211211ln21212112120=-+⨯=⎪⎭⎫ ⎝⎛+∑∞=nn n . 习题 11.31.求下列幂级数的收敛区间.(1) +⋅⋅+⋅+64242232x x x ; (2)∑∞=++-11212)1(n n nn x ;(3)∑∞=--122212n n nx n ; (4)∑∞=-1)5(n n n x .2.利用逐项求导或逐项积分,求下列级数在收敛区间内的和函数. (1) )11( 14014<<-+∑∞=+x n x n n ; (2)∑∞=+<<-+0)1(2)11( )1(2n n x x n ,并求级数∑∞=-+01221n n n 的和. 11.4 函数展开成幂级数前面我们讨论了幂级数在收敛域内求和函数的问题,在实际应用中常常遇到与之相反的问题,就是对一个给定的函数,能否在一个区间内展开成幂级数?如果可以,又如何将其展开成幂级数?其收敛情况如何?本节就来解决这些问题.11.4.1泰勒(Taylor)级数如果函数f (x )在点x 0的某邻域U ( x 0, δ )内有定义,且能展开成x - x 0的幂级数,即对于任意的x ∈U ( x 0, δ ),有+-++-+-+=n n x x a x x a x x a a x f )()()()(0202010 . (11.4.1)由幂级数的分析性质知,函数f (x )在该邻域内一定具有任意阶导数,且 ),2,1( )()!1(!)(01)( =+-++=+n x x a n a n x fn n n . (11.4.2)在式(11.4.1)和式(11.4.2)中,令x = x 0,得)(00x f a =,!1)(01x f a '=,,!2)(02x f a ''= ,!)(,0)(n x f a n n =. (11.4.3) 将式(11.4.3)代入式(11.4.1)中,有+-++-''+-'+=n n x x n x f x x x f x x x f x f x f )(!)()(!2)()(!1)()()(00)(200000.这说明,如果函数f (x )在x 0的某邻域U ( x 0, δ )内能用形如式(11.4.1)右端的幂级数表示,则其系数必由式(11.4.3)确定,即函数f (x )的幂级数展开式是唯一的.函数f (x )的泰勒级数(11.4.4)的前n + 1项之和记为S n +1(x ),即n n n x x n x f x x x f x x x f x f x S )(!)()(!2)()(!1)()()(00)(2000001-++-''+-'+=+ ,并把差式f (x )- S n +1(x )叫做泰勒级数(4.4)的余项,记作R n ( x ),即)()()(1x S x f x R n n +-=.显然,只要函数f (x )在点x 0的某邻域U ( x 0,δ )内具有任意阶导数,则它的泰勒级数(11.4.4) 就已经确定,问题是级数(11.4.4)是否在x 0的某邻域内收敛?若收敛,是否以f (x )为其和函数?为此有下面的定理.显然,使用定理11.4.1来进行收敛性的判定是困难的.下面直接给出余项R n (x )的表达式称上式为拉格朗日型余项.在实际应用,若取常数x 0 = 0,此时泰勒级数(11.4.4)变成称为f (x )的麦克劳林(Maclaurin)级数,其余项为11.4.2函数展开成幂级数将函数)(x f 展开成0x x -或x 的幂级数,就是用其泰勒级数或麦克劳林级数表示)(x f .下面结合例题来研究如何将函数展开成幂级数.1. 直接展开法直接利用麦克劳林公式将函数f (x )展开为x 的幂级数的方法称为直接展开法,可以按照下列步骤进行(展开为(x -x 0)的幂级数与之类似):第一步 求出函数f ( x )在x = 0处的各阶导数 ),0(,),0(),0(),0()(n ff f f '''.若函数在x = 0处的某阶导数不存在,就停止进行,该函数不能展开为x 的幂级数.例如,在点x = 0处,37)(x x f =的三阶导数不存在,它就不能展开为x 的幂级数.第二步 写出幂级数+++''+'+nn x n f x f x f f !)0(!2)0()0()0()(2并求出收敛半径R 及收敛区间(-R , R ).第三步 在收敛区间(-R , R )内,考察余项R n ( x )的极限1)1()!1()(lim )(lim ++∞→∞→+=n n n n n x n f x R ξ(ξ介于0与x 之间), 是否为零?如果为零,第二步所写出的幂级数就是函数f ( x )在(-R , R )内的展开式,即),(,!)0(!2)0()0()0()()(2R R x x n f x f x f f x f nn -∈+++''+'+= .如果不为零,第二步写出的幂级数虽然收敛,但它的和并不是所给的函数f ( x ). 例11.4.1将下列函数展开为x 的幂级数.(1) ()e x f x =; (2) x x f sin )(=; (3) m x x f )1()(+=(m 为任意常数). 解 (1) 因为f (x ) = e x ,故f (n )(0 ) = 1( n = 0,1, 2,…).从而e x 的麦克劳林级数为++++++!!3!2132n x x x x n . 容易求得它的收敛半径R = +∞,下面考察余项1e ()(1)!n n R x x n ξ+=+, (ξ介于0与x 之间). 因为ξ介于0与x 之间,所以||e e x ξ<,因而有||11e e |()|||||(1)!(1)!x n n n R x x x n n ξ++=<++. 对于任一确定的x 值,e |x |是一个确定的常数,而级数++++++!!3!2132n x x x x n是绝对收敛的,由级数收敛的必要条件可知0)!1(||lim 1=++∞→n x n n , 所以 1||||lime 0(1)!n x n x n +→∞=+.由此可得,0)(lim =∞→x R n n ,这表明级数收敛于e x ,所以23e 1 ()2!3!!n x x x x x x n =++++++-∞<<+∞.(2) 因为x x f sin )(=,所以),2,1( )2sin()()( =+=n n x x f n π,则 ,)1()0(,0)0(,,1)0(,0)0(,1)0(,0)0()12()2(n n n ff f f f f -==-='''=''='=+.于是sin x 的麦克劳林级数为++-++-+-+)!12()1(!7!5!312753n x x x x x n n .它的收敛半径R = + ∞,考察余项的绝对值)(0)!1(||)!1()21sin()(11∞→→+≤+++=++n n x n x n x R n n n πξ.于是得展开式)( )!12()1(!5!3sin 1253+∞<<-∞++-+-+-=+x n x x x x x n n.(3) 用同样的方法,可以推得牛顿二项展开式)11( !)1()1(!2)1(1)1(2<<-++--++-++=+x x n n m m m x m m mx x nm .这里m 为任意实数.当m 为正整数时,就退化为中学所学的二项式定理.最常用的是12m =±的情形,读者可自己写出这两个式子.2.间接展开法以上几个例子是用直接展开法把函数展开为麦克劳林级数,直接展开法虽然步骤明确,但运算常常过于繁琐,尤其最后一步要考察n →∞时余项R n ( x )是否趋近于零,这不是一件容易的事.下面我们从一些已知函数的幂级数展开式出发,利用变量代换或幂级数的运算求得另外一些函数的幂级数展开式,这种将函数展开成幂级数的方法叫间接展开法.例11.4.2将下列函数展开为x 的幂级数. (1) x x f cos )(=; (2) )1ln()(x x f +=.解(1) 由例1中的(2)知,)( )!12()1(!5!3sin 1253+∞<<-∞++-+-+-=+x n x x x x x n n,两边对x 逐项求导,得).( !2)1(!4!21cos 242+∞<<-∞+-+-+-=x n x x x x nn )( (2) 由牛顿二项展开式得)11( )1(11132<<-+-++-+-=+x x x x x xn n .上式两端从0到x 逐项积分,得)11( 1)1(432)1ln(1432<<-++-++-+-=++x n x x x x x x n n . 又因为当x = -1时该级数发散,当x = 1时该级数收敛,故有)11(11)1()1ln(10≤<-+-=++∞=∑x x n x n n n.例11.4.3将下列函数展开为x - 1的幂级数: (1) x x f ln )(=; (2) 2)(2--=x x x x f . 解 (1) )]1(1ln[ln )(-+==x x x f ,利用)1ln(x +的展开式得),111( 1)1()1(3)1(2)1()1(ln 132≤-<-++--+--+---=+x n x x x x x n n 即 )20(1)1()1(ln 1≤<+--=+∞=∑x n x x n n n.(2) ⎪⎭⎫ ⎝⎛--+=--=--=x x x x x x x x x f 221131)1)(2(2)(2 ][)1(12)211(2131----+=x x . 由)11( )1(110<<--=+∑∞=x x x n n n ,得 )1211( 21)1(212112111 2<-<-+⎪⎭⎫ ⎝⎛--+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--=-+x x x x x nn . )111( )1()1()1(1)1(112<-<-+-++-+-+=--x x x x x n . 于是⎥⎦⎤⎢⎣⎡----=--∑∑∞=∞=002)1(2)21()1(21312n n n n n x x x x x n n n n x )1(22)1(3101-⎥⎦⎤⎢⎣⎡--=∑∞=+,)20(<<x . 习题 11.41.将下列函数展开成x 的幂级数,并指出其收敛区间. (1) xx f -=31)(; (2) x x f 2cos )(=; (3) x x f arcsin )(=. 2.将函数231)(2++=x x x f 展开成(x + 4)的幂级数.11.5幂级数展开式的应用利用函数的幂级数展开式,可以进行近似计算,即展开式成立的区间内,函数值用级数的部分和按规定的精度要求近似计算.例11.5.1计算2的近似值( 精确到小数点四位,即误差不超过0.0001).解 由于 ++--++-+⋅+=+n x n n x x x !)1()1(!2)1(!11)1(2ααααααα21)211(2242-=-=根据上一节二项式展开式,取21-=x ,21=α 21)211(2242-=-=)21!453121!33121!21211(28642 -⋅⋅-⋅---=取前四项的和作为近似值,其差(称截断误差)为4r )21!5753121!4531(2108 +⋅⋅⋅+⋅⋅=0098.025225))21()21(211(21!45312910328≈=⋅=++++⋅⋅< 于是,近似值为≈24219.1)21!33121!21211(2642≈⋅---=.由“四舍五入”引起的误差叫做舍入误差. 计算时取五位小数,四舍五入后误差不会超过小数点后四位.本题如果用下面做法,展开的级数收敛很快,同样取前四项计算,误差很小.2150114.12-⎪⎭⎫ ⎝⎛-⨯=⎥⎦⎤⎢⎣⎡+⋅+⋅+⋅+⋅+⨯= 43250112835501165501835012114.1取前四项来作计算, 则4142.1]50116550183501211[4.1232≈⋅+⋅+⋅+⨯≈前四项的截断误差⎪⎭⎫ ⎝⎛++⨯⨯< 544501*********.1r ⎪⎭⎫ ⎝⎛+++⨯⨯⨯= 245015011501128354.1 83341025.65012814950128354.14950501128354.1-⨯≈⨯=⨯⨯⨯=⨯⨯⨯=例11.5.2 计算2ln 的近似值(精确到小数点后第4位). 解 将展开式)11()1(432)1ln(1432≤<-+-++-+-=+-x nx x x x x x nn 中的x 换成x -,得)11(432)1ln(432<≤--------=-x nx x x x x x n两式相减,得到不含有偶次幂的展开式)11(7531211ln 753<<-⎪⎪⎭⎫ ⎝⎛+++=-+x x x x x x x令211=-+xx ,解出31=x .以31=x 代入得⎪⎭⎫⎝⎛+⋅+⋅+⋅+⋅= 753317131513131311122ln若取前四项作为2ln 的近似值,则误差为0001.0700001341911132])91(911[32)31131311113191(2||911211131194<<⨯=-⨯=+++<+⨯+⨯+⨯= r于是取 6931.0317131513131311122ln 753≈⎪⎭⎫⎝⎛⋅+⋅+⋅+⋅≈.例11.5.3 利用x sin 求12sin 的近似值(精确到小数点后第6位). 解 由于展开式+--+-+-=--!)12()1(!5!3sin 12153n x x x x x n n (+∞<<∞-x ) 是交错级数,取前n 项部分和做近似估计,误差!)12(!)12()(1212+=+≤++n x n x x R n n n (+∞<<∞-x )151801212ππ=⨯== x ,取前三项能满足精度要求,于是53)15(!51)15(!311515sin12sin ππππ+-≈= 20791170.0)20943951.0(1201)20943951.0(6120943951.053≈+-≈ 精确到六位小数,207912.012sin ≈.例11.5.4 计算定积分⎰=10sin dx x xI 的近似值,精确到0.0001.解 因1sin lim0=→xxx ,所给积分不是广义积分,若定义函数在0=x 处的值为1,则它在区间]1,0[上连续.由前一节知,被积函数的展开时为+--+-+-=--!)12()1(!5!31sin )1(2142n x x x x x n n (∞<<∞-x ) 在区间]1,0[上逐项积分,得⎰10sin dx x x+-⋅--++⋅-⋅+⋅-=-!)12()12(1)1(!771!551!33111n n n这是交错级数,因为第四项5109.2352801!771-⨯<=⋅,所以取前三项的和作为积分的近似值就能满足精度要求.0.9461!551!3311≈⋅+⋅-≈I 例11.5.5 在爱因斯坦(Einstein )的狭义相对论中,速度为v 的运动物体的质量为220/1cv m m -=其中0m 为静止着的物体的质量,c 为光速.物体的动能是它的总动能与它的静止能量之差202c m mc K -=(1)证明在v 与c 相比很小时,关于K 的表达式就是经典牛顿物理学中的动能公式2021v m K =(2)估计s m v /100≤时,这两个动能公式的差别.解 (1)]1)1[(212220202--=-=-cv c m c m mc K ,记22c v x -=,展开成泰勒级数,有]1)16583211[(66442220-+⋅+⋅+⋅+= cv c v c v c m K)1658321(66442220 +⋅+⋅+⋅=cv c v c v c m当cv 很小时,2022202121v m c v c m K =⋅⋅≈.(2) 由解(1)可见,泰勒公式中一阶余项为(22cv x -=)252240225202252021)-(83)1(83)1(83!2)()(v c cv m x x c m x x c m x x f x r =+≤+=''=θθ(10<<θ).因为s m c /1038⨯=,s m v /100≤,则252240225201)(83)1(83)(v c cv m x x c m x r +=-≤010252283840)107.4(]100-103[8)103(1003m m -⨯<⨯⨯⨯⨯≤)()(.可见,误差极小,说明两个公式极为接近.习题 11.51.利用函数的幂级数展开式求下列各函数的近似值: (1)ln 3(误差不超过0.0001); (2)cos2︒(误差不超过0.0001);2.利用函数的幂级数展开式求下列定积 分的近似值:(1)0.54011dx x +⎰(误差不超过0.0001); (2)0.5arctan xdx x⎰(误差不超过0.001); 11.6傅里叶级数实例1振动问题一根弹簧受力后产生振动,如不考虑各种阻尼,其振动方程为)sin(ϕω+=t A y ,其中A 为振幅,ω为频率,ϕ为初相,t 为时间,称为简谐振动.人们对它已有充分的认识.如果遇到复杂的振动,能否把它分解为一系列简谐振动的叠加,从而由简谐振动去认识复杂的振动呢?实例2正弦波问题在电子线路中,对一个周期性的脉冲)(t f ,能否把它分解为一系列正弦波的叠加,从而由正弦波去认识脉冲)(t f 呢?实际上科学技术中其他一些周期运动也有类似的问题,这些问题的解决都要用到一类重要的函数项级数―傅里叶级数.为了研究傅里叶级数,我们先来认识下面一个概念—三角级数.它在数学与工程技术中有着广泛的应用.三角级数的一般形式是)sin cos (210nx b nx a a n n n ++∑∞=, 其中n n b a a ,,0 ( n = 1,2,…)都是常数,称为三角级数的系数.特别地,当a n = 0 ( n = 0,1,2,…)时,级数只含正弦项,称为正弦级数;当b n = 0 ( n = 1,2,…)时,级数只含常数项和余弦项,称为余弦级数.对于三角级数,我们讨论它的收敛性以及如何把一个周期为2l 的周期函数展开为三角级数的问题.11.6.1 以2π为周期的函数展开成傅里叶级数 1三角函数系 函数列,sin cos , ,2sin ,2cos ,sin ,cos 1nx nx x x x x ,, (11.6.1)称作三角函数系.三角函数系(11.6.1)有下列重要性质.这个定理的证明很容易,只要通过积分的计算即可验证,请读者自己进行.设两个函数ϕ和φ在[,]a b 上可积,且满足⎰=bax x x 0d )()(φϕ,则称函数ϕ和φ在[,]a b 上正交.由定理11.6.1,三角函数系(11.6.1)在[,]ππ-上具有正交性,称为正交函数系.-π2 周期为2π的函数的傅里叶级数设函数f (x )是周期为2π的周期函数,且能展开成三角级数,即设)sin cos (2)(10nx b nx a a x f n n n++=∑∞= (11.6.2)为了求出式(11.6.2)中的系数,假设式(11.6.2)可逐项积分,把它从-π到π逐项积分,得1()(cos sin ),2n n k a f x x x a nx x b nx x ππππππππ∞----==++∑⎰⎰⎰⎰d d d d 由三角函数系的正交性知,上式右端除第一项外均为0,所以0(),2a f x x x a πππππ--==⎰⎰d d 于是得01(),a f x x πππ-=⎰d 为求a n ( n = 1,2,…),先用cos kx 乘以式(5.2)两端,再从-π到π逐项积分,得1()cos cos (cos cos sin cos )2n n k a f x kx x kx x a nx kx x b nx kx x ππππππππ∞----==++∑⎰⎰⎰⎰d d d d .由三角函数系正交性知,上式右端除k = n 的一项外其余各项均为0,所以2()cos cos ,n n f x nx x a nx x a πππππ--==⎰⎰d d于是得1()cos (1,2,3,) n a f x nx x n πππ-==⎰d .类似地,为求b n ( n = 1,2,…),用sin kx 乘以式(11.6.2)两端,再从-π到π逐项积分,得1()sin (1,2,3,). n b f x nx x n πππ-==⎰d显然,当f (x )为奇函数时,公式(5.3)中的a n = 0 (n = 0, 1, 2, 3,…);当f (x )为偶函数时,公式(11.6.3)中的b n = 0 (n = 1, 2, 3,…),所以有(1) 当f (x )是周期为2π的奇函数时,其傅里叶级数为正弦级数nx b n n sin 1∑∞=,其中2()sin (1,2,3,) n b f x nx x n πππ-==⎰d ;(2) 当)(x f 是周期为2π的偶函数时,其傅里叶级数为余弦级数nx a a n n cos 21∑∞=+,其中 2()cos (1,2,3,) n a f x nx x n πππ-==⎰d .3 傅里叶级数的收敛性对于给定的函数)(x f ,只要)(x f 能使公式(5.3)的积分可积,就可以计算出)(x f 的傅里叶系数,从而得到)(x f 的傅里叶级数.但是这个傅里叶级数却不一定收敛,即使收敛也不一定收敛于)(x f .为了确保得出的傅里叶级数收敛于)(x f ,还需给)(x f 附加一些条件.对此有下面的定理.2,3,)2,3,)例11.6.1 正弦交流电i (x ) = sin x 经二极管整流后变为(如图11.6.1)⎩⎨⎧+<≤<≤-=ππππ)12(2,sin 2)12(,0)(k x k x k x k x f ,其中k 为整数.把函数f (x )展开为傅里叶级数.解 函数)(x f 满足收敛定理的条件,且在整个数轴上连续,因此)(x f 的傅里叶级数处处收敛于)(x f .函数f (x )的傅里叶系数为00112()sin a f x x x x ππππππ-===⎰⎰d d ,图11.6.120,11()cos d sin cos d 2,1)n n a f x nx x x nx x n n ππππππ-⎧⎪===⎨-⎪-⎩⎰⎰为奇数为偶数(, 00,111()sin d sin sin d 1, 12n n b f x nx x x nx x n πππππ-≠⎧⎪===⎨=⎪⎩⎰⎰.所以)(x f 的傅里叶展开式为)142cos 356cos 154cos 32cos (2sin 211)(2 +-++++-+=k kx x x x x x f ππ,)(+∞<<-∞x . 例11.6.2 如图11.6.2所示,一矩形波的表达式为⎩⎨⎧+<≤<≤--=ππππ)12(2,12)12(,1)(k x k k x k x f ,k 为整数.求函数)(x f 的傅里叶级数展开式.图11.6.2解 函数)(x f 除点x = k π ( k 为整数)外处处连续,由收敛定理知,在连续点(x ≠ k π)处,)(x f 的傅里叶级数收敛于)(x f .在不连续点(x = k π)处,级数收敛于02)1(1=-+.又因)(x f 是周期为2π的奇函数,因此,函数)(x f 的傅里叶系数为0 (0,1,2,3,)n a n ==,004,22()sin d 1sin d 0, n n n b f x nx x nx x n πππππ⎧⎪==⋅=⎨⎪⎩⎰⎰为奇数为偶数.所以)(x f 的傅里叶展开式为)( )12)12sin(55sin 33sin (sin 4)(为整数,k k x k xk x x x x f ππ≠+--++++= .该例中)(x f 的展开式说明:如果把)(x f 理解为矩形波的波函数,则矩形波可看作是由一系列不同频率的正弦波叠加而成.4 [-,]ππ或[0,]π上的函数展开成傅里叶级数在实际应用中,经常会遇到函数)(x f 只在[-π, π]上有定义,或虽在[-π, π]外也有定义但不是周期函数,而且函数)(x f 在[-π, π]上满足收敛定理的条件,要求把其展开为傅里叶级数.由于求)(x f 的傅里叶系数只用到)(x f 在[-π, π]上的部分,所以我们仍可用公式(11.6.3)求()f x 的傅里叶系数,至少)(x f 在(-π,π)内的连续点处傅里叶级数是收敛于)(x f的,而在x =±π处,级数收敛于)]0()0([21+-+-ππf f .类似地,如果)(x f 只在[0, π]上有定义且满足收敛定理条件,要得到)(x f 在[0, π]上的傅里叶级数展开式,可以任意补充)(x f 在[-π, 0]上的定义(只要公式(11.6.3)中的积分可积),称为函数的延拓,常用的两种延拓办法是把)(x f 延拓成偶函数或奇函数(称为奇延拓或偶延拓),然后将奇延拓或偶延拓后的函数展开成傅里叶级数,再限制x 在[0, π]上,此时延拓后的函数F (x )≡f (x ),这个级数必定是正弦级数或余弦级数,这一展开式至少在(0, π)内的连续点处是收敛于)(x f 的.这样做的好处是可以把)(x f 展开成正弦级数或余弦级数.例11.6.3 将函数f (x ) = x, x ∈[0, π ]分别展开成正弦级数和余弦级数.解 为了把)(x f 展开成正弦级数,先把)(x f 延拓为奇函数F (x ) = x, x ∈[-π, π],如图11.6.3所示,则1222()sin sin (1)n n b F x nx x x nx x nππππ+==⋅=-⎰⎰d d . 由此得F (x )在(-π, π)上的展开式,也即)(x f 在[0, π)上的展开式为)0( )sin )1(33sin 22sin (sin 21π<≤+-+-+-=+x nnxx x x x n . 在x = π处,上述正弦级数收敛于 图11.6.30)(21)]0()0([21=+-=-++-ππππf f . 为了把)(x f 展开成余弦级数,把)(x f 延拓为偶函数||)(x x F =, x ∈[-π, π],如图11.6.4所示,则0022()a F x x x x πππππ===⎰⎰d d ,222()cos d cos d 4, (1,2,)0,n a F x nx x x nx xn n n n πππππ==-⎧⎪==⎨⎪⎩⎰⎰为奇数时为偶数时 于是得到)(x f 在[0, π]上的余弦级数展开式为 图11.6.4。

无穷级数知识点总结简短

无穷级数知识点总结简短

无穷级数知识点总结简短
1. 无穷级数的定义
无穷级数是指由无限个数相加而成的级数,通常表示为:
S = a1 + a2 + a3 + ...
其中,a1, a2, a3...表示级数的每一项。

2. 无穷级数的收敛与发散
无穷级数可能收敛也可能发散。

如果无穷级数的部分和S_n在n趋向无穷时收敛于某一有
限数,即lim(S_n) = S,则称该无穷级数收敛;如果无穷级数的部分和S_n在n趋向无穷
时发散至无穷大或者发散至负无穷大,即lim(S_n) = ±∞,则称该无穷级数发散。

3. 无穷级数的收敛性判别法
无穷级数的收敛性判别法有很多种,包括比较判别法、比值判别法、根值判别法、积分判
别法等。

这些判别法可以用来判断无穷级数的收敛性,并且在实际问题中有很多应用。

4. 无穷级数的性质
无穷级数有许多重要的性质,包括级数的线性性质、级数的绝对收敛性、级数的收敛域等。

这些性质在研究无穷级数的收敛性和计算级数的和时非常重要。

5. 无穷级数的应用
无穷级数在物理、工程、计算机科学等领域都有重要的应用。

例如,在物理学中,泰勒级
数可用于近似计算非线性函数的值;在工程学中,级数可以用来描述振动、波动等现象;
在计算机科学中,级数在算法复杂性分析和数值计算中也有广泛的应用。

总之,无穷级数是数学中一个重要的概念,它涉及到收敛与发散、收敛性判别法、性质和
应用等方面,对于理解和应用级数有着重要的意义。

无穷级数知识点总结公式

无穷级数知识点总结公式

无穷级数知识点总结公式无穷级数的定义:无穷级数的一般形式可以表示为:\[ \sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \ldots + a_n + \ldots \]其中,\( a_n \) 是级数的第 n 个项。

级数的和通常记为 \( S \),即\[ S = a_1 + a_2 + a_3 + \ldots + a_n + \ldots \]当级数的和存在有限值时,称级数收敛;当级数的和不存在有限值时,称级数发散。

无穷级数的性质:1. 无穷级数的和与项的次序无关级数的项次序可以进行重新排列,其和仍然相同。

2. 收敛级数的任意项的和都趋于零对于收敛级数,其各项的和对应的部分和序列的极限为级数的和。

3. 收敛级数的每一项都可以表示为部分和序列的差对于收敛级数,其每一项都可以表示为相邻两个部分和之差。

无穷级数的收敛性:在讨论无穷级数时,我们关心的一个重要问题是该级数是否收敛。

无穷级数的收敛性可以通过不同的收敛判别法来进行判断。

1. 正项级数收敛判别法对于正项级数 \(\sum_{n=1}^{\infty} a_n\):- 若 \( \lim_{n \to \infty} a_n = 0 \) 且 \( a_n \) 单调递减(即 \( a_{n+1} \leq a_n \)),则级数收敛;- 若 \( a_n \) 单调递减且有界,则级数收敛;- 若 \( \lim_{n \to \infty} a_n \) 不存在或 \( \lim_{n \to \infty} a_n \neq 0 \) ,则级数发散。

2. 比较判别法设 \( \sum_{n=1}^{\infty} a_n \) 和 \( \sum_{n=1}^{\infty} b_n \) 为两个级数,若存在正常数 \( C \),当 \( n \) 充分大时有 \( 0 \leq a_n \leq Cb_n \),则级数\( \sum_{n=1}^{\infty} b_n \) 收敛时级数 \( \sum_{n=1}^{\infty} a_n \) 收敛,级数\( \sum_{n=1}^{\infty} b_n \) 发散时级数 \( \sum_{n=1}^{\infty} a_n \) 发散。

无穷级数重要知识点总结

无穷级数重要知识点总结

无穷级数重要知识点总结一、无穷级数的定义1.1 无穷级数的概念无穷级数是一种特殊的数列求和形式。

它由一个无穷数列的项之和构成,通常表示为a1 + a2 + a3 + ... + an + ...,其中a1, a2, a3, ...是数列的项。

无穷级数的和是用极限的概念来定义的,即当n趋向无穷时,无穷级数的前n项和趋于一个确定的数。

1.2 无穷级数的收敛和发散无穷级数有两种基本的收敛性质:收敛和发散。

当无穷级数的和存在时,我们称这个级数是收敛的;当无穷级数的和不存在时,我们称这个级数是发散的。

1.3 无穷级数的通项无穷级数的通项是指级数中每一项的公式表示。

通项的形式多种多样,可以是一个简单的代数式,也可以是一个复杂的函数表达式。

通项的形式对于判断无穷级数的收敛性有着重要的作用。

二、无穷级数的性质2.1 无穷级数的加法性质如果无穷级数a1 + a2 + a3 + ... + an + ...和无穷级数b1 + b2 + b3 + ... + bn + ...都存在,那么它们的和也存在,并且等于这两个级数的和的和。

即∑(ai + bi) = ∑ai + ∑bi。

2.2 无穷级数的乘法性质如果无穷级数a1 + a2 + a3 + ... + an + ...和无穷级数b1 + b2 + b3 + ... + bn + ...都存在,那么它们的乘积也存在,并且等于这两个级数的乘积的和。

即(∑ai) * (∑bi) = ∑(ai * bi)。

2.3 无穷级数的极限性质当n趋向无穷时,无穷级数的前n项和会趋于一个确定的数。

这个极限的存在性和确定性是无穷级数的一个重要性质。

2.4 无穷级数的收敛性质对于一个给定的无穷级数,我们需要研究它的收敛性质,即它是否收敛、以及收敛到哪个数。

无穷级数的收敛性质对于很多数学问题有着深远的影响。

2.5 无穷级数的发散性质发散是无穷级数的另一个重要性质,它表示无穷级数的和不存在。

课件:无穷级数 基本方法归纳

课件:无穷级数  基本方法归纳

3.定义在[0,]上的函数展成正弦级数与余弦级数
奇延拓
f ( x ) , x [ 0 , π ] 偶延拓
y
y
O x
O x
周期延拓 F (x)
f (x) 在 [0, ] 上展成 正弦级数
周期延拓 F (x)
f (x) 在 [0, ]上展成 余弦级数
4. 周期为2l 的周期函数展开成傅里叶级数
x .
2. 定义在 ( , ] 上的函数展开成傅里叶级数 定义在[-,]上的函数 f(x)的傅氏级数展开法:
周期延拓
f (x) ,
x [ π , π ]
F ( x) f ( x 2k π ) , x ((2k 1) , (2k 1) ],
傅里叶展开
k 1, 2,
上的傅里叶级数.
二、求函数项级数 un ( x)的收敛域 n0
利用比值或根值判别法计算:
lim un1( x) ( x) 或 n un ( x)
lim n
n
un( x)
(x)
1. 通过讨论 ( x ) 1 ; ( x ) 1 得到收敛区间;
2. 对满足 ( x ) 1 的点代入原函数项级数讨论;
3. 综合1和2即可得原函数项级数的收敛域。
三、幂级数的收敛半径与收敛区间(收敛域)
注意收敛域与收敛区间的区别
1. 形如 an xn 的幂级数求收敛半径方法: n0
求收敛半径公式 R lim an a n
n1
Abel定理 (抽象的幂级数)
(具体的幂级数)
2. 形如 a n ( x x 0 )n , a 2n x 2 n , a 2n 1 x 2 n 1 等的求收敛半径方法:
3! 5! 7!

无穷级数基本公式

无穷级数基本公式

无穷级数基本公式无穷级数是数学中的一个概念,指的是无限多个数按照其中一种规律相加的结果。

无穷级数的求和公式是求取无穷级数和的一种方法,它可以帮助我们找到无穷级数的和,并在数学的不同领域中有着重要的应用。

在本文中,我们将介绍无穷级数的基本公式及其推导过程。

首先,我们来看一个简单的无穷级数的例子:1+1/2+1/4+1/8+…。

这个无穷级数的每一项都是前一项的一半,我们可以通过不断地将数列的前n项相加来逼近无穷级数的和。

当n趋近于无穷大时,我们可以得到无穷级数的和。

对于这个例子,我们可以使用以下的求和公式来计算:S=a/(1-r)其中,S表示无穷级数的和,a表示第一项的值,r表示每一项与前一项的比值。

在这个例子中,a的值为1,r的值为1/2、因此,我们可以计算出这个无穷级数的和为:S=1/(1-1/2)=2在这个例子中,我们通过求和公式得到了无穷级数的和为2、这个公式可以应用于各种不同的无穷级数,只需要将相应的a和r代入公式即可。

接下来,我们将推导出这个求和公式的原理。

设S为一个无穷级数的和,a为第一项的值,r为每一项与前一项的比值,我们可以将这个无穷级数表示为:S = a + ar + ar^2 + ar^3 + …如果我们将这个无穷级数的每一项乘以r,我们可以得到:rS = ar + ar^2 + ar^3 + ar^4 + …我们将这两个等式相减,可以得到:S-rS=a化简上式,得到:S(1-r)=a由于r不等于1,我们可以将上式两边同时除以(1-r),得到:S=a/(1-r)通过上面的推导,我们得到了无穷级数求和公式。

接下来,我们将通过几个实例来演示如何使用求和公式求取无穷级数的和。

例子1:计算1+1/2+1/4+1/8+…的和。

根据求和公式,我们可以将a设为1,r设为1/2,代入公式计算:S=1/(1-1/2)=2因此,这个无穷级数的和为2例子2:计算5+5/2+5/4+5/8+…的和。

根据求和公式,我们可以将a设为5,r设为1/2,代入公式计算:S=5/(1-1/2)=10因此,这个无穷级数的和为10。

无穷级数主要内容简单版

无穷级数主要内容简单版

定理
若 f ( x)
a n ( x x0 ) , n 0
n

1 (n) f ( x0 ) 则an n!
常见函数展开式
( n 0,1,2,) x ( , )
1 e ,sin x, cos x, ln(1 x), 等及收敛域 1 x
x

n
是正项级数,
如果lim n un ( 为数或 ),
n
则 1时级数收敛; 1 时级数发散; 1 时失效.
4、交错级数
( 1)n1un或 ( 1)n un (其中un 0)
n 1 n 1
莱布尼茨定理 (ⅰ) un un 1 ( n 1,2,3,) ;(ⅱ) lim un 0 ,则
求和函数(收敛域)
1 x 1 x ; 之类的已知级数 n 0
n
7、幂级数展开式
0 n

f ( n ) ( x0 ) ( x x 0 ) n 称为 f ( x ) 在点 x0 的泰勒级数. n!
n 0

f ( n ) ( 0) n x 称为 f ( x ) 在点 x0 的麦克劳林级数. n!
(1) (1) np , np n 1 n 1
n
n 1
( p 0)
3、正项级数
u ,
n1 n

un 0
1)正项级数收敛(发散){ sn }有界(无界) .
2)比较法一般形式
若正项级数
u
n 1
பைடு நூலகம்

n 收敛(发散)且 n
v un ( un v n ),
n
级数收敛.
5、任意项级数

(完整版)级数的概念与性质

(完整版)级数的概念与性质

第十一章无穷级数教学内容目录:§1—§8本章主要内容:常数项级数:无穷级数及其收敛与发散的定义,无穷级数的基本性质,级数收敛的必要条件,几何级数,调和级数,P级数,正项级数的比较审敛法和比值审敛法,交错级数,莱布尼兹定理,绝对收敛和条件收敛。

幂级数:幂级数概念,阿贝尔(Abel)定理,幂级数的收敛半径与收敛区间,幂级数的四则运算,和的连续性、逐项积分与逐项微分。

泰勒级数,函数展开为幂级数的唯一性,函数(、e x cossin ln(1+x)、(1+x)m等)的幂级数展开式,幂级数在近似计算中的应用举例,“欧、x、x拉(Euler)公式。

函数项级数:函数项级数的一般概念,收效域及和函数.教学目的与要求:1、理解无穷级数收敛、发散以及和的概念,了解无穷级数基本性质及收敛的必要条件。

2、掌握几何级数和P—级数的收敛性。

3、掌握正项级数的比较审敛法,掌握正项级数的比值审敛法。

4、理解交错级数的审敛法(莱布尼兹定理)。

5、了解无穷级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系。

6、了解函数项级数的收敛域及和函数的概念.7、掌握比较简单的幂级数收敛区间的求法(区间端点的收敛性可不作要求)。

8、了解幂级数在其收敛区间内的一些基本性质。

9、了解函数展开为泰勒级数的充分必要条件。

10、掌握应用e x,sinx,cox,en(1+x)和(1+x)u的马克劳林(Maclaurin)展开式将一些简单的的函数间接展开成幂级数的方法。

11、了解函数展开为傅里叶(Fourier)级数的狄利克雷(Dirchet)条件,会将定义在(-π,π)上的函数展开为傅里叶级数,并会将定义在(—π,π)上的函数展开为正弦或余弦级数。

本章重点与难点:重点:正项级数的审敛法;将一些简单的的函数间接展开成幂级数难点:应用逐项积分、逐项微分的性质求和函数、本章计划学时:16学时(2节习题课)教学手段:课堂讲授、习题课、讨论,同时结合多媒体教学推荐阅读文献:1。

高等数学第十一章 无穷级数

高等数学第十一章    无穷级数
则级数(5)收敛,且其和 s u1 , 其余项 rn 的绝对值 | rn | un1 .
三 绝对收敛与条件收敛
定理1 如果级数(6)的个项的绝对值 所构成的级数(7)收敛,则级数(6)收敛。
例9
证明级数 sin n 绝对收敛。
n1 n4
第四节幂级数
一函数项级数的一般概念
如果给定一个定义在区间 I 上的函数列
x
2n
的收敛半径。
例5
求幂级数 ( x 1)n n1 2n n
的收敛区间。
三 、 幂级数的运算
1。幂级数(3)的和函数 s(x) 在收敛区间 (R, R) 内是连续的。如果幂级数(3)在收敛区间
的端点 x R(或x R)也收敛,则和函数 在 x R 处左连续(或 x R 在处右连续)。
n un 则当 1 时级数收敛; 1 时级数发散; 1 时级数可能收敛也可能发散。
例5 证明级数
1

1 1

1 1 2

1
1 2

3



1

2

1 3(n

1)


是收敛的,并估计以级数的部分和 sn 近似
代替和 s 所产生的误差。
例6 判别级数 的收敛性。
1 10
二幂级数及其收敛性
函数项级数中简单而常见的一类级数就是所谓 幂级数,它的形式是
a0 a1 x a2 x2 an xn ,
其中常数叫做幂级数的系数。
定理1(阿贝耳(Abel)定理)
如果级数(3)当时 x x0 ( x0 0) 收敛, 则适合不等式 | x || x0 | 的一切 x 使幂级数

无穷级数内容提要

无穷级数内容提要

无穷级数内容提要1.无穷级数的基本概念,收敛级数的性质。

注:收敛级数的必要条件: 若级数1n n u ∞=∑收敛,则lim 0n n u →∞=。

2.几何级数与p —级数的收敛性。

1)当||1q <时,几何级数11n n aq∞-=∑收敛; 当||1q ≥时,几何级数11n n aq∞-=∑发散。

2)当1p >时,p —级数11p n n ∞=∑收敛;当1p ≤时,p —级数11p n n∞=∑发散。

3.正项级数收敛的充分必要条件。

4.比较审敛法。

设0n n u v ≤≤,1)若级数1n n v ∞=∑收敛,则级数1n n u ∞=∑收敛;2)若级数1n n u ∞=∑发散,则级数1n n v ∞=∑发散。

5.比较审敛法的极限形式。

设0n u ≥,0n v ≥,且lim 1nn nu v →∞=,则级数1n n u ∞=∑与级数1n n v ∞=∑的敛散性相同。

6.比值与根值审敛法。

设0n u ≥,且1l i m n n nu u ρ+→∞=(或l i n ρ→∞=), 1)当1ρ<时,级数1n n u ∞=∑收敛;2)当1ρ>时,级数∑∞=1n nu 发散。

7.交错级数。

莱布尼茨定理:若交错级数11(1)n n n u ∞-=-∑满足lim 0n n u →∞=, 且1n n u u +≥,则交错级数收敛。

8.绝对收敛与条件收敛。

设1l i m ||n n nu u ρ+→∞=(或l i |n ρ→∞=), 1)当1ρ<时,级数1n n u ∞=∑绝对收敛;2)当1ρ>时,级数1n n u ∞=∑发散。

9.幂级数的收敛半径与收敛域。

设1l i m ||n n n a a ρ+→∞=,则幂级数0nn n a x ∞=∑的收敛半径1R ρ=。

10.利用逐项求导或逐项积分求幂级数的和函数。

11.利用几个已知函数的泰勒级数将函数展开为幂级数。

1)111nx x x =++++-,(11x -<<)。

高等数学-11章无穷级数

高等数学-11章无穷级数

第十一章 无穷级数教学目的:1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。

2.掌握几何级数与P 级数的收敛与发散的条件。

3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。

4.掌握交错级数的莱布尼茨判别法。

5.了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。

6.了解函数项级数的收敛域及和函数的概念。

7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法。

8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些常数项级数的和。

9.了解函数展开为泰勒级数的充分必要条件。

10.掌握,sin ,cos xe x x ,ln(1)x +和(1)a α+的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。

11. 了解傅里叶级数的概念和函数展开为傅里叶级数的狄利克雷定理,会将定义在[-l ,l]上的函数展开为傅里叶级数,会将定义在[0,l]上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式。

教学重点 :1、级数的基本性质及收敛的必要条件。

2、正项级数收敛性的比较判别法、比值判别法和根值判别;3、交错级数的莱布尼茨判别法;4、幂级数的收敛半径、收敛区间及收敛域;5、,sin ,cos xe x x ,ln(1)x +和(1)a α+的麦克劳林展开式;6、傅里叶级数。

教学难点:1、比较判别法的极限形式;2、莱布尼茨判别法;3、任意项级数的绝对收敛与条件收敛;4、函数项级数的收敛域及和函数;5、泰勒级数;6、傅里叶级数的狄利克雷定理。

§11. 1 常数项级数的概念和性质一、常数项级数的概念 常数项级数: 给定一个数列 u 1, u 2, u 3, ⋅ ⋅ ⋅, u n , ⋅ ⋅ ⋅, 则由这数列构成的表达式 u 1 + u 2 + u 3 + ⋅ ⋅ ⋅+ u n + ⋅ ⋅ ⋅叫做常数项)无穷级数, 简称常数项)级数, 记为∑∞=1n n u , 即3211⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n u u u u u ,其中第n 项u n 叫做级数的一般项. 级数的部分和: 作级数∑∞=1n n u 的前n 项和n ni i n u u u u u s +⋅⋅⋅+++==∑= 3211称为级数∑∞=1n n u 的部分和.级数敛散性定义: 如果级数∑∞=1n n u 的部分和数列}{n s 有极限s , 即s s n n =∞→lim ,则称无穷级数∑∞=1n n u 收敛, 这时极限s 叫做这级数的和,并写成3211⋅⋅⋅++⋅⋅⋅+++==∑∞=n n n u u u u u s ;如果}{n s 没有极限, 则称无穷级数∑∞=1n n u 发散.余项: 当级数∑∞=1n n u 收敛时, 其部分和s n 是级数∑∞=1n n u 的和s 的近似值, 它们之间的差值r n =s -s n =u n +1+u n +2+ ⋅ ⋅ ⋅ 叫做级数∑∞=1n n u 的余项.例1 讨论等比级数(几何级数)20⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n aq aq aq a aq的敛散性, 其中a ≠0, q 叫做级数的公比. 例1 讨论等比级数n n aq ∑∞=0(a ≠0)的敛散性.解 如果q ≠1, 则部分和 qaq q a q aq a aqaq aq a s n n n n ---=--=+⋅⋅⋅+++=-111 12. 当|q |<1时, 因为q a s n n -=∞→1lim , 所以此时级数n n aq ∑∞=0收敛, 其和为q a -1.当|q |>1时, 因为∞=∞→n n s lim , 所以此时级数n n aq ∑∞=0发散.如果|q |=1, 则当q =1时, s n =na →∞, 因此级数n n aq ∑∞=0发散;当q =-1时, 级数n n aq ∑∞=0成为a -a +a -a + ⋅ ⋅ ⋅,时|q |=1时, 因为s n 随着n 为奇数或偶数而等于a 或零, 所以s n 的极限不存在, 从而这时级数n n aq ∑∞=0也发散.综上所述, 如果|q |<1, 则级数nn aq ∑∞=0收敛, 其和为q a -1; 如果|q |≥1, 则级数n n aq ∑∞=0发散. 仅当|q |<1时, 几何级数n n aq ∑∞=0a ≠0)收敛, 其和为qa -1.例2 证明级数 1+2+3+⋅ ⋅ ⋅+n +⋅ ⋅ ⋅ 是发散的.证 此级数的部分和为 2)1( 321+=+⋅⋅⋅+++=n n n s n . 显然, ∞=∞→n n s lim , 因此所给级数是发散的. 例3 判别无穷级数)1(1 431321211⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅n n 的收敛性. 解 由于 111)1(1+-=+=n n n n u n ,因此 )1(1 431321211++⋅⋅⋅+⋅+⋅+⋅=n n s n 111)111( )3121()211(+-=+-+⋅⋅⋅+-+-=n n n从而1)111(lim lim =+-=∞→∞→n s n n n , 所以这级数收敛, 它的和是1. 例3 判别无穷级数∑∞=+1)1(1n n n 的收敛性. 解 因为 )1(1 431321211++⋅⋅⋅+⋅+⋅+⋅=n n s n 111)111( )3121()211(+-=+-+⋅⋅⋅+-+-=n n n , 从而1)111(lim lim =+-=∞→∞→n s n n n ,所以这级数收敛, 它的和是1. 提示: 111)1(1+-=+=n n n n u n .二、收敛级数的基本性质性质1 如果级数∑∞=1n n u 收敛于和s , 则它的各项同乘以一个常数k 所得的级数∑∞=1n n ku 也收敛,且其和为ks .性质1 如果级数∑∞=1n n u 收敛于和s , 则级数∑∞=1n n ku 也收敛, 且其和为ks .性质1 如果s u n n =∑∞=1, 则ks ku n n =∑∞=1.这是因为, 设∑∞=1n n u 与∑∞=1n n ku 的部分和分别为s n 与σn , 则) (lim lim 21n n n n ku ku ku ⋅⋅⋅++=∞→∞→σks s k u u u k n n n n ==⋅⋅⋅++=∞→∞→lim ) (lim 21.这表明级数∑∞=1n n ku 收敛, 且和为ks .性质2 如果级数∑∞=1n n u 、∑∞=1n n v 分别收敛于和s 、σ, 则级数)(1n n n v u ±∑∞=也收敛, 且其和为s ±σ.性质2 如果s u n n =∑∞=1、σ=∑∞=1n n v , 则σ±=±∑∞=s v u n n n )(1.这是因为, 如果∑∞=1n n u 、∑∞=1n n v 、)(1n n n v u ±∑∞=的部分和分别为s n 、σn 、τn , 则)]( )()[(lim lim 2211n n n n n v u v u v u ±+⋅⋅⋅+±+±=∞→∞→τ)] () [(lim 2121n n n v v v u u u +⋅⋅⋅++±+⋅⋅⋅++=∞→σσ±=±=∞→s s n n n )(lim .性质3 在级数中去掉、加上或改变有限项, 不会改变级数的收敛性. 比如, 级数 )1(1 431321211⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅n n 是收敛的, 级数 )1(1 43132121110000⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅+n n 也是收敛的, 级数)1(1 541431⋅⋅⋅+++⋅⋅⋅+⋅+⋅n n 也是收敛的.性质4 如果级数∑∞=1n n u 收敛, 则对这级数的项任意加括号后所成的级数仍收敛, 且其和不变.应注意的问题: 如果加括号后所成的级数收敛, 则不能断定去括号后原来的级数也收敛. 例如, 级数1-1)+1-1) +⋅ ⋅ ⋅收敛于零, 但级数1-1+1-1+⋅ ⋅ ⋅却是发散的. 推论: 如果加括号后所成的级数发散, 则原来级数也发散. 级数收敛的必要条件:性质5 如果∑∞=1n n u 收敛, 则它的一般项u n 趋于零, 即0lim 0=→n n u .性质5 如果∑∞=1n n u 收敛, 则0lim 0=→n n u .证 设级数∑∞=1n n u 的部分和为s n , 且s s n n =∞→lim , 则0lim lim )(lim lim 110=-=-=-=-∞→∞→-∞→→s s s s s s u n n n n n n n n n .应注意的问题: 级数的一般项趋于零并不是级数收敛的充分条件. 例4 证明调和级数13121111⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n 是发散的.例4 证明调和级数∑∞=11n n是发散的. 证 假若级数∑∞=11n n 收敛且其和为s , s n是它的部分和.显然有s s n n =∞→lim 及s s n n =∞→2lim . 于是0)(lim 2=-∞→n n n s s .但另一方面, 2121 212121 21112=+⋅⋅⋅++>+⋅⋅⋅++++=-n n n n n n s s n n , 故0)(lim 2≠-∞→n n n s s , 矛盾. 这矛盾说明级数∑∞=11n n必定发散.§11. 2 常数项级数的审敛法 一、正项级数及其审敛法正项级数: 各项都是正数或零的级数称为正项级数.定理1 正项级数∑∞=1n n u 收敛的充分必要条件它的部分和数列{s n }有界.定理2(比较审敛法)设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 且u n ≤v n (n =1, 2, ⋅ ⋅ ⋅ ). 若级数∑∞=1n n v 收敛,则级数∑∞=1n n u 收敛; 反之, 若级数∑∞=1n n u 发散, 则级数∑∞=1n n v 发散.定理2(比较审敛法)设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 且u n ≤v n (k >0, ∀n ≥N ).若∑∞=1n n v 收敛, 则∑∞=1n n u 收敛; 若∑∞=1n n u 发散, 则∑∞=1n n v 发散.设∑u n 和∑v n 都是正项级数, 且u n ≤kv n (k >0, ∀n ≥N ). 若级数∑v n 收敛, 则级数∑u n 收敛; 反之, 若级数∑u n 发散, 则级数∑v n 发散.证 设级数∑∞=1n n v 收敛于和σ, 则级数∑∞=1n n u 的部分和s n =u 1+u 2+ ⋅ ⋅ ⋅ +u n ≤v 1+ v 2+ ⋅ ⋅ ⋅ +v n ≤σ (n =1, 2, ⋅ ⋅ ⋅), 即部分和数列{s n }有界, 由定理1知级数∑∞=1n n u 收敛.反之, 设级数∑∞=1n n u 发散, 则级数∑∞=1n n v 必发散. 因为若级数∑∞=1n n v 收敛, 由上已证明的结论, 将有级数∑∞=1n n u 也收敛, 与假设矛盾.证 仅就u n ≤v n (n =1, 2, ⋅ ⋅ ⋅ )情形证明. 设级数∑v n 收敛, 其和为σ, 则级数∑u n 的部分和 s n =u 1+ u 2+ ⋅ ⋅ ⋅ + u n ≤v 1+v 2+ ⋅ ⋅ ⋅ +v n ≤σ (n =1, 2, ⋅ ⋅ ⋅), 即部分和数列{s n }有界. 因此级数∑u n 收敛.反之, 设级数∑u n 发散, 则级数∑v n 必发散. 因为若级数 ∑v n 收敛, 由上已证明的结论, 级数∑u n 也收敛, 与假设矛盾.推论 设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 如果级数∑∞=1n n v 收敛, 且存在自然数N , 使当n ≥N 时有u n ≤kv n (k >0)成立, 则级数∑∞=1n n u 收敛; 如果级数∑∞=1n n v 发散, 且当n ≥N 时有u n ≥kv n (k >0)成立, 则级数∑∞=1n n u 发散.例1 讨论p -级数1413121111⋅⋅⋅++⋅⋅⋅++++=∑∞=p p p p p n n n 的收敛性, 其中常数p >0. 例1 讨论p -级数)0( 11>∑∞=p np n 的收敛性. 解 设p ≤1. 这时n n p 11≥, 而调和级数∑∞=11n n 发散, 由比较审敛法知, 当p ≤1时级数p n n11∑∞=发散.设p >1. 此时有]1)1(1[111111111-------=≤=⎰⎰p p n n p n n pp n n p dx x dx n n (n =2, 3, ⋅ ⋅ ⋅).对于级数]1)1(1[112--∞=--∑p p n n n , 其部分和111111)1(11])1(11[ ]3121[]211[------+-=+-+⋅⋅⋅+-+-=p p p p p p n n n n s .因为1])1(11[lim lim 1=+-=-∞→∞→p n n n n s . 所以级数]1)1(1[112--∞=--∑p p n n n 收敛. 从而根据比较审敛法的推论1可知, 级数p n n11∑∞=当p >1时收敛.综上所述, p -级数p n n11∑∞=当p >1时收敛, 当p ≤1时发散. 解 当p ≤1时, n n p 11≥, 而调和级数∑∞=11n n发散, 由比较审敛法知,当p ≤1时级数pn n 11∑∞=发散. 当p >1时,]1)1(1[111111111-------=≤=⎰⎰p p n n pn n pp n n p dx x dx n n (n =2, 3, ⋅ ⋅ ⋅).而级数]1)1(1[112--∞=--∑p p n n n 是收敛的, 根据比较审敛法的推论可知,级数pn n 11∑∞=当p >1时收敛.提示: 级数]1)1(1[112--∞=--∑p p n n n 的部分和为111111)1(11])1(11[ ]3121[]211[------+-=+-+⋅⋅⋅+-+-=p p p p p p n n n n s . 因为1])1(11[lim lim 1=+-=-∞→∞→p n n n n s ,所以级数]1)1(1[112--∞=--∑p p n n n 收敛.p -级数的收敛性: p -级数pn n 11∑∞=当p >1时收敛, 当p ≤1时发散. 例2 证明级数∑∞=+1)1(1n n n 是发散的. 证 因为11)1(1)1(12+=+>+n n n n , 而级数 11 3121111⋅⋅⋅+++⋅⋅⋅++=+∑∞=n n n 是发散的, 根据比较审敛法可知所给级数也是发散的. 定理3(比较审敛法的极限形式) 设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 如果l v u nnn =∞→lim(0<l <+∞),则级数∑∞=1n n u 和级数∑∞=1n n v 同时收敛或同时发散.定理3(比较审敛法的极限形式) 设∑∞=1n n u 和∑∞=1n n v 都是正项级数,(1)如果l v u n nn =∞→lim (0≤l <+∞), 且级数∑∞=1n n v 收敛, 则级数∑∞=1n n u 收敛; (2)如果+∞=>=∞→∞→n nn n n n v u l v u lim 0lim 或, 且级数∑∞=1n n v 发散, 则级数∑∞=1n n u 发散. 定理3(比较审敛法的极限形式) 设∑u n 和∑v n 都是正项级数,(1)如果lim(u n /v n )=l (0≤l <+∞), 且∑v n 收敛, 则∑u n 收敛;(2)如果lim(u n /v n )=l (0<l ≤+∞), 且∑v n 发散, 则∑u n 发散.证明 由极限的定义可知, 对l 21=ε, 存在自然数N , 当n >N 时, 有不等式l l v u l l n n2121+<<-, 即n n n lv u lv 2321<<, 再根据比较审敛法的推论1, 即得所要证的结论. 例3 判别级数∑∞=11sinn n的收敛性.解 因为111sin lim =∞→nn n , 而级数∑∞=11n n发散,根据比较审敛法的极限形式, 级数∑∞=11sinn n发散. 例4 判别级数∑∞=+12)11ln(n n 的收敛性. 解 因为11)11ln(lim22=+∞→n n n , 而级数211n n ∑∞=收敛, 根据比较审敛法的极限形式, 级数∑∞=+12)11ln(n n 收敛. 定理4(比值审敛法, 达朗贝尔判别法)若正项级数∑∞=1n n u 的后项与前项之比值的极限等于ρ:ρ=+∞→nn n u u 1lim,则当ρ<1时级数收敛; 当ρ>1(或∞=+∞→nn n u u 1lim)时级数发散; 当ρ =1时级数可能收敛也可能发散.定理4(比值审敛法, 达朗贝尔判别法) 若正项级数∑∞=1n n u 满足ρ=+∞→nn n u u 1lim, 则当ρ<1时级数收敛;当ρ>1(或∞=+∞→nn n u u 1lim)时级数发散. 当ρ =1时级数可能收敛也可能发散.定理4(比值审敛法, 达朗贝尔判别法)设∑∞=1n n u 为正项级数, 如果ρ=+∞→n n n u u 1lim,则当ρ<1时级数收敛; 当ρ>1(或∞=+∞→nn n u u 1lim )时级数发散; 当ρ =1时级数可能收敛也可能发散.例5 证明级数 )1( 3211 3211211111⋅⋅⋅+-⋅⋅⋅⋅⋅+⋅⋅⋅+⋅⋅+⋅++n 是收敛的. 解 因为101lim 321)1( 321lim lim1<==⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅=∞→∞→+∞→nn n u u n n n n n ,根据比值审敛法可知所给级数收敛. 例6 判别级数10! 10321102110132⋅⋅⋅++⋅⋅⋅+⋅⋅+⋅+nn 的收敛性.解 因为∞=+=⋅+=∞→+∞→+∞→101lim ! 1010)!1(lim lim11n n n u u n nn n n n n ,根据比值审敛法可知所给级数发散.例7 判别级数∑∞∞→⋅-n n n 2)12(1的收敛性. 解 1)22()12(2)12(lim lim1=+⋅+⋅-=∞→+∞→n n nn u u n n n n .这时ρ=1, 比值审敛法失效, 必须用其它方法来判别级数的收敛性.因为212)12(1n n n <⋅-, 而级数211n n ∑∞=收敛, 因此由比较审敛法可知所给级数收敛. 解 因为212)12(1n n n <⋅-, 而级数211nn ∑∞=收敛, 因此由比较审敛法可知所给级数收敛.提示: 1)22()12(2)12(lim lim1=+⋅+⋅-=∞→+∞→n n nn u u n n n n , 比值审敛法失效.因为212)12(1nn n <⋅-, 而级数211n n ∑∞=收敛, 因此由比较审敛法可知所给级数收敛.定理5(根值审敛法, 柯西判别法)设∑∞=1n n u 是正项级数, 如果它的一般项u n 的n 次根的极限等于ρ:ρ=∞→nn n u lim,则当ρ<1时级数收敛; 当ρ>1(或+∞=∞→n n n u lim)时级数发散; 当ρ=1时级数可能收敛也可能发散.定理5(根值审敛法, 柯西判别法) 若正项级数∑∞=1n n u 满足ρ=∞→nn n u lim, 则当ρ<1时级数收敛;当ρ>1(或+∞=∞→nn n u lim)时级数发散. 当ρ=1时级数可能收敛也可能发散.定理5(根值审敛法, 柯西判别法) 设∑∞=1n n u 为正项级数, 如果ρ=∞→nn n u lim,则当ρ<1时级数收敛; 当ρ>1(或+∞=∞→n n n u lim )时级数发散; 当ρ=1时级数可能收敛也可能发散.例8 证明级数 1 3121132⋅⋅⋅++⋅⋅⋅+++nn 是收敛的. 并估计以级数的部分和s n 近似代替和s 所产生的误差. 解 因为01lim 1lim lim ===∞→∞→∞→nn u n nn n n n n ,所以根据根值审敛法可知所给级数收敛.以这级数的部分和s n 近似代替和s 所产生的误差为 )3(1)2(1)1(1||321⋅⋅⋅++++++=+++n n n n n n n r )1(1)1(1)1(1321⋅⋅⋅++++++<+++n n n n n n + nn n )1(1+=. 例6判定级数∑∞=-+12)1(2n nn的收敛性. 解 因为21)1(221limlim =-+=∞→∞→n n n n n n u ,所以, 根据根值审敛法知所给级数收敛. 定理6(极限审敛法) 设∑∞=1n n u 为正项级数,(1)如果)lim (0lim +∞=>=∞→∞→n n n n nu l nu 或, 则级数∑∞=1n n u 发散;(2)如果p >1, 而)0( lim +∞<≤=∞→l l u n n pn , 则级数∑∞=1n n u 收敛.例7 判定级数∑∞=+12)11ln(n n 的收敛性. 解 因为)(1~)11ln(22∞→+n n n , 故 11lim )11ln(lim lim 22222=⋅=+=∞→∞→∞→nn n n u n n n n n ,根据极限审敛法, 知所给级数收敛.例8 判定级数)cos 1(11nn n π-+∑∞=的收敛性.解 因为 222232321)(211lim )cos 1(1limlimπππ=⋅+=-+=∞→∞→∞→n n n n n n n u n n n nn ,根据极限审敛法, 知所给级数收敛.二、交错级数及其审敛法交错级数: 交错级数是这样的级数, 它的各项是正负交错的. 交错级数的一般形式为∑∞=--11)1(n n n u , 其中0>n u .例如,1)1(11∑∞=--n n n 是交错级数, 但 cos 1)1(11∑∞=---n n n n π不是交错级数.定理6(莱布尼茨定理)如果交错级数∑∞=--11)1(n n n u 满足条件:(1)u n ≥u n +1 (n =1, 2, 3, ⋅ ⋅ ⋅); (2)0lim =∞→n n u ,则级数收敛, 且其和s ≤u 1, 其余项r n 的绝对值|r n |≤u n +1.定理6(莱布尼茨定理)如果交错级数∑∞=--11)1(n n n u 满足: (1)1+≥n n u u ; (2)0lim =∞→n n u ,则级数收敛, 且其和s ≤u 1, 其余项r n 的绝对值|r n |≤u n +1.简要证明: 设前n 项部分和为s n .由s 2n =(u 1-u 2)+(u 3-u 4)+ ⋅ ⋅ ⋅ +(u 2n 1-u 2n ), 及 s 2n =u 1-(u 2-u 3)+(u 4-u 5)+ ⋅ ⋅ ⋅ +(u 2n -2-u 2n -1)-u 2n 看出数列{s 2n }单调增加且有界(s 2n <u 1), 所以收敛.设s 2n →s (n →∞), 则也有s 2n +1=s 2n +u 2n +1→s (n →∞), 所以s n →s (n →∞). 从而级数是收敛的, 且s n <u 1.因为 |r n |=u n +1-u n +2+⋅ ⋅ ⋅也是收敛的交错级数, 所以|r n |≤u n +1. 例9 证明级数 1)1(11∑∞=--n n n收敛, 并估计和及余项.证 这是一个交错级数. 因为此级数满足 (1)1111+=+>=n n u n n u (n =1, 2,⋅ ⋅ ⋅), (2)01lim lim ==∞→∞→nu n nn ,由莱布尼茨定理, 级数是收敛的, 且其和s <u 1=1, 余项11||1+=≤+n u r n n .三、绝对收敛与条件收敛: 绝对收敛与条件收敛:若级数∑∞=1||n n u 收敛, 则称级数∑∞=1n n u 绝对收敛; 若级数∑∞=1n n u收敛, 而级数∑∞=1||n n u 发散, 则称级∑∞=1n n u 条件收敛.例10 级数∑∞=--1211)1(n n n 是绝对收敛的, 而级数∑∞=--111)1(n n n 是条件收敛的.定理7 如果级数∑∞=1n n u 绝对收敛, 则级数∑∞=1n n u 必定收敛.值得注意的问题:如果级数∑∞=1||n n u 发散, 我们不能断定级数∑∞=1n n u 也发散.但是, 如果我们用比值法或根值法判定级数∑∞=1||n n u 发散,则我们可以断定级数∑∞=1n n u 必定发散.这是因为, 此时|u n |不趋向于零, 从而u n 也不趋向于零, 因此级数∑∞=1n n u 也是发散的.例11 判别级数∑∞=12sin n nna 的收敛性. 解 因为|221|sin n n na ≤, 而级数211n n ∑∞=是收敛的, 所以级数∑∞=12|sin |n n na 也收敛, 从而级数∑∞=12sin n nna 绝对收敛.例12 判别级数∑∞=+-12)11(21)1(n n nnn 的收敛性.解: 由2)11(21||n nn n u +=, 有121)11(lim 21||lim >=+=∞→∞→e n u n n n nn ,可知0lim ≠∞→n n u , 因此级数∑∞=+-12)11(21)1(n n nnn 发散.§ 11. 3 幂级数一、函数项级数的概念函数项级数: 给定一个定义在区间I 上的函数列{u n (x )}, 由这函数列构成的表达式 u 1(x )+u 2(x )+u 3(x )+ ⋅ ⋅ ⋅ +u n (x )+ ⋅ ⋅ ⋅ 称为定义在区间I 上的(函数项)级数, 记为∑∞=1)(n n x u .收敛点与发散点:对于区间I 内的一定点x 0, 若常数项级数∑∞=10)(n n x u 收敛, 则称 点x 0是级数∑∞=1)(n n x u 的收敛点. 若常数项级数∑∞=10)(n n x u 发散, 则称 点x 0是级数∑∞=1)(n n x u 的发散点.收敛域与发散域:函数项级数∑∞=1)(n n x u 的所有收敛点的全体称为它的收敛域, 所有发散点的全体称为它的发散域. 和函数:在收敛域上, 函数项级数∑∞=1)(n n x u 的和是x 的函数s (x ),s (x )称为函数项级数∑∞=1)(n n x u 的和函数, 并写成∑∞==1)()(n n x u x s .∑u n (x )是∑∞=1)(n n x u 的简便记法, 以下不再重述.在收敛域上, 函数项级数∑u n (x )的和是x 的函数s (x ), s (x )称为函数项级数∑u n (x )的和函数, 并写成s (x )=∑u n (x ). 这函数的定义就是级数的收敛域, 部分和:函数项级数∑∞=1)(n n x u 的前n 项的部分和记作s n (x ),函数项级数∑u n (x )的前n 项的部分和记作s n (x ), 即 s n (x )= u 1(x )+u 2(x )+u 3(x )+ ⋅ ⋅ ⋅ +u n (x ).在收敛域上有)()(lim x s x s n n =∞→或s n (x )→s (x )(n →∞) .余项:函数项级数∑∞=1)(n n x u 的和函数s (x )与部分和s n (x )的差r n (x )=s (x )-s n (x )叫做函数项级数∑∞=1)(n n x u 的余项.函数项级数∑u n (x )的余项记为r n (x ), 它是和函数s (x )与部分和s n (x )的差 r n (x )=s (x )-s n (x ). 在收敛域上有0)(lim =∞→x r n n .二、幂级数及其收敛性 幂级数:函数项级数中简单而常见的一类级数就是各项都幂函数的函数 项级数, 这种形式的级数称为幂级数, 它的形式是 a 0+a 1x +a 2x 2+ ⋅ ⋅ ⋅ +a n x n + ⋅ ⋅ ⋅ , 其中常数a 0, a 1, a 2, ⋅ ⋅ ⋅ , a n , ⋅ ⋅ ⋅叫做幂级数的系数. 幂级数的例子:1+x +x 2+x 3+ ⋅ ⋅ ⋅ +x n + ⋅ ⋅ ⋅ , !1 !2112⋅⋅⋅++⋅⋅⋅+++n x n x x . 注: 幂级数的一般形式是a 0+a 1(x -x 0)+a 2(x -x 0)2+ ⋅ ⋅ ⋅ +a n (x -x 0)n + ⋅ ⋅ ⋅ , 经变换t =x -x 0就得a 0+a 1t +a 2t 2+ ⋅ ⋅ ⋅ +a n t n + ⋅ ⋅ ⋅ . 幂级数1+x +x 2+x 3+ ⋅ ⋅ ⋅ +x n + ⋅ ⋅ ⋅可以看成是公比为x 的几何级数. 当|x |<1时它是收敛的; 当|x |≥1时, 它是发散的. 因此它的收敛 域为(-1, 1), 在收敛域内有11132⋅⋅⋅++⋅⋅⋅++++=-n x x x x x.定理1 (阿贝尔定理) 如果级数∑∞=0n n n x a 当x =x 0 (x 0≠0)时收敛, 则适合不等式|x |<|x 0|的一切x 使这幂级数绝对收敛. 反之, 如果级数∑∞=0n n n x a 当x =x 0时发散, 则适合不等式|x |>|x 0|的一切x 使这幂级数发散.定理1 (阿贝尔定理) 如果级数∑a n x n 当x =x 0 (x 0≠0)时收敛, 则适合不等式 |x |<|x 0|的一切x 使这幂级数绝对收敛. 反之, 如果级数∑a n x n 当 x =x 0时发散, 则适合不等式|x |>|x 0|的一切x 使这幂级数发散. 提示: ∑a n x n是∑∞=0n n n x a 的简记形式.证 先设x 0是幂级数∑∞=0n nn x a 的收敛点, 即级数∑∞=0n n n x a 收敛. 根据级数收敛的必要条件, 有0lim 0=∞→nn n x a , 于是存在一个常数M , 使| a n x 0n |≤M (n =0, 1, 2, ⋅ ⋅ ⋅).这样级数∑∞=0n n n x a 的的一般项的绝对值n n n n n nn n n n x x M x x x a x x x a x a ||||||||||00000⋅≤⋅=⋅=. 因为当|x |<|x 0|时, 等比级数nn x x M ||00⋅∑∞=收敛, 所以级数∑∞=0||n n n x a 收敛, 也就是级数∑∞=0n n n x a 绝对收敛.简要证明 设∑a n x n 在点x 0收敛, 则有a n x 0n →0(n →∞) , 于是数列{a n x 0n }有界, 即存在一个常数M , 使| a n x 0n |≤M (n =0, 1, 2, ⋅ ⋅ ⋅). 因为 n n n n n nn n nn x x M x x x a x x x a xa || |||| || ||00000⋅≤⋅=⋅=,而当||||0x x <时, 等比级数n n x x M ||⋅∑∞=收敛, 所以级数∑|a n x n |收敛, 也就是级数∑a nx n 绝对收敛.定理的第二部分可用反证法证明. 倘若幂级数当x =x 0时发散而有一点x 1适合|x 1|>|x 0|使级数收敛, 则根据本定理的第一部分, 级数当x =x 0时应收敛, 这与所设矛盾. 定理得证.推论 如果级数∑∞=0n n n x a 不是仅在点x =0一点收敛, 也不是在整个数轴上都收敛, 则必有一个完全确定的正数R 存在, 使得 当|x |<R 时, 幂级数绝对收敛; 当|x |>R 时, 幂级数发散;当x =R 与x =-R 时, 幂级数可能收敛也可能发散.收敛半径与收敛区间: 正数R 通常叫做幂级数∑∞=0n n n x a 的收敛半径. 开区间(-R , R )叫做幂级数∑∞=0n nn xa 的收敛区间. 再由幂级数在x =±R 处的收敛性就可以决定它的收敛域. 幂级数∑∞=0n nn x a 的收敛域是(-R , R )(或[-R , R )、(-R , R ]、[-R , R ]之一.规定: 若幂级数∑∞=0n nn x a 只在x =0收敛, 则规定收敛半径R =0 , 若幂级数∑∞=0n n n x a 对一切x 都收敛, 则规定收敛半径R =+∞, 这时收敛域为(-∞, +∞). 定理2如果ρ=+∞→||lim 1n n n a a , 其中a n 、a n +1是幂级数∑∞=0n n n x a 的相邻两项的系数, 则这幂级数的收敛半径⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 00 1R .定理2如果幂级数∑∞=0n n n x a 系数满足ρ=+∞→||lim 1nn n a a , 则这幂级数的收敛半径 ⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 00 10 R .定理2如果ρ=+∞→||lim 1n n n a a , 则幂级数∑∞=0n n n x a 的收敛半径R 为: 当ρ≠0时ρ1=R , 当ρ=0时R =+∞, 当ρ=+∞时R =0.简要证明: || ||||lim ||lim 111x x a a x a x a n n n nn n n n ρ=⋅=+∞→++∞→. (1)如果0<ρ<+∞, 则只当ρ|x |<1时幂级数收敛, 故ρ1=R .(2)如果ρ=0, 则幂级数总是收敛的, 故R =+∞. (3)如果ρ=+∞, 则只当x =0时幂级数收敛, 故R =0. 例1 求幂级数)1( 32)1(13211⋅⋅⋅+-+⋅⋅⋅-+-=--∞=-∑nx x x x n x n n n n n的收敛半径与收敛域. 例1 求幂级数∑∞=--11)1(n n n nx 的收敛半径与收敛域.解 因为1111lim ||lim 1=+==∞→+∞→nn a an n n n ρ,所以收敛半径为11==ρR .当x =1时, 幂级数成为∑∞=--111)1(n n n, 是收敛的; 当x =-1时, 幂级数成为∑∞=-1)1(n n, 是发散的. 因此, 收敛域为(-1, 1].例2 求幂级数∑∞=0!1n n x n !1 !31!21132⋅⋅⋅++⋅⋅⋅++++n x n x x x的收敛域. 例2 求幂级数∑∞=0!1n n x n 的收敛域.解 因为0)!1(!lim !1)!1(1lim||lim 1=+=+==∞→∞→+∞→n n n n a a n n n n n ρ, 所以收敛半径为R =+∞, 从而收敛域为(-∞, +∞). 例3 求幂级数∑∞=0!n n x n 的收敛半径.解 因为+∞=+==∞→+∞→!)!1(lim ||lim 1n n a a n n n n ρ, 所以收敛半径为R =0, 即级数仅在x =0处收敛. 例4 求幂级数∑∞=022!)()!2(n nx n n 的收敛半径. 解 级数缺少奇次幂的项, 定理2不能应用. 可根据比值审敛法来求收敛半径: 幂级数的一般项记为nn x n n x u 22)!()!2()(=. 因为 21||4 |)()(|lim x x u x u n n n =+∞→, 当4|x |2<1即21||<x 时级数收敛; 当4|x |2>1即21||>x 时级数发散, 所以收敛半径为21=R . 提示: 2222)1(221)1()12)(22()!()!2(])!1[()]!1(2[)()(x n n n x n n xn n x u x u n n n n +++=++=++. 例5 求幂级数∑∞=-12)1(n n nnx 的收敛域.解 令t =x -1, 上述级数变为∑∞=12n n nnt .因为 21)1(22 ||lim 11=+⋅⋅==++∞→n n a a n n n n n ρ,所以收敛半径R =2.当t =2时, 级数成为∑∞=11n n , 此级数发散; 当t =-2时, 级数成为∑∞=-1)1(n n , 此级数收敛. 因此级数∑∞=12n n nnt 的收敛域为-2≤t <2. 因为-2≤x -1<2, 即-1≤x <3, 所以原级数的收敛域为[-1, 3). 三、幂级数的运算 设幂级数∑∞=0n nn x a 及∑∞=0n n n x b 分别在区间(-R , R )及(-R ', R ')内收敛, 则在(-R , R )与(-R ', R ')中较小的区间内有 加法: ∑∑∑∞=∞=∞=+=+000)(n n n n n nn n nn x b a x b xa ,减法:∑∑∑∞=∞=∞=-=-0)(n n n n n n n n n n x b a x b x a ,设幂级数∑a n x n 及∑b n x n 分别在区间(-R , R )及(-R ', R ')内收敛, 则在(-R , R )与(-R ', R ')中较小的区间内有加法: ∑a n x n +∑b n x n =∑(a n +b n )x n , 减法: ∑a n x n -∑b n x n =∑(a n -b n )x n .乘法: )()(0∑∑∞=∞=⋅n n n n nn x b x a =a 0b 0+(a 0b 1+a 1b 0)x +(a 0b 2+a 1b 1+a 2b 0)x 2+ ⋅ ⋅ ⋅+(a 0b n +a 1b n -1+ ⋅ ⋅ ⋅ +a n b 0)x n + ⋅ ⋅ ⋅性质1 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛域I 上连续.如果幂级数在x =R (或x =-R )也收敛, 则和函数s (x )在(-R , R ](或[-R , R ))连续. 性质2 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛域I 上可积, 并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===0100001)()(n n n n xn n xn n n x x n a dx x a dx x a dx x s (x ∈I ), 逐项积分后所得到的幂级数和原级数有相同的收敛半径.性质3 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛区间(-R , R )内可导, 并且有逐项求导公式∑∑∑∞=-∞=∞=='='='110)()()(n n n n n n n n n x na x a x a x s (|x |<R ),逐项求导后所得到的幂级数和原级数有相同的收敛半径. 性质1 幂级数∑a n x n 的和函数s (x )在其收敛域I 上连续.性质2 幂级数∑a n x n 的和函数s (x )在其收敛域I 上可积, 并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===0100001)()(n n n n xnn xn nn x x n a dx x a dx x a dx x s (x ∈I ), 逐项积分后所得到的幂级数和原级数有相同的收敛半径.性质3 幂级数∑a n x n 的和函数s (x )在其收敛区间(-R , R )内可导, 并且有逐项求导公式 ∑∑∑∞=-∞=∞=='='='010)()()(n n n n n n n n n x na x a x a x s (|x |<R ),逐项求导后所得到的幂级数和原级数有相同的收敛半径.例6 求幂级数∑∞=+011n n x n 的和函数.解 求得幂级数的收敛域为[-1, 1). 设和函数为s (x ), 即∑∞=+=011)(n n x n x s , x ∈[-1, 1). 显然s (0)=1. 在∑∞=++=0111)(n n x n x xs 的两边求导得 x x x n x xs n n n n -=='+='∑∑∞=∞=+11)11(])([001. 对上式从0到x 积分, 得 )1ln(11)(0x dx xx xs x--=-=⎰.于是, 当x ≠0时, 有)1ln(1)(x x x s --=. 从而⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s .因为⎰∑∑'+=+=∞=+∞=+x n n n n dx x n x n x xs 00101]11[11)( )1ln(1100x dx x dx x x x n n--=-==⎰⎰∑∞=, 所以, 当x ≠0时, 有)1ln(1)(x xx s --=,从而 ⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s .例6 求幂级数∑∞=+011n n x n 的和函数.解 求得幂级数的收敛域为[-1, 1). 设幂级数的和函数为s (x ), 即∑∞=+=011)(n n x n x s , x ∈[-1, 1). 显然S (0)=1. 因为 ⎰∑∑'+=+=∞=+∞=+x n n n n dx x n x n x xs 00101]11[11)()11( )1ln(11000<<---=-==⎰⎰∑∞=x x dx x dx x xx n n, 所以, 当1||0<<x 时, 有)1ln(1)(x xx s --=.从而 ⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s .由和函数在收敛域上的连续性, 2ln )(lim )1(1==-+-→x S S x .综合起来得⎪⎩⎪⎨⎧=⋃-∈--=0 1)1 ,0()0 ,1[ )1ln(1)(x x x x x s .提示: 应用公式)0()()(0F x F dx x F x-='⎰, 即⎰'+=xdx x F F x F 0)()0()(.11132⋅⋅⋅++⋅⋅⋅++++=-n x x x x x.例7 求级数∑∞=+-01)1(n nn 的和.解 考虑幂级数∑∞=+011n nx n , 此级数在[-1, 1)上收敛, 设其和函数为s (x ), 则∑∞=+-=-01)1()1(n nn s .在例6中已得到xs (x )=ln(1-x ), 于是-s (-1)=ln2, 21ln )1(=-s , 即21ln 1)1(0=+-∑∞=n nn .§11. 4 函数展开成幂级数一、泰勒级数要解决的问题: 给定函数f (x ), 要考虑它是否能在某个区间内“展开成幂级数”, 就是说, 是否能找到这样一个幂级数, 它在某区间内收敛, 且其和恰好就是给定的函数f (x ). 如果能找到这样的幂级数, 我们就说, 函数f (x )在该区间内能展开成幂级数, 或简单地说函数f (x )能展开成幂级数, 而该级数在收敛区间内就表达了函数f (x ).泰勒多项式: 如果f (x )在点x 0的某邻域内具有各阶导数, 则在该邻域内f (x )近似等于 )(!2)())(()()(200000⋅⋅⋅+-''+-'+=x x x f x x x f x f x f )()(!)(00)(x R x x n x f n n n +-+,其中10)1()()!1()()(++-+=n n n x x n f x R ξ(ξ介于x 与x 0之间). 泰勒级数: 如果f (x )在点x 0的某邻域内具有各阶导数f '(x ), f ''(x ), ⋅ ⋅ ⋅ , f (n )(x ), ⋅ ⋅ ⋅ , 则当n →∞时, f (x )在点x 0的泰勒多项式n n n x x n x f x x x f x x x f x f x p )(!)( )(!2)())(()()(00)(200000-+⋅⋅⋅+-''+-'+= 成为幂级数)(!3)()(!2)())(()(300200000⋅⋅⋅+-'''+-''+-'+x x x f x x x f x x x f x f )(!)(00)(⋅⋅⋅+-+n n x x n x f 这一幂级数称为函数f (x )的泰勒级数. 显然, 当x =x 0时, f (x )的泰勒级数收敛于f (x 0).需回答的问题: 除了x =x 0外, f (x )的泰勒级数是否收敛? 如果收敛, 它是否一定收敛于f (x )? 定理 设函数f (x )在点x 0的某一邻域U (x 0)内具有各阶导数, 则f (x )在该邻域内能展开成泰勒级数的充分必要条件是f (x )的泰勒公式中的余项R n (x )当n →0时的极限为零, 即))(( 0)(lim 0x U x x R n n ∈=∞→.证明 先证必要性. 设f (x )在U (x 0)内能展开为泰勒级数, 即)(!)( )(!2)())(()()(00)(200000⋅⋅⋅+-+⋅⋅⋅+-''+-'+=n n x x n x f x x x f x x x f x f x f , 又设s n +1(x )是f (x )的泰勒级数的前n +1项的和, 则在U (x 0)内s n +1(x )→ f (x )(n →∞). 而f (x )的n 阶泰勒公式可写成f (x )=s n +1(x )+R n (x ), 于是R n (x )=f (x )-s n +1(x )→0(n →∞). 再证充分性. 设R n (x )→0(n →∞)对一切x ∈U (x 0)成立.因为f (x )的n 阶泰勒公式可写成f (x )=s n +1(x )+R n (x ), 于是s n +1(x )=f (x )-R n (x )→f (x ), 即f (x )的泰勒级数在U (x 0)内收敛, 并且收敛于f (x ). 麦克劳林级数: 在泰勒级数中取x 0=0, 得⋅⋅⋅++⋅⋅⋅+''+'+ !)0( !2)0()0()0()(2nn x n f x f x f f ,此级数称为f (x )的麦克劳林级数.展开式的唯一性: 如果f (x )能展开成x 的幂级数, 那么这种展式是唯一的, 它一定与f (x )的麦克劳林级数一致. 这是因为, 如果f (x )在点x 0=0的某邻域(-R , R )内能展开成x 的幂级数, 即 f (x )=a 0+a 1x +a 2x 2+ ⋅ ⋅ ⋅ +a n x n + ⋅ ⋅ ⋅ , 那么根据幂级数在收敛区间内可以逐项求导, 有 f '(x )=a 1+2a 2x +3a 3x 2+ ⋅ ⋅ ⋅+na n x n -1+ ⋅ ⋅ ⋅ , f ''(x )=2!a 2+3⋅2a 3x + ⋅ ⋅ ⋅ + n ⋅(n -1)a n x n -2 + ⋅ ⋅ ⋅ , f '''(x )=3!a 3+ ⋅ ⋅ ⋅+n ⋅(n -1)(n -2)a n x n -3 + ⋅ ⋅ ⋅ , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ f (n )(x )=n !a n +(n +1)n (n -1) ⋅ ⋅ ⋅ 2a n +1x + ⋅ ⋅ ⋅ , 于是得a 0=f (0), a 1=f '(0), !2)0(2f a ''=, ⋅ ⋅ ⋅, !)0()(n f a n n =, ⋅ ⋅ ⋅.应注意的问题: 如果f (x )能展开成x 的幂级数, 那么这个幂级数就是f (x )的麦克劳林级数. 但是, 反过来如果f (x )的麦克劳林级数在点x 0=0的某邻域内收敛, 它却不一定收敛于f (x ). 因此, 如果f (x )在点x 0=0处具有各阶导数, 则f (x )的麦克劳林级数虽然能作出来, 但这个级数是否在某个区间内收敛, 以及是否收敛于f (x )却需要进一步考察. 二、函数展开成幂级数展开步骤:第一步 求出f (x )的各阶导数: f '(x ), f ''(x ), ⋅ ⋅ ⋅ , f (n )(x ), ⋅ ⋅ ⋅ . 第二步 求函数及其各阶导数在x =0 处的值: f (0), f '(0), f ''(0), ⋅ ⋅ ⋅ , f (n )( 0), ⋅ ⋅ ⋅ . 第三步 写出幂级数!)0( !2)0()0()0()(2⋅⋅⋅++⋅⋅⋅+''+'+nn x n f x f x f f ,并求出收敛半径R .第四步 考察在区间(-R , R )内时是否R n (x )→0(n →∞).1)1()!1()(lim )(lim ++∞→∞→+=n n n n n x n f x R ξ是否为零. 如果R n (x )→0(n →∞), 则f (x )在(-R , R )内有展开式!)0( !2)0()0()0()()(2⋅⋅⋅++⋅⋅⋅+''+'+=nn x n f x f x f f x f (-R <x <R ).例1 将函数f (x )=e x 展开成x 的幂级数.解 所给函数的各阶导数为f (n )(x )=e x (n =1, 2, ⋅ ⋅ ⋅), 因此f (n )(0)=1(n =1, 2, ⋅ ⋅ ⋅). 于是得级数 ⋅⋅⋅+⋅⋅⋅+++ !1 !2112n x n x x ,它的收敛半径R =+∞.对于任何有限的数x 、ξ (ξ介于0与x 之间), 有)!1(|| |)!1(| |)(|1||1+⋅<+=++n x e x n e x R n x n n ξ,而0)!1(||lim1=++∞→n x n n , 所以0|)(|lim =∞→x R n n , 从而有展开式 )( !1 !2112+∞<<-∞⋅⋅⋅+⋅⋅⋅+++=x x n x x e n x .例2 将函数f (x )=sin x 展开成x 的幂级数. 解 因为)2sin()()(π⋅+=n x x f n (n =1, 2, ⋅ ⋅ ⋅),所以f (n )(0)顺序循环地取0, 1, 0, -1, ⋅ ⋅ ⋅ ((n =0, 1, 2, 3, ⋅ ⋅ ⋅), 于是得级数⋅⋅⋅+--+⋅⋅⋅-+--- )!12()1( !5!312153n x x x x n n , 它的收敛半径为R =+∞.对于任何有限的数x 、ξ (ξ介于0与x 之间), 有)!1(|| |)!1(]2)1(sin[||)(|11+≤+++=++n x x n n x R n n n πξ→0 (n →∞). 因此得展开式)( )!12()1( !5!3sin 12153+∞<<-∞⋅⋅⋅+--+⋅⋅⋅-+-=--x n x x x x x n n . )( !1 !2112+∞<<-∞⋅⋅⋅+⋅⋅⋅+++=x x n x x e n x . 例3 将函数f (x )=(1+ x )m 展开成x 的幂级数, 其中m 为任意常数. 解: f (x )的各阶导数为 f '(x )=m (1+x )m -1, f ''(x )=m (m -1)(1+x )m -2, ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,f (n )(x )=m (m -1)(m -2)⋅ ⋅ ⋅(m -n +1)(1+x )m -n , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,所以 f (0)=1, f '(0)=m , f ''(0)=m (m -1), ⋅ ⋅ ⋅, f (n )(0)=m (m -1)(m -2)⋅ ⋅ ⋅(m -n +1), ⋅ ⋅ ⋅ 于是得幂级数 !)1( )1( !2)1(12⋅⋅⋅++-⋅⋅⋅-+⋅⋅⋅+-++n x n n m m m x m m mx . 可以证明)11( !)1( )1( !2)1(1)1(2<<-⋅⋅⋅++-⋅⋅⋅-+⋅⋅⋅+-++=+x x n n m m m x m m mx x nm .间接展开法:例4 将函数f (x )=cos x 展开成x 的幂级数. 解 已知 )!12()1( !5!3sin 12153⋅⋅⋅+--+⋅⋅⋅-+-=--n x x x x x n n (-∞<x <+∞).对上式两边求导得)( )!2()1( !4!21cos 242+∞<<-∞⋅⋅⋅+-+⋅⋅⋅-+-=x n x x x x n n . 例5 将函数211)(x x f +=展开成x 的幂级数.解 因为)11( 1112<<-⋅⋅⋅++⋅⋅⋅+++=-x x x x xn , 把x 换成-x 2, 得)1( 1112422⋅⋅⋅+-+⋅⋅⋅-+-=+n n x x x x (-1<x <1). 注: 收敛半径的确定: 由-1<-x 2<1得-1<x <1. 例6 将函数f (x )=ln(1+x ) 展开成x 的幂级数.解 因为xx f +='11)(,而x +11是收敛的等比级数∑∞=-0)1(n n n x (-1<x <1)的和函数:)1( 11132⋅⋅⋅+-+⋅⋅⋅+-+-=+n n x x x x x.所以将上式从0到x 逐项积分, 得)11( 1)1( 432)1ln(1432≤<-⋅⋅⋅++-+⋅⋅⋅+-+-=++x n x x x x x x n n . 解: f (x )=ln(1+x )⎰⎰+='+=x x dx xdx x 0011])1[ln(∑⎰∑∞=+∞=+-=-=01001)1(])1([n n nx n n n n x dx x (-1<x ≤1).上述展开式对x =1也成立, 这是因为上式右端的幂级数当x =1时收敛, 而ln(1+x )在x =1处有定义且连续.例7 将函数f (x )=sin x 展开成)4(π-x 的幂级数.解 因为)]4sin()4[cos(22)]4(4sin[sin ππππ-+-=-+=x x x x , 并且有)( )4(!41)4(!211)4cos(42+∞<<-∞⋅⋅⋅--+--=-x x x x πππ, )( )4(!51)4(!31)4()4sin(53+∞<<-∞⋅⋅⋅--+---=-x x x x x ππππ, 所以 )( ] )4(!31)4(!21)4(1[22sin 32+∞<<-∞⋅⋅⋅+-----+=x x x x x πππ.例8 将函数341)(2++=x x x f 展开成(x -1)的幂级数. 解 因为 )411(81)211(41)3(21)1(21)3)(1(1341)(2-+--+=+-+=++=++=x x x x x x x x x f ∑∑∞=∞=-----=004)1()1(812)1()1(41n n nn n n n n x x)31( )1)(2121()1(0322<<----=∑∞=++x x n n n n n .提示: )211(2)1(21-+=-+=+x x x ,)411(4)1(43-+=-+=+x x x . ∑∞=<-<---=-+0)1211( 2)1()1(2111n nn n x x x , ∑∞=<-<---=-+0)1411( 4)1()1(4111n nn n x x x , 收敛域的确定: 由1211<-<-x 和1411<-<-x 得31<<-x .展开式小结:)11( 1112<<-⋅⋅⋅++⋅⋅⋅+++=-x x x x xn ,。

11高等数学第11章无穷级数教案1

11高等数学第11章无穷级数教案1

n=0
∑ 解: Sn
=
n−1
aq k
k =0
=
a(1 − qn ) , q ≠ 1 1− q
1)当
q
<
1
时,
lim
n→∞
S
n
=
a 1− q
,收敛。
2)当
q
>
1
时,
lim
n→∞
S
n
=
∞ ,发散。
3)当 q = 1时,
q = 1, Sn = na → ∞ ,发散。
第十一章 无穷级数第 3 页 共 41 页
《高等数学》Ⅱ—Ⅱ备课教案
张谋
q = −1, Sn = a − a + a − a + ⋅ ⋅ ⋅ + (−1)n a ,极限不存在,发散。
综上所述:等比级数,当
q
<
1
时收敛,其和为
第一项 1 − 公比
当 q ≥ 1时发散。
∑ ∑ (6)
∞ n=1
ln 2 2n
2

∞ n=1
9n 8n
例 试用无穷级数说明循环小数 0.3 = 1 。 3
与发散的定义。

∑ 定义
如果级数
un
n=1
的部分数列
{S
n
}
有极限
s
,即
lim
n→∞
S
n
=
s ,则称无穷级


数 ∑ un 收敛,其极限值 s 叫做这个级数的和,即 ∑ un = s 。
n=1
n=1

如果{Sn }没有极限,称无穷级数 ∑ un 发散。
n=1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11章(无穷级数)之内容方法
无穷级数也是高等数学的重要内容,它在自然科学及工程技术中有着重要而广泛的应用。

本章先介绍常数项级数及其收敛问题,然后讨论幂级数及其收敛半径、收敛区间的求法最后讨论函数的幂级数的展开问题。

本章的重点是:常数项级数的基本概念,正项级数的审敛准则;幂级数的审敛准则;泰勒公式、泰勒级数及泰勒展开式。

难点是:正项级数的审敛准则;泰勒展开式。

11-1 常数项级数的基本概念及其主要性质
1.基本概念
级数∑∞=1n n a ;项1a , 2a 通项:n a ;常数项级数:n a 为常数
部分和:S n =∑=n n n a 1;
部分和序列S 1,S 2,…,S n ,…:
级数收敛 :部分和序列存在有穷极限1,n
n S S a ∞==∑。

级数发散:部分和序列不存在有穷极限。

主要性质 :(1)级数收敛的必要条件是:其通项趋于0。

(2)如果级数收敛且其和为S ,则各项同乘以常数c 所得级数也收敛且其和为 cS 。

(3)设有两个收敛级数其部分和分别为S 和σ,则将它们逐项相加或相减所得的级数也收敛,且其和为 S ±σ。

(4)收敛级数不改变各项顺序而插入括号后所成的级数仍然收敛且其和不变。

(5)一个级数添入或删除有限项并不影响其敛散性。

11-2正项级数及其审敛准则
基本定理 : 正项级数收敛的充分必要条件是其部分和序列上有界。

等比级数:∑-1n aq (a ≠0)
当 q < 1 收敛,当q ≥ 1 时发散。

p 级数: ∑∞
=11n p n 当 p ≤1 时发散,当 p >1 时收敛。

特别地,调和级数∑∞=11n n 发散。

第一比较准则:有两个正项级数 ∑∞=1n n a 与∑∞=1n n b ,
而且n a n b ≤(n =1,2,) 。

若∑∞=1n n b 收敛,则∑∞=1n n a 收敛;
若∑∞=1n n a 发散,则∑∞=1n n b 也发散。

第二比较准则:设有两个正项级数∑n a 与∑n
b , 如果λ=+∞→n n n b a lim (0〈)+∞<λ,
则这两个级数同时收敛,或者同时发散。

达朗贝尔准则(检比法):设有正项级数∑n
a 。

如果n n a a n 1lim =+∞
→=λ,那么,当 1<λ时级数收敛; 当 1λ>,时,级数发散;
当 1=λ时不能判定敛散性。

11-3任意项级数的敛散性
交错级数:各项正负相间的级数。

莱布尼兹准则:设有交错级数
∑n a 。

如果 (1)
(1) 各项的绝对值单调减; (2) (2) 0lim n n a →∞=。

则交错级数必收敛。

绝对收敛级数:各项取绝对值后得到的正项级数收敛的级数。

条件收敛级数:收敛但不绝对收敛的级数。

绝对收敛准则:绝对收敛级数必收敛。

11-4 幂级数及其性质
函数项级数:各项是x 的函数的级数。

幂级数:0()n n n c x a ∞=-∑(,n c a 是常数)。

和函数(和):部分和所成函数序列的极限函数。

幂函数的审敛准则:设有幂级数n n n x c ∑∞=0,
如果极限1||lim n n n c R c →+∞+=,那么, 当R x <时,幂级数收敛,而且绝对收敛;
当 R x >时,幂级数发散,其中R 可以是0,也可以是∞。

R 称为收敛半径,x <R 称为收敛区间,简称为敛区。

敛域:敛区并上收敛的端点 x R =- 或x R =。

可见:当R =0 时,敛域只含一点x =0 ;
当R =∞时,敛域为(-+∞∞,)。

幂级数的性质
(1) (1) 设1()(||)n n a x f x x R =<∑,
(2) (2)
2()(||)n n b x g x x R =<∑ 则 ()()()n n a b f x g x ±=±∑ 且12min{,}x R R R <=。

(3) (3) 幂级数的和在敛区内是连续的且可逐项求极限。

(4) (4) 幂级数n n c x ∑的和S(x) 在敛区内的任一点均可导
且有逐项求导公式:
)()('='∑n n x c x S , 求导后的幂级数与原级数有相同的收敛半径。

(5) (5) 幂级数n n x c ∑的和()S x 在敛区内可积,
且有逐项求积分公式:
00()x x n n S x c x dx =∑⎰⎰ (x R <) ,
积分后所得的幂级数与原级数有相同的收敛半径。

11-5 函数的幂级数展开式
函数f (x )在x=a 处的泰勒级数:
()f x ~()0()()!n n n f a x a n ∞=-∑
2()()()()()...2!f a f a f a x a x a '''=+-+
-+ 函数()f x 在区间I 可展成泰勒级数:
()f x = ()0()()()
!n n n f a x a x I n ∞=-∈∑。

()f x 在区间I 可展成泰勒级数的条件是:它与泰勒级数的部分和之差趋于零。

泰勒定理:设函数()f x 在x a =的邻域内n +1阶可导,则对位于此邻域内的任一x ,至少存在一点c ,c 在a 与x 之间,使得下述泰勒公式成立:
()()f x f a =+))((a x a f -'+… +n n a x n a f )(!)()(-+1)1()()!1()(++-+n n a x n c f 。

注:当0a =时,泰勒级数、泰勒展开式、泰勒公式分别称为麦克劳林级数、麦克劳林展开式、麦克劳林公式。

几个初等函数的麦克劳林展开式:
1. 1x e x =++!22x +…+!n x n
+… , -+∞<<∞x
2. sin x x =-3521
1...(1)...3!5!(21)!m m x x x m --+-+-+- ,
-+∞<<∞x
3. cos 1x =-2422
1...(1)...2!4!(22)!m m x x x m --+-+-+- ,
-+∞<<∞x
4 ln(1)x x +=-
...)1( (43214)
32+-++-+-n x x x x n n ,x <1
5. (1)1m
x mx +=++ ...!)1)...(1(...!2)1(2++--++-n x n n m m m x m m , x <1
6. 6. 3
2111x x x x +++=-+… (-1<x <1)。

相关文档
最新文档