数字信号处理课后答案 第5章高西全

合集下载

数字信号处理 第三版 (高西全 丁玉美)信号处理5章

数字信号处理 第三版 (高西全 丁玉美)信号处理5章

在通带和阻带内均为等
波纹幅频特性
第5章 无限长单位脉冲响应(IIR)数字滤波器的设计方法
典型滤波器的幅度平方函数都有自己的表达式,可以直接 引用,而设计的最终目的是确定系统函数Ha(s) 。 5.3.1 幅度平方函数确定系统函数
模拟滤波器幅度响应常用幅度平方函数|Ha(jΩ)|2表示
* | Ha ( j) |2 Ha ( j)Ha ( j)

以右图低通为例, 频率响应包括
通带、过渡带与阻带
1(2) 为通 ( 阻 ) 带的容限 ,
p(s)
为通(阻)带截止频率
p
s
第5章 无限长单位脉冲响应(IIR)数字滤波器的设计方法

通带允许的最大衰减(波纹)Ap和阻带应达到的最小衰减As
| H (e j 0 ) | j p Ap 20 lg 20 lg | H ( e ) | 20 lg(1 1 ) j p | H (e ) | 式中 |H(ej0)|=1 | H (e j 0 ) | (归一化) j s As 20 lg 20 lg | H ( e ) | 20 lg 2 | H (e js ) |

根据阶数N,查表得到归一化系统函数HaN(s)

根据Ωc将HaN(s)去归一化,得到实际要求的系统函数Ha(s)
Ha (s) HaN s c
第5章 无限长单位脉冲响应(IIR)数字滤波器的设计方法

低通巴特沃思滤波器设计步骤总结 step1: 已知Ωp, Ap,Ωs和As,计算滤波器阶数N和截止频率Ωc
k b z k
H ( z)
1 ak z k
k 1
k 0 N
第5章 无限长单位脉冲响应(IIR)数字滤波器的设计方法

数字信号处理-原理实现及应用(高西全-第3版)第5章 信号的相关函数及应用

数字信号处理-原理实现及应用(高西全-第3版)第5章 信号的相关函数及应用

rxy (m) ryx (m)
性质2 rxy (m) rx (0)ry (0) ExEy
性质3
lim
m
rxy (m)
0
因为一般能量信号都是有限非零时宽的,所以,当 m 时,二者的非零区不重叠, 所以,该性质成立。
信息与通信工程系—数字信号处理
2.自相关函数性质
性质1
若 x(n) 是实信号,则 rx (m)是实偶函数,即
[h(m) h(m)][x(m) x(m)]
rh (m) rx (m)
ry (0) rh (m) rx (m) m0
= rh (n)rx (n m) = rh (n)rx (n)
n
m0 n
系统稳定,则h(n)为能量信号
rh (m) 存在;
如果 rx (m) 存在,则 ry (m) 存在。
观测信号 y(n) x(n) w(n);y(n) 的自相关函 ry (m)
(a) 2
w(n)
0
-2 10 20 30 40 50 60 70 80 90 100 n
(b) 2
y(n)
0
-2
10
20
30
40
50 n
60
70
80
90 100
噪声自相关
(c)
函数导致
1
ry(m)
0
-1
-50 -40 -30 -20 -10
h(m) [x(m) x(m)]
h(m) rx (m)
所以,ryx (m)可以看成线性时不变系统对输入序列的响应输出。
rx (m)
LTI系统 h(n)
ryx (m)
信息与通信工程系—数字信号处理
系统输出信号的自相关函数:

数字信号处理实验课后答案

数字信号处理实验课后答案

数字信号处理实验课后答案数字信号处理实验课后答案【篇一:数字信号处理第三版课后实验程序(高西全)】txt>close all;clear all%======内容1:调用filter解差分方程,由系统对u(n)的响应判断稳定性====== a=[1,-0.9];b=[0.05,0.05]; %系统差分方程系数向量b和ax1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号x1(n)=r8(n)x2n=ones(1,128); %产生信号x2(n)=u(n)hn=impz(b,a,58); %求系统单位脉冲响应h(n)subplot(2,2,1);y=h(n);tstem(hn,y); %调用函数tstem绘图title((a) 系统单位脉冲响应h(n));box ony1n=filter(b,a,x1n); %求系统对x1(n)的响应y1(n)subplot(2,2,2);y=y1(n);tstem(y1n,y);title((b) 系统对r8(n)的响应y1(n));box ony2n=filter(b,a,x2n); %求系统对x2(n)的响应y2(n)subplot(2,2,4);y=y2(n);tstem(y2n,y);title((c) 系统对u(n)的响应y2(n));box on%===内容2:调用conv函数计算卷积============================ x1n=[1 1 1 1 1 1 1 1 ]; %产生信号x1(n)=r8(n)h1n=[ones(1,10) zeros(1,10)];h2n=[1 2.5 2.5 1 zeros(1,10)];y21n=conv(h1n,x1n);y22n=conv(h2n,x1n);figure(2)subplot(2,2,1);y=h1(n);tstem(h1n,y); %调用函数tstem绘图title((d) 系统单位脉冲响应h1(n));box onsubplot(2,2,2);y=y21(n);tstem(y21n,y);title((e) h1(n)与r8(n)的卷积y21(n));box onsubplot(2,2,3);y=h2(n);tstem(h2n,y); %调用函数tstem绘图title((f) 系统单位脉冲响应h2(n));box onsubplot(2,2,4);y=y22(n);tstem(y22n,y);title((g) h2(n)与r8(n)的卷积y22(n));box on%=========内容3:谐振器分析======================== un=ones(1,256); %产生信号u(n)n=0:255;xsin=sin(0.014*n)+sin(0.4*n); %产生正弦信号a=[1,-1.8237,0.9801];b=[1/100.49,0,-1/100.49]; %系统差分方程系数向量b和a y31n=filter(b,a,un); %谐振器对u(n)的响应y31(n) y32n=filter(b,a,xsin); %谐振器对u(n)的响应y31(n)figure(3)subplot(2,1,1);y=y31(n);tstem(y31n,y);title((h) 谐振器对u(n)的响应y31(n));box onsubplot(2,1,2);y=y32(n);tstem(y32n,y);title((i) 谐振器对正弦信号的响应y32(n));box on10.2.2 实验程序清单1 时域采样理论的验证程序清单% 时域采样理论验证程序exp2a.mtp=64/1000; %观察时间tp=64微秒%产生m长采样序列x(n)% fs=1000;t=1/fs;fs=1000;t=1/fs;m=tp*fs;n=0:m-1;a=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=a*exp(-alph*n*t).*sin(omega*n*t);xk=t*fft(xnt,m); %m点fft[xnt)]yn=xa(nt);subplot(3,2,1);tstem(xnt,yn); %调用自编绘图函数tstem绘制序列图box on;title((a) fs=1000hz);k=0:m-1;fk=k/tp;subplot(3,2,2);plot(fk,abs(xk));title((a) t*ft[xa(nt)],fs=1000hz);xlabel(f(hz));ylabel(幅度);axis([0,fs,0,1.2*max(abs(xk))])%===================================== ============ % fs=300hz和fs=200hz的程序与上面fs=1000hz完全相同。

数字信号处理高西全课后答案ppt

数字信号处理高西全课后答案ppt
线性时不变系统是数字信号处理中最基础的系统,具有线性、时不变和因果性等重要特性。
详细描述
线性时不变系统是指系统的输入和输出之间存在线性关系,并且系统的特性不随时间变化而变化。这种系统的行为可以用线性常系数微分方程来描述,同时它的输出不依赖于输入的时间函数,只依赖于输入的初始状态。
线性时不变系统
VS
频域分析可以揭示信号的频率成分和频率域中的每个成分与原始信号之间的关系。通过在频域中对信号进行分析和处理,可以实现信号的滤波、去噪、压缩和恢复等功能。
频域分析在信号处理、图像处理、通信系统等领域得到广泛应用。例如,在图像处理中,频域分析可以用于图像滤波、边缘检测等任务;在通信系统中,频域分析可用于调制解调、频谱分析等。
详细描述
04
第四章 傅里叶变换与频域分析
傅里叶变换的定义
傅里叶变换是一种将时间域信号转换到频域的方法,通过将信号分解成一系列不同频率的正弦和余弦函数的线性组合。
傅里叶变换的性质
傅里叶变换具有一些重要性质,包括线性、对称性、可逆性、Parseval等式等。这变换的定义与性质
离散时间信号
定义
如果信号仅在离散时间点上有定义,则该信号称为离散时间信号。
例子
数字音频、图像数据等。
数学表示方法
通常使用序列形式来表示,例如y[n] = sin(n)。
01
03
02
连续时间信号的数学表示方法
离散时间信号的数学表示方法
其他表示方法
信号的数学表示方法
03
第三章 系统分析基础
总结词
快速傅里叶变换(FFT)算法的基本思想
根据算法实现方式的不同,可以分为按时间抽取(DIT)和按频率抽取(DFT)两种FFT算法。

数字信号处理第三版高西全丁玉美课后答案

数字信号处理第三版高西全丁玉美课后答案

西安电子(高西全丁美玉第三版)数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。

解:()(4)2(2)(1)2()(1)2(2)4(3)0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。

解:(1)x(n)的波形如题2解图(一)所示。

(2)()3(4)(3)(2)3(1)6()6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。

(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。

(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。

3. 判断下面的序列是否是周期的,若是周期的,确定其周期。

(1)3()cos()78x n A n ππ=-,A 是常数; (2)1()8()j n x n eπ-=。

解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w wππ==,这是无理数,因此是非周期序列。

5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。

数字信号处理课后答案第五章报告.ppt

数字信号处理课后答案第五章报告.ppt
第五章习题讲解
1
1、用直接I型及典范结构实现以下系统函数:
H
z
=
3 2
4.2 0.6
z z
1 1
0.8 z 2 0.4 z 2
解:根据IIR滤波器的系统函数标准式
M
H
bm zm
z =
m0 N
1 an zn
Y z X z
n 1
将系统函数整理为:
H
z
=
1.5 2.1z1 0.4z2 1 0.3z1 0.2z2
H
z
=
4
z
z 1z 0.5 z2
2 1.4z 1 0.9z 0.8
试问一共能构成几种级联型网络。
解:H
z
A
k
1 1k z1 2k z2 1 1k z1 2k z2
4 1 z1 11.4z1 z2
1 0.5z1 1 0.9z1 0.8z2
4
考虑分子分母的组合及级联的次序,共有以下 四种级联型网络:
=
5
2z3 3z 1 z1
6
抽样点数 N 6,修正半径 r 0.9。
解:由N = 6,得频率抽样型结构:
H z= 1 6
1 r6z6
H0
z
H3
z
2 k 1
H
k
z

5 3z3 1 z3
H z=
1 z1
1 z1
1 z1 z2
5 3z3 1 z1 z2
5
h2 1
h1 h3 3 0.6
5
即 hn是偶对称,对称中心在n N 1 2处,
N为奇数 N 5 。
2
得线性相位结构:
17
1.5 2.1z1 0.4z2 1 0.3z1 0.2z2

数字信号处理西安电子高西全课后答案

数字信号处理西安电子高西全课后答案

因果系统
因果系统是指系统的输出仅与输入的时间点有关,与输入的时间点无关。
信号与系统的关系
01
系统对信号的作用
系统对信号的作用可以改变信号 的幅度、频率和相位等基本属性 。
02
信号在系统中的传 播
信号在系统中传播时,会受到系 统的特性影响,从而改变信号的 基本属性。
03
系统对信号的响应
系统对信号的响应可以反映系统 的特性,从而可以用来分析和设 计系统。
02 离散傅里叶变换的定义
离散傅里叶变换是针对离散时间信号和系统的傅 里叶变换,它将离散时间信号分解成不同频率的 正弦波的叠加。
03 离散傅里叶变换的性质
离散傅里叶变换具有周期性、对称性和Parseval 等重要性质。
快速傅里叶变换算法
1 2 3
快速傅里叶变换算法的定义
快速傅里叶变换是一种高效计算离散傅里叶变换 的算法,它利用了循环卷积和分治的思想来降低 计算的复杂度。
03
数字信号处理技术能够提高通信系统的抗干扰性能、
传输效率和可靠性。
数字信号处理在通信中的应用
调制解调技术
调制是将低频信号转换为适 合传输的高频信号,解调是 将高频信号还原为原始的低
频信号。
通过调制解调技术,可以实 现信号的多路复用和高效传 输。
数字信号处理在通信中的应用
01
信道编码技术
02
信道编码是在发送端对信号进行编码,以增加信号的冗余 度,提高信号的抗干扰能力。
FIR数字滤波器的优 点
FIR数字滤波器具有稳定性好、易 于实现、没有递归运算等优点, 因此在一些需要稳定的系统中得 到广泛应用。
08
信号处理的应用
数字信号处理在通信中的应用

数字信号处理上机答案(含程序及图片)第三版高西全著

数字信号处理上机答案(含程序及图片)第三版高西全著

数字信号处理上机答案(含程序及图片)第三版高西全丁玉美著数字信号处理实验一内容一a=0.8;ys=0;A=[1,-0.9];B=[0.05,0.05];xn=[1,zeros(1,50)];x1n=[1 1 1 1 1 1 1 1 zeros(1,50)];x2n=ones(1,128);xi=filtic(B,A,ys);hn=filter(B,A,xn,xi)n=0:length(hn)-1;subplot(2,2,1);stem(n,yn,'.')title('(a) 系统单位脉冲响应h(n)');xlabel('n');ylabel(hn);y1n=filter(B,A,x1n,xi);n=0:length(y1n)-1;subplot(2,2,2);y='y1(n)'; stem(n,y1n,'.')title('(b) 系统对R8(n)的响应y1(n)');xlabel('n');ylabel(yn);y2n=filter(B,A,x2n,xi);n=0:length(y2n)-1;subplot(2,2,4);y='y2(n)'; stem(n,y2n,'.')title('(c) 系统对u(n)的响应y2(n)');xlabel('n');ylabel(yn);20400.020.040.060.080.1nh (n )(a) 系统单位脉冲响应h(n)020400.20.40.6ny 1(n )(b) 系统对R8(n)的响应y1(n)501000.20.40.60.81ny 2(n )(c) 系统对u(n)的响应y2(n)内容二x1n=[1 1 1 1 1 1 1 1 ];h1n=[ones(1,10) zeros(1,10)]; h2n=[1 2.5 2.5 1 zeros(1,10)]; y21n=conv(h1n,x1n); y22n=conv(h2n,x1n); M1=length(y21n)-1; M2=length(y22n)-1; n1=0:1:M1; n2=0:1:M2;n11=0:length(h1n)-1; n22=0:length(h2n)-1;subplot(2,2,1); tstem(n11,h1n); title('(d) 系统单位脉冲响应h1(n)'); xlabel('n');ylabel(h1(n));subplot(2,2,2); stem(n1,y21n,'fill'); title('(e) h1(n)与R8(n)的卷积y21(n)'); xlabel('n');ylabel(y21(n));subplot(2,2,3); tstem(n22,h2n); title('(f) 系统单位脉冲响应h2(n)'); xlabel('n');ylabel(h2(n));subplot(2,2,4); stem(n1,y22n,'fill'); title('(g) h2(n)与R8(n)的卷积y22(n)'); xlabel('n');ylabel(y22(n));5101500.51nh 1(n )(d) 系统单位脉冲响应h1(n)010202468ny 21(n )(e) h1(n)与R8(n)的卷积y21(n)510123nh 2(n )(f) 系统单位脉冲响应h2(n)510152002468ny 22(n )(g) h2(n)与R8(n)的卷积y22(n)内容三谐振器对u(n)的响应a=0.8;ys=0;xn=[1,zeros(1,250)];B=[1/100.49,-1/100.49];A=[1,-1.8237,0.9801]; xi=filtic(B,A,ys); yn=filter(B,A,xn,xi) n=0:length(yn)-1;subplot(1,1,1);stem(n,yn,'.')谐振器对正弦信号的响应a=0.8;ys=0;xsin=sin(0.014*n)+sin(0.4*n);B=[1/100.49,-1/100.49];A=[1,-1.8237,0.9801]; xi=filtic(B,A,ys); yn=filter(B,A,xsin,xi) n=0:length(yn)-1;subplot(1,1,1);stem(n,yn,'.')50100150200250-0.01-0.008-0.006-0.004-0.00200.0020.0040.0060.0080.0150100150200250-0.5-0.4-0.3-0.2-0.100.10.20.30.40.5数字信号处理实验三实验(1)x1n=[ones(1,4)]; X1k8=fft(x1n,8); X1k16=fft(x1n,16); N=8;f=2/N*(0:N-1); figure(1);subplot(1,2,1);stem(f,abs(X1k8),'.'); title('(la) 8µãDFT[x_1(n)]');xlabel('\omega/\pi¡¯);ylabel(¡®|(e^j^\omega)|'); N=16;f=2/N*(0:N-1);subplot(1,2,2);stem(f,abs(X1k16),'.'); title('(la) 16µãDFT[x_1(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|');实验(1-2,1-3)M=8;xa=1:(M/2);xb=(M/2):-1:1;x2n=[xa,xb];x3n=[xb,xa];X2k8=fft(x2n,8);X2k16=fft(x2n,16);X3k8=fft(x3n,8);X3k16=fft(x3n,16);figure(2);N=8;f=2/N*(0:N-1);subplot(2,2,1);stem(f,abs(X2k8),'.');title('(2a) 8µãDFT[x_2(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|'); subplot(2,2,3);stem(f,abs(X3k8),'.');title('(3a) 8µãDFT[x_3(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|'); N=16;f=2/N*(0:N-1);subplot(2,2,2);stem(f,abs(X2k16),'.');title('(2a) 16µãDFT[x_2(n)]');xlabel('');ylabel('');subplot(2,2,4);stem(f,abs(X3k16),'.');title('(3a) 16µãDFT[x_3(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|');实验(2-1,2-2)N=8;n=0:N-1;x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k8=fft(x4n,8);X4k16=fft(x4n,16);X5k8=fft(x5n,8);X5k16=fft(x5n,16);figure(3);N=8;f=2/N*(0:N-1);subplot(2,2,1);stem(f,abs(X4k8),'.');title('(4a) 8µãDFT[x_4(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|'); subplot(2,2,3);stem(f,abs(X5k8),'.');title('(5a) 8µãDFT[x_5(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|'); N=16;f=2/N*(0:N-1);subplot(2,2,2);stem(f,abs(X4k16),'.');title('(4a) 16µãDFT[x_4(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|'); subplot(2,2,4);stem(f,abs(X5k16),'.');title('(5a) 16µãDFT[x_5(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|');实验(3)Fs=64;T=1/Fs;N=16;n=0:N-1;nT=n*T;x8n=cos(8*pi*nT)+cos(16*pi*nT)+cos(20*pi*nT); X8k16=fft(x8n,16);N=16;f=2/N*(0:N-1);figure(4);subplot(2,2,1);stem(f,abs(X8k16),'.');title('(8a) 16µãDFT[x_8(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|'); N=32;n=0:N-1;nT=n*T;x8n=cos(8*pi*nT)+cos(16*pi*nT)+cos(20*pi*nT); X8k32=fft(x8n,32);N=32;f=2/N*(0:N-1);figure(4);subplot(2,2,2);stem(f,abs(X8k32),'.');title('(8a) 32µãDFT[x_8(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|'); N=64;n=0:N-1;nT=n*T;x8n=cos(8*pi*nT)+cos(16*pi*nT)+cos(20*pi*nT); X8k64=fft(x8n,64);N=64;f=2/N*(0:N-1);figure(4);subplot(2,2,3);stem(f,abs(X8k64),'.');title('(8a) 64µãDFT[x_8(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|');数字信号处理实验四内容一function st=mstgN=800Fs=10000;T=1/Fs;Tp=N*T; t=0:T:(N-1)*T;k=0:N-1;f=k/Tp; fc1=Fs/10; fm1=fc1/10; fc2=Fs/20; fm2=fc2/10; fc3=Fs/40; fm3=fc3/10;xt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t); xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t); xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t); st=xt1+xt2+xt3; fxt=fft(st,N); subplot(3,1,1)plot(t,st);grid;xlabel('t/s');ylabel('s(t)');axis([0,Tp/8,min(st),max(st)]);title('(a) s(t)的波形') subplot(3,1,2)stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b) s(t)的频谱') axis([0,Fs/5,0,1.2]);xlabel('f/Hz');ylabel('幅度')0.0010.0020.0030.0040.0050.0060.0070.0080.0090.01-10123t/ss (t )(a) s(t)的波形20040060080010001200140016001800200000.51(b) s(t)的频谱f/Hz幅度内容二Fs=10000;T=1/Fs;st=mstg;%低通滤波器设计与实现fp=280;fs=450;wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60;[N,wp]=ellipord(wp,ws,rp,rs);[B,A]=ellip(N,rp,rs,wp);y1t=filter(B,A,st);figure(2);subplot(3,1,1);[H,w]=freqz(B,A,1000);m=abs(H);plot(w/pi,20*log(m/max(m)));grid on;title('低通滤波损耗函数曲线'); xlabel('w/pi ');ylabel('幅度'); axis([0,1,0,1.2*max(H)])yt='y1(t)'; subplot(3,1,2); plot(t,y1t);title('低通滤波后的波形');xlabel('t/s');ylabel(y1(t));%带通滤波器设计与实现fpl=440;fpu=560;fsl=275;fsu=900;wp=[2*fpl/Fs,2*fpu/Fs];ws=[2*fsl/Fs,2*fsu/Fs];rp=0.1;rs=60;[N,wp]=ellipord(wp,ws,rp,rs);[B,A]=ellip(N,rp,rs,wp);y2t=filter(B,A,st);figure(3);subplot(3,1,1);[H,w]=freqz(B,A,1000);m=abs(H);plot(w/pi,20*log(m/max(m)));grid on;title('带通滤波损耗函数曲线'); xlabel('w/pi ');ylabel('幅度'); axis([0,1,0,1.2*max(H)])yt='y2(t)'; subplot(3,1,2); plot(t,y2t);title('带通滤波后的波形');xlabel('t/s');ylabel(y2(t));%高通滤波器设计与实现fp=890;fs=600;wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60;[N,wp]=ellipord(wp,ws,rp,rs);[B,A]=ellip(N,rp,rs,wp,'high');y3t=filter(B,A,st);figure(4);subplot(3,1,1);[H,w]=freqz(B,A,1000);m=abs(H);plot(w/pi,20*log(m/max(m)));grid on;title('高通滤波损耗函数曲线'); xlabel('w/pi ');ylabel('幅度'); axis([0,1,0,1.2*max(H)])yt='y3(t)'; subplot(3,1,2); plot(t,y3t);title('高通滤波后的波形');xlabel('t/s');ylabel(y3(t));低通滤波器损耗函数及其分离出的调幅信号y1(t)带通滤波器损耗函数及其分离出的调幅信号y2(t)高通滤波器损耗函数及其分离出的调幅信号y3(t)数字信号处理实验五1、function xt=xtg(N)Fs=1000;T=1/Fs;Tp=N*T;t=0:T:(N-1)*T;fc=Fs/10;f0=fc/10;mt=cos(2*pi*f0*t);ct=cos(2*pi*fc*t);xt=mt.*ct;nt=2*rand(1,N)-1;fp=150; fs=200;Rp=0.1;As=60;fb=[fp,fs];m=[0,1];dev=[10^(-As/20),(10^(Rp/20)-1)/(10^(Rp/20)+1)];[n,fo,mo,W]=remezord(fb,m,dev,Fs);hn=remez(n,fo,mo,W);yt=filter(hn,1,10*nt);xt=xt+yt;fst=fft(xt,N);k=0:N-1;f=k/Tp;subplot(3,1,1);plot(t,xt);grid;xlabel('t/s');ylabel('x(t)');axis([0,Tp/5,min(xt),max(xt)]);title('(a) 信号加噪声波形')subplot(3,1,2);plot(f,abs(fst)/max(abs(fst)));grid;title('(b) 信号加噪声的频谱')axis([0,Fs/2,0,1.2]);xlabel('f/Hz');ylabel('幅度')2、xt=xtg;N=1000;Fs=1000;T=1/Fs;Tp=N*T;k=0:N-1;f=k/Tp;t=0:T:(N-1)*T;fp=120;fs=150;Rp=0.1;As=60;Fs=1000;wc=(fp+fs)/Fs;B=2*pi*(fs-fp)/Fs;M=ceil(11*pi/B);hn=fir1(M-1,wc,blackman(M));Hw=abs(fft(hn,N));ywt=fftfilt(hn,xt,N);figure;subplot(2,1,1);plot(f,20*log10(Hw)/max(Hw));grid onxlabel('f/Hz');ylabel('幅度(dB )');title('(a)低通滤波器的幅频特性')axis([0,500,-160,5]);subplot(2,1,2);plot(t,ywt);grid onxlabel('t/s');ylabel('y_1(t)');title('(b)滤除噪声后的信号波形')050100150200250300350400450500-150-100-500f/Hz幅度(d B )(a)低通滤波器的幅频特性00.10.20.30.40.50.60.70.80.91-1-0.50.51t/s y 1(t )(b)滤除噪声后的信号波形。

数字信号处理第二版高西全丁玉美课后习题答案

数字信号处理第二版高西全丁玉美课后习题答案

获取更多课后答习题答案请关注微信公众号学糕
获取更多课后答习题答习题答案请关注微信公众号学糕
获取更多课后答习题答案请关注微信公众号学糕
数字信号处理第二版高西全 丁玉美课后习题答案
获取更多课后答习题答案请关注微信公众号学糕
获取更多课后答习题答案请关注微信公众号学糕
获取更多课后答习题答案请关注微信公众号学糕
获取更多课后答习题答案请关注微信公众号学糕
获取更多课后答习题答案请关注微信公众号学糕

数字信号处理第五章习题解答

数字信号处理第五章习题解答

数字信号处理第五章习题解答————第五章————数字滤波网络5.1 学习要点本章主要介绍数字滤波器的系统函数()z H 与其网络结构流图之间的相互转换方法,二者之间的转换关系用Masson 公式描述。

由于信号流图的基本概念及Masson 公式已在信号与系统分析课程中讲过,所以下面归纳IIR 系统和FIR 系统的各种网络结构及其特点。

5.1.1 IIR 系统的基本网络结构1. 直接型结构如果将系统函数()z H 化为标准形式(5.1)式:()∑∑=-=--=Nk kkMk kkz az bz H 11 (5.1) 则可根据Masson 公式直接画出()z H 的直接II 型网络结构流图如图5.1所示(取N=4,M=3)。

二阶直接II 型网络结构最有用,它是级联型和并联型网络结构的基本网络单元。

优点:可直接由标准形式(5.1)或差分方程()()()∑∑==-+-=Mk kN k kk n x b k n y a n y 01画出网络结构流图,简单直观。

缺点:对于高阶系统:(1)调整零、极点困难;(2)对系数量化效应敏感度高;(3)乘法运算量化误差在系统输出端的噪声功率最大。

2. 级联型结构将(5.1)式描述的系统函数()z H 分解成多个二阶子系统函数的乘积形式()()()()z H z H z H z H m 21?= (5.2) (),1221122110------++=zzzzz H i i i i i i ααβββ m i ,,2,1 = (5.3)画出的级联型方框图如图5.2所示。

图中每一个子系统均为二阶直接型结构,根据()z H 的具体表达式确定()z H i 的系数i i i i 1210,,,αβββ和i 2α后,可画出()z H i 的网络结构流图如图5.3所示。

优点:(1)系统结构组成灵活;(2)调整零、极点容易,因为每一级二阶子系统()z H i 独立地确定一对共轭零点和一对共轭极点;(3)对系数量化效应敏感度低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


4(1 z 1 ) H1 ( z) , 1 1 0.5 z
1 1.414z 1 z 2 H 2 ( z) 1 0.9 z 1 0.81z 2
画出级联型结构如题4解图(a)所示。 ②
1 1.414z 1 z 2 H1 ( z) , 1 1 0.5 z 4(1 z 1 ) H 2 ( z) 1 0.9 z 1 0.81z 2
3. 设系统的差分方程为 y(n)=(a+b)y(n-1)-aby(n-2)+x(n-2)+(a+b)x(n-1)+ab 式中, |a|<1, |b|<1, x(n)和y(n)分别表示系统的输入和输出信 号, 试画出系统的直接型和级联型结构。
解: (1) 直接型结构。 将差分方程进行Z变换, 得到
画出其结构图如题12解图所示。
题12解图
13. 已知FIR滤波器的单位脉冲响应为
h(n)=δ(n)-δ(n-1)+δ(n-4)
试用频率采样结构实现该滤波器。 设采样点数N=5, 要
求画出频率采样网络结构, 写出滤波器参数的计算公式。
解: 已知频率采样结构的公式为
H ( z ) (1 z
解: 画出滤波器的直接型结构、 线性相位结构分别
如题9解图(a)、 (b)所示。
题9解图
10. 已知FIR滤波器的单位脉冲响应为: (1) N=6 h(0)=h(5)=15 h(1)=h(4)=2 h(2)=h(3)=3 (2) N=7 h(0)=h(6)=3 h(1)=-h(5)=-2 h(2)=-h(4)=1 h(3)=0 试画出它们的线性相位型结构图, 并分别说明它们的幅度 特性、 相位特性各有什么特点。
1 解: 图(a) H ( z ) 1 az 1
1 0.5 z 1 图(b) H ( z ) 1 0.3z 1
图(c) H(z)=a+bz-1+cz-2
1 1 图(d) H ( z ) 1 1 az 1 bz 1
图(e)
2 0.24z 1 H ( z) 1 0.25z 1 0.2 z 2
移。
题10解图(一)
题10解图(二)
11. 已知FIR滤波器的16个频率采样值为: H(0)=12, H(3)~H(13)=0
H(1)=-3-j 3 ,
H(2)=1+j,
H(14)=1- j
H(15)=-3+j 3
试画出其频率采样结构, 选择r=1, 可以用复数乘法器。 解:
1 z N H ( z) N
H(15)=-3+j 3 试画出它的频率采样结构, 取修正半径r =0.9, 要求用实
数乘法器。
解:
1 z N H ( z) N
H (k ) 1 W k z 1 k 0 N
N 1
将上式中互为复共轭的并联支路合并, 得到
1 r 16 z 16 H ( z) 16
题1解图(二)
(3) 将H(z)进行部分分式展开:
H ( z)
1 1 1 z 3 1 1 1 1 (1 z )(1 z ) 2 4
1 z H ( z) A B 3 1 1 1 1 z ( z )(z ) z z 2 4 2 4
1 z 1 10 3 A (z ) 1 1 1 2 z 2 3 ( z )(z ) 2 4 1 z 1 7 3 B (z ) 1 1 1 4 z 4 3 ( z )(z ) 2 4
题6图
7. 假设滤波器的单位脉冲响应为 h(n)=anu(n) 0<a<1 求出滤波器的系统函数, 并画出它的直接型结构。 解: 滤波器的系统函数为
1 H ( z) ZT[h(n)] 1 az 1
系统的直接型结构如题7解图所示。
题7解图
8. 已知系统的单位脉冲响应为 h(n)=δ(n)+2δ(n-1)+0.3δ(n-2)+2.5δ(n-3)+0.5δ(n-5) 试写出系统的系统函数, 并画出它的直接型结构。 解: 将h(n)进行Z变换, 得到它的系统函数
H (k ) 1 W k z 1 k 0 N
N 1
N=16
画出其结构图如题11解图所示。
题11解图
12. 已知FIR滤波器系统函数在单位圆上16个等间隔采 样点为: H(0)=12, H(1)=-3-j 3 , H(2)=1+j, H(3)~H(13)=0 H(14)=1-j
Y(z)=(a+b)Y(z)z-1-abY(z)z-2+X(z)z-2-(a+b)X(z)z-1+ab
Y ( z ) ab (a b) z 1 z 2 H ( z) X ( z ) 1 (a b) z 1 abz2
按照Masson公式画出直接型结构如题3解图(一)所示。
3 1 1 y (n) y (n 1) y (n 2) x(n) x(n 1) 4 8 3
将上式进行Z变换, 得到
3 1 1 1 2 Y ( z ) Y ( z ) z Y ( z ) z X ( z ) X ( z ) z 1 4 8 3
1 1 1 z 3 H ( z) 3 1 1 2 1 z z 4 8
题3解图(一)
(2) 级联型结构。 将H(z)的分子和分母进行因式分解, 得到
(a z 1 )(b z 1 ) H ( z) H1 ( z ) H 2 ( z ) 1 1 (1 az )(1 bz )
按照上式可以有两种级联型结构: ①
z 1 a , H1 ( z) 1 1 az
4.6 教材第5章习题与上机题解答
1. 已知系统用下面差分方程描述:
3 1 1 y (n)= y (n 1)- y (n 2)+x(n) x(n 1) 4 8 3
试分别画出系统的直接型、 级联型和并联型结构。 式中 x(n)和y(n)分别表示系统的输入和输出信号。
解: 将原式移项得
H(z)=1+2z-1+0.3z-2+2.5z-3+0.5z-5
画出它的直接型结构如题8解图所示。
题8解图
9. 已知FIR滤波器的系统函数为
1 H ( z ) (1 0.9 z 1 2.1z 2 0.9 z 3 z 4 ) 10
试画出该滤波器的直接型结构和线性相位结构。
1 (1 0.1853z 16 ) 16
12 6 6.182z 1 2 2.5456z 1 · 1 1 2 1 2 1 1.663z 0.81z 1 1.2728z 0.81z 1 0.9 z
1 1 图(f) H ( z ) 1 1 0.5 z 1 0.75 z 1
2 0.25z 1 图(g) H ( z ) 3 2 1 1 0.25z z 8
图(h)
H ( z) 3 1 sin z 4 3 3 3 3 1 cos z 1 cos z 1 sin 2 z 2 cos2 z 2 4 4 4 4
1 1 y (n) x(n) x(n 1) y (n 1) y (n 2) 3 4
试画出系统的直接型结构。 解: 由差分方程得到滤波器的系统函数为
1 z 1 H ( z) 1 1 1 2 1 z z 3 4
画出其直接型结构如题2解图所示。
题2解图
按照上式可以有两种级联型结构: ①
1 1 1 z 1 3 H ( z) 1 1 1 1 1 z 1 z 2 4
画出级联型结构如题1解图(二)(a)所示。 ②
1 H ( z) 1 1 1 z 2
1 1 1 z 3 1 1 1 z 4
画出级联型结构如题1解图(二)(b)所示。
画出级联型结构如题4解图(b)所示。 第一种级联型结构最好, 因为用的延时器少。
题4解图
5. 题 5图中画出了四个系统, 试用各子系统的单位脉冲 响应分别表示各总系统的单位脉冲响应, 并求其总系统函数。 解:(1) h(n)=h1(n)*h2(n)*h3(n), H(z)=H1(z)H2(z)H3(z) (2) h(n)=h1(n)+h2(n)+h3(n), H(z)=H1(z)+H2(z)+H3(z) (3) h(n)=h1(n)*h2(n)+h3(n), H(z)=H1(z) · 2(z)+H3(z) H
10 7 H ( z) 3 3 1 1 z z z 2 4
10 7 10 7 z z 3 3 H ( z) 3 3 1 1 1 1 1 1 (z ) z 1 z 1 z 2 4示。
题1解图(三)
2. 设数字滤波器的差分方程为
(1 z 1 )(1 1.414z 1 z 2 ) H ( z) 4 (1 0.5z 1 )(1 0.9 z 1 0.81z 2 )
试画出各种可能的级联型结构, 并指出哪一种最好。
解: 由于系统函数的分子和分母各有两个因式, 因
而可以有两种级联型结构。 H(z)=H1(z)H2(z)

H (k ) 1 rW16k z 1 k 0
15
H (0) 1 H (1) H (15) 16 (1 0.1853z ) 1 1 0.9W 1 z 1 1 0.9W 15 z 1 16 1 0.9 z 16 16 H (2) H (14) + 2 1 14 1 1 0.9W z 1 0.9W16 z 16
解: 分别画出(1)、 (2)的结构图如题10解图 (一)、 (二)所示。
相关文档
最新文档