高三数学-函数的单调性复习课件

合集下载

新教材老高考适用2023高考数学一轮总复习第四章第二节利用导数研究函数的单调性pptx课件北师大版

新教材老高考适用2023高考数学一轮总复习第四章第二节利用导数研究函数的单调性pptx课件北师大版
第四章
第二节 利用导数研究函数的单调性




01
强基础 增分策略
02
增素能 精准突破
课标解读
1.结合实例,借助几何直观了
解函数的单调性与导数的关
系.
2.能利用导数研究函数的单
调性,会求函数的单调区间.
3.能够利用导数解决与函数
单调性有关的问题.
衍生考点
核心素养
1.研究不含参函数的
单调性
数学抽象
+1
(2)若-1≤a<0,由于 ≤0,所以

+1
(- )
.
2

+1
,
+∞

+1
0,
.
f'(x)<0,即 f(x)的单调递减区间是(0,+∞).
;
+1
(3)若 a<-1, >0,当 x∈
当 x∈
+1
, +∞

+1
0,
时,f'(x)>0,所以 f(x)的单调递增区间是
且g(-2)=g(2)=2f(2)=0,g(0)=0.因为f(x)>0,所以当x>0时,由g(x)=xf(x)>0得
2.讨论含参函数的单
逻辑推理
调性
数学运算
3.与导数有关的函数
数学建模
单调性的应用
强基础 增分策略
知识梳理
1.函数的单调性与其导数的关系
导数的符号与函数的单调性之间具有如下的关系:
(1)若在某个区间内,函数y=f(x)的导数f'(x)>0,则在这个区间内,函数

高三数学1.3函数的单调性复习课件.ppt

高三数学1.3函数的单调性复习课件.ppt

(2)函数的单调性是对某个区间而言的,在某一点上不存在单 调性.
(3)一个函数出现两个或者两个以上的单调区间时,不能用 “∪”连接,而应该用“和”连接.如函数 y=1x在(-∞,0)和(0, +∞)上单调递减,却不能表述为:函数 y=1x在(-∞,0)∪(0, +∞)上单调递减.
由函数图象说明函数的单调性
1.3
函数的基本性质
1.3.1 单调性与最大(小) 1:从图象上看,自变量 x 增大时,函数 f(x)的值如何 变化?
提示:甲图中,函数f(x)的值随x增大而增大. 乙图中,函数f(x)的值随x增大而减小. 丙图中,在y轴左侧,函数f(x)的值随x的增大而减小; 在y轴右侧,函数f(x)的值随x的增大而增大.
问题 2:甲、乙图中,若 x1<x2,则 f(x1)与 f(x2)的大小关系 是什么?
提示:甲图中,若x1<x2,则f(x1)<f(x2); 乙图中,若x1<x2,则f(x1)>f(x2). 问题3:丙图中,若x1<x2,f(x1)<f(x2),则自变量x属于哪个 区间? 提示:(0,+∞).
[导入新知] 1.定义域为I的函数f(x)的增减性
2.单调性与单调区间 如果函数y=f(x)在区间D上是增函数或减函数,那么就说函 数y=f(x)在这一区间上具有(严格的) 单调性 ,区间D叫做y=f(x) 的 单调区间 .
[化解疑难] 1.x1,x2的三个特征 (1)任意性,即x1,x2是在某一区间上的任意两个值,不能以 特殊值代换; (2)有大小,即确定的两个值x1,x2必须区分大小,一般令 x1<x2; (3)同属一个单调区间. 2.理解函数的单调性应注意的问题 (1)函数的单调性是函数的局部性质,体现在函数的定义域 或其子区间上,所以函数的单调区间是其定义域的子集.

函数单调性与最值问题课件-2025届高三数学一轮复习

函数单调性与最值问题课件-2025届高三数学一轮复习
将自变量的值转化到同一个单调区间内进行比较,对于选择题、填空题通常选用数形结
合的方法进行求解.
方 法 规 律
利用函数的单调性求解不等式的方法
(1)依据:若 f(x)在定义域上(或某一区间上)是增(减)函数,x1,x2 是定义域上(或该区间上)任
意两个自变量的值,则 f(x1)<f(x2)⇔ x1<x2(x1>x2);
.

解析 (2)法一(换元法):令t= − 1,且t≥0,则x=t2+1,所以原函数
变为y=t2+1+t,t≥0.配方得y=
+
1 2 3
1 3
+ ,又因为t≥0,所以y≥ + =1,
2
4
4 4
故函数y=x+ − 1的最小值为1.
法二(单调性法):因为函数y=x和y= − 1在定义域内均为增函数,故函数y
【例3】 设f(x)的定义域为R,图象关于y轴对称,且f(x)在[0,+∞)上
为增函数,则f(-2),f(-π),f(3)的大小顺序是 (答案 )B
A.f(-π)<f(-2)<f(3)
B.f(-2)<f(3)<f(-π)
C.f(-π)<f(3)<f(-2)
D.f(3)<f(-2)<f(-π)
解析 ∵f(x)的定义域为R,图象关于y轴对称,∴f(x)是偶函数,∴f(-
A.(-∞,-2)
B.(-∞,1)
C.(1,+∞)
D.(4,+∞)

解析:D 由x2-2x-8>0,得f(x)的定义域为{x|x<-2或x>4}.设t=x2-
2x-8,则y=ln t为增函数.要求函数f(x)的单调递增区间,即求函数t=x2-2x
-8的单调递增区间(定义域内).∵函数t=x2-2x-8在区间(4,+∞)上单调

高三数学总复习优质课件 函数 导数及其应用 第2节 函数的单调性与最值

高三数学总复习优质课件 函数 导数及其应用 第2节 函数的单调性与最值
(A)(0,1)
(B)(1,+∞)
(C)(-∞,1)
(D)(0,+∞)
解析:因为f(x)是R上的减函数且f(2a-1)<f(a),所以2a-1>a,所以a>1,故
选B.
4.若函数f(x)=(m-2)x+b在R上是减函数,则f(m)与f(2)的大小关系是
( A )
(A)f(m)>f(2)
(B)f(m)<f(2)
在这一区间具有(严格的)单调性, 区间D 叫做函数y=f(x)的单调区间.
2.函数的最值
前提
条件
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足
(3)对于任意的 x∈I,
(1)对于任意的x∈I,都有 f(x)≤M ; 都有 f(x)≥M
;
(2)存在x ∈I,使得 f(x0)=M _
(4)存在x ∈I,使得
所以(2a+2b)x+c=0,所以 c=0,a=-b,

所以二次函数图象的对称轴方程为 x= .



因为 f(x)在区间[2m,m+1]上不单调,所以 2m< <m+1,所以- <m< .

答案:(- , )


[对点训练3] 若函数f(x)=2|x-a|+3在区间[1,+∞)上不单调,则a的取值范
是增函数;如果y=f(u)和u=g(x)的单调性相反,那么y=f(g(x))是减函数.在
应用这一结论时,必须注意:函数u=g(x)的值域必须是y=f(u)的单调区间的
子集;
(3)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函

高三数学复习课件-函数的奇偶性和单调性综合复习

高三数学复习课件-函数的奇偶性和单调性综合复习

(3)f(x)= (x-1) .
1 x 1 x
评析 用定义判断函数的奇偶性的步骤与方法如下: (1)求函数的定义域,并考查定义域是否关于原点对称. (2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)
之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查其
例2:函数f(x)是定义在(0,+∞)上的增函数,满足: f(xy)=f(x)+f(y),f(8)=3,解不等式f(x)+f(x-2)≥3
[4,+∞)
注:利用函数的单调性解不等式时,必须考虑条件和定义域
练习 1、函数f(x)在(0,+∞)上是减函数求f(a2-a+1)与 f( 3 )的大小关系
3 f(a2-a+1) ≤f( ) 4 2-mx+5 在区间 [-2,+∞) 上是增 2、函数 f(x)=4x 函数,求f(1) 的取值范围。 f(1) ≥25 3、设f(x)是定义域为[-1,1]上的增函数, 解不等式f(x-1)<f(x2-1). (1, 2 ]
函数图像能直观地显示函数的单调性.在单调区间上的增函 数,它的图像是沿x轴正方向逐渐上升的;在单调区间上的减 函数,它的图像是沿x轴正方向逐渐下降的.
y
例1 、 画出函数y=-x2+2|x|+3的图像, 并指出函数的单调区间.
解:函数图像如下图所示,
当x≥0时,y=-x2+2x+3=-(x-1)2+4; 当x<0时,y=-x2-2x+3=-(x+1)2+4.
减↓ 增↑ 减↓ 减↓ 增↑
注:
1、复合函数y=f[g(x)]的单调区间必须是其定义域的 子集 2、对于复合函数y=f[g(x)]的单调性是由函数y=f(u)及 u=g(x)的单调性确定的且规律是“同增,异减”

导数与函数的单调性课件高三数学一轮复习

导数与函数的单调性课件高三数学一轮复习
目录
|解题技法| 讨论函数f(x)单调性的步骤
(1)确定函数f(x)的定义域; (2)求导数f'(x),并求方程f'(x)=0的根; (3)利用f'(x)=0的根将函数的定义域分成若干个子区间,在这些子区间上 讨论f'(x)的正负,由符号确定f(x)在该区间上的单调性. 提醒 研究含参函数的单调性时,需注意依据参数取值对不等式解集的影响进 行分类讨论.
目录
考向2 解不等式
A.(-∞,-2)∪(1,+∞) B.(2,+∞) C.(-∞,-1)∪(2,+∞) D.(-1,2)
目录
答案 C
目录
(1)若函数f(x)存在单调递减区间,求a的取值范围;
目录
所以a>-1. 即a的取值范围是(-1,+∞).
目录
(2)若函数f(x)在[1,4]上单调递减,求a的取值范围.

1.(多选)(2023·贵阳一模)下列选项中,在R上是增函数的有
()
A.f(x)=x4 C.f(x)=xex
B.f(x)=x-sin x D.f(x)=ex-e-x-2x
目录
目录
2.已知f(x)=x3-ax在[1,+∞)上是增函数,则a的最大值是
.

解析:f'(x)=3x2-a,由结论1知f'(x)≥0,即a≤3x2,又∵x∈[1,+∞),
∴a≤3,即a的最大值是3.
答案:3
目录
02
目录

证明(判断)函数的单调性 【例1】 (1)(2022·北京高考·节选) 已知函数f(x)=exln(1+x),设g (x)=f'(x),讨论函数g(x)在[0,+∞)上的单调性;
目录
目录

新教材老高考适用2023高考数学一轮总复习第三章第二节函数的单调性与最值pptx课件北师大版

新教材老高考适用2023高考数学一轮总复习第三章第二节函数的单调性与最值pptx课件北师大版
(2)求复合函数单调区间的一般步骤:①确定函数的定义域;②求简单函数
的单调区间;③依据“同增异减”确定原函数的单调区间.
(3)单调区间只能用区间表示,不能用不等式或集合表示,当函数有多个单
调区间时,不能用并集符号“∪”表示.
对点训练2(1)(2021山东聊城高三月考)已知函数f(x)的图象如图所示,则函
间是(- ,0),(0, ).
对点演练
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)如果f(-1)<f(2),那么函数f(x)在[-1,2]上单调递增.( × )
(2)若函数f(x)在区间(1,2]和(2,3)上均单调递增,则函数f(x)在区间(1,3)上单
调递增.( × )
22
21
f(x1)-f(x2)= +1 − +1
2
1
=
2(1 -2 )
.
(1 +1)(2 +1)
2(1 -2 )
因为-1<x1<x2,所以 x1-x2<0,x1+1>0,x2+1>0,于是( +1)( +1)<0,即 f(x1)-f(x2)<0,
2
1
故 f(x1)<f(x2).
令t=4x-x2,则y=log3t,由于y=log3t是(0,+∞)上的增函数,t=4x-x2在(-∞,2)上单
调递增,在(2,+∞)上单调递减,故函数f(x)的单调递增区间是(0,2),单调递减
区间是(2,4).
方法总结求函数单调区间的方法及注意点
(1)求单调区间的常用方法:①定义法;②图象法;③导数法.
微点拨函数单调性定义的等价形式

3.2函数的单调性与奇偶性课件-2024届高三数学一轮复习

3.2函数的单调性与奇偶性课件-2024届高三数学一轮复习

即练即清
1.判断正误(对的打“√”,错的打“✕”)
(1)函数y= 1 的单调递减区间是(-∞,0)∪(0,+∞). ( × )
x
(2)若定义在R上的函数f(x)有f(-1)<f(3),则函数f(x)在R上为增函数. ( × )
(3)偶函数图象不一定过原点,奇函数的图象一定过原点. ( × )
1
2.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是 3 .
因此f(1)≠f(-1), f(-1)≠-f(1),
故f(x)为非奇非偶函数.
(3)由1 x2 0, 得函数的定义域为(-1,0)∪(0,1),关于原点对称,
| x 2 | 2,
∴x-2<0,∴|x-2|-2=-x,∴f(x)= lg(1 x2) .
x
又∵f(-x)= lg[1 (x)2]=- lg(1 x2) =-f(x),
1 0
1
+b=ln +b=0,
2 (1 0)
2
∴b=-ln 1 =ln 2,此时f(x)=ln 1 1 +ln 2=ln 1 x ,满足题意.
2
2 1 x
1 x
综上可知,a=-1 ,b=ln 2.
2
答案 -1 ;ln 2
2
即练即清
3.判断下列函数的奇偶性:
(1)f(x)=
1
3x x2
;(2)f(x)=|x|+x;
2.(2024届江苏淮安期中,7)若函数f(x)=(3aax, x1)x1 4a, x 1,是定义在R上的减函数,则a的 取值范围为 ( A )
A. 18
,
1 3

高考数学复习考点知识讲解课件7 函数的单调性与最值

高考数学复习考点知识讲解课件7 函数的单调性与最值

以 f(x)的最大值为 f(2)=7.
— 26 —
(新教材) 高三总复习•数学
— 返回 —
求函数最值的五种常用方法 (1)单调性法:先确定函数的单调性,再由单调性求最值. (2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值. (3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最 值. (4)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本 不等式求出最值. (5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值.
A.32
B.2
C.3
D.3.5
— 返回 —
[解析] ∵函数 y=x-x 1=1+x-1 1在[2,3]上单调递减,∴当 x=2 时,y 取得最大值 2.故选 B.
— 12 —
(新教材) 高三总复习•数学
4.函数 f(x)=12 x2-x-1 的单调递增区间为( A )
A.-∞,1-2
5
B.-∞,12
— 9—
(新教材) 高三总复习•数学
— 返回 —
诊断自测 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)对于函数 f(x),x∈D,若对任意 x1,x2∈D,且 x1≠x2 有(x1-x2)[f(x1)-f(x2)]>0,则 函数 f(x)在区间 D 上是增函数.( √ ) (2)函数 y=1x的单调递减区间是(-∞,0)∪(0,+∞).( × ) (3)对于函数 y=f(x),若 f(1)<f(3),则 f(x)为增函数.( × ) (4)函数 y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × )
— 25 —ຫໍສະໝຸດ (新教材) 高三总复习•数学

高三总复习数学精品课件 三角函数的单调性与最值

高三总复习数学精品课件 三角函数的单调性与最值

3
1.用五点法作正弦函数和余弦函数的简图 ((1π),正0弦),函_数_32_π_y,_=_-_s_i1n__x_,_,x∈(2[π0, ,20π).]的图象中,五个关键点是:(0,0),π2,1, (2)余弦函数 y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),π2,0, ___(π_,__-__1_)___,32π,0,(2π,1).
15
4.函数 y=cos2x-π4的单调递减区间为________. 解析:由 y=cos2x-π4,
得 2kπ≤2x-π4≤2kπ+π(k∈Z),
解得 kπ+π8≤x≤kπ+58π(k∈Z).
所以函数的单调递减区间为kπ+π8,kπ+58π(k∈Z). 答案:kπ+π8,kπ+58π(k∈Z)
16
_k_π_+ __π2__,_0__,__k_∈__Z_

对称 轴
__x_=__k_π_+__π2_,__k_∈__Z_
___x_=__k_π_,__k_∈__Z___
零点
kπ,k∈Z
kπ+π2,k∈Z
6
y=tan x 无
____k2_π_,__0_,__k_∈__Z__ 无对称轴 kπ,k∈Z
7
y=cos x __[_-__1_,__1_]___
__2_π___ _偶__函__数_____
__[_-__π_+__2_k_π_,___ __2_k_π_]_,__k_∈__Z___
5
y=tan x R
___π___ 奇函数
(-π2+kπ, ______________ _π2_+__k_π_)_,__k_∈__Z__
三角函数的单调性与最值
1
最新考纲 1.能画出 y=sin x,y=cos x,y=tan x 的图象,了解三角函数的周期性. 2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最 小值以及与 x 轴的交点等),理解正切函数在区间-π2,π2内的单调性.

高三数学第一轮复习第二章《函数》课件

高三数学第一轮复习第二章《函数》课件
• 答案 (1)(-∞,-1),(-1,+∞) (2)(-1,1]
解析 (1)∵y=11- +xx=-1+1+2 x ∴当 1+x>0 或 1+x<0 时,此函数均为减函数, 故减区间为(-1,+∞)、(-∞,-1) (2)由11- +xx≥0 得 x∈(-1,1],此即为递减区间.
2.下列函数中,在区间(-∞,0)上是减函数的是( )
• (2)复合函数的单调性判断,要注意掌握“同增异减”.
• 2.根据定义证明函数单调性的一般步骤:设值(x1,x2且 x1<x2)→作差(f(x1)-f(x2))→变形→定号→结论.
• 3.对于函数f(x)的单调性,也可直接求f′(x),当f′(x)>0时 为增函数,当f′(x)<0时为减函数.
• 4.单调性法是求最值(或值域)的常用方法.
• 题型一 判断或证明函数的单调性
例 1 判断函数 f(x)=x2a-x 1(a≠0)在区间(-1,11<x2<1, 则 f(x1)-f(x2)=axx121x-2+11x22x-2-1x 1. ∵x1xx212-+11xx222--1x1>0, ∴a>0 时,函数 f(x)在(-1,1)上为减函数; a<0 时,函数 f(x)在(-1,1)上为增函数.
A.y=1-x2
B.y=x2+x
C.y=- -x
D.y=x-x 1
• 答案 D
• 3.函数y=x2+bx+c(x∈[0,+∞))是单调函数, 则b的取值范围是( )
• A.b≥0
B.b≤0
• C.b>0
D.b<0
• 答案 A
解析 由-b2≤0,得 b≥0.
• 4.函数f(x)=log0.5(x2-2x-8)的增区间________;减区 间________.

函数的单调性与最值+课件——2025届高三数学一轮复习

函数的单调性与最值+课件——2025届高三数学一轮复习
探究点一 函数单调性的判断与证明
例1 已知函数,且,讨论 的单调性.
[思路点拨] 先分离常数,再根据定义判断函数的单调性,注意分 和 两种情况进行讨论.
解:函数,设,,且 ,则 ,当时,在上单调递增,由,得 ,所以,又, ,所以,即 ,此时在 上单调递增;当时,在 上单调递减,由,得,所以 ,又,,所以 ,即,此时在 上单调递减.综上,当时,函数在 上单调递增;当时,函数在 上单调递减.
单调性
单调区间
续表
3.函数的最值
前提
一般地,设函数的定义域为,如果存在实数 满足
条件
,都有____________; ,使得_____________
,都有____________; ,使得_____________
结论
为最大值
为最小值
几何意义
图象上最高点的_________
图象上最低点的_________
变式题 (多选题)下列函数在其定义域内是增函数的为( )
BD
A. B. C. D.
[解析] 对于A,画出函数 的图象如图所示,易知函数 在其定义域内不是增函数,故A错误;对于B,因为函数是增函数, 是减函数,所以是 上的增函数,故B正确;对于C,函数是减函数,而 为增函数,
在定义域 上为减函数,故C错误;对于D,的定义域为,在上恒成立,故 是上的增函数,故D正确.故选 .
(2)开区间上的“单峰”函数一定存在最大值或最小值.
◆ 对点演练 ◆
题组一 常识题
1.[教材改编] 函数 的单调递增区间是_______,单调递减区间是________.
[解析] 由函数的图象可得 的单调递增区间是,单调递减区间是 .
2.[教材改编] 函数 的最大值为___,最小值为___.

导数与函数的单调性高三数学一轮复习课件

导数与函数的单调性高三数学一轮复习课件
答案: g'(x)=3x^26x+2,g'(x)在 [1,2]上单调递减, 所以g(x)在[1,2]
上单调递减
答案:g'(x)=3x^2-6x+2,g'(x)在[1,2]上单调递减,所以g(x)在[1,2]上单调递减
题目:求函数 h(x)=x^33x^2+2x+1在区 间[-2,2]上的极值
答案: h'(x)=3x^26x+2,h'(x)^26x+2,g'(x)在 区间[1,2]上单调 递减,所以g(x) 在区间[1,2]上单 调递减
综合练习题三及答案
题目:求函数f(x)=x^33x^2+2x+1在区间[-1,1]上的单 调性
题目:求函数g(x)=x^33x^2+2x+1在区间[-1,1]上的极 值
添加标题
上单调递增
综合练习题二及答案
题目:求函数 f(x)=x^33x^2+2x+1在 区间[-1,1]上的 单调性
答案: f'(x)=3x^26x+2,f'(x)在 区间[-1,1]上单 调递增,所以f(x) 在区间[-1,1]上 单调递增
题目:求函数 g(x)=x^33x^2+2x+1在 区间[1,2]上的单 调性

导数的应用举例
判断函数的单调性:通过导 数判断函数的增减性
求函数的极值:通过导数求 解函数的最大值和最小值
求函数的切线:通过导数求 解函数的切线方程
求函数的凹凸性:通过导数 判断函数的凹凸性
03
函数的单调性
单调性的定义与判断方法
判断方法:利用导数判断,如果 导数大于0,则函数在该区间内 单调递增;如果导数小于0,则 函数在该区间内单调递减

第二章+第二节+函数的单调性与最值课件-2025届高三数学一轮复习

第二章+第二节+函数的单调性与最值课件-2025届高三数学一轮复习

的解集是________.
(-1,2)
第二节
函数的单调性与最值
必备知识
落实“四基”
核心考点
提升“四能”
课时质量评价
核心回扣
函数的最值
前提
条件
设函数y=f(x)的定义域为D,如果存在实数M满足
f(x)≤M
f(x)≥M
∀x∈D,都有__________;∃x
0∈D,∀x∈D,都有__________;∃x0∈D,
这两个函数的单调性,再根据复合函数“同增异减”的规则进行判断
第二节
函数的单调性与最值
必备知识
落实“四基”
核心考点
提升“四能”
课时质量评价
函数单调性的应用
考向1 比较函数值的大小
【例 2 】 (2024·徐州 模拟 ) 已 知 对函数 f (x) 定 义域 R 内的任 意 实数 x1 ,x2 , 且
f(x0)=M
使得___________
结论
f(x0)=M
使得___________
M为最大值
M为最小值
注意点:
(1)闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时,
最值一定在端点处取得.
(2)开区间上的“单峰”函数一定存在最小值或最大值.
第二节
函数的单调性与最值
必备知识
落实“四基”
是________.
[3,+∞)
第二节
函数的单调性与最值
必备知识
落实“四基”
核心考点
提升“四能”
课时质量评价
(2)已知函数f (x)=e|x-a|(a为常数),若f (x)在区间[1,+∞)上
单调递增,则a的取值范围是________.

高三数学函数的单调性

高三数学函数的单调性

变3 已知定义 R在上的函数y=f(x)满足
f(-x)=f(x),它在上是(0,+∞)增函数, 且f(x)<0试讨论F(x)
=1/f(x)在(-∞,0)上的单调性
例5:已知f(x)是定义在(0,+∞)上 的增函数,f(x)>0,且f(2)=1,指 出g(x)=f(x)+1/f(x)(x>0)单调区间, 并证明你的结论。
二、函数单调性的判断:一般作差
(指数作商 ) ①定义法:在定义域内取 x1<x2,比较 f(x1)与f(x2)的大小(一致增,相反减)
②图象法:左至右,上增下减
③连续函数运用导函数:
列表:自变量、导函数、函数值
导正函增 导负函减
④复合函数f(g(x))的单调性的判断: u=g(x) y=f(u) y=f(g(x )) 增 增 增 增 减 减 减 减 增 一致增 减 增 减 友情提醒: 相反减 复合函数的单调性只能处理选择与 填空,解答题只能用此探索结论, 运用还需证明
2010届高考数学复习 强化双基系列课件
05《函数的单调性》
一、常见函数的单调性: ①y=kx+b ②y=ax2+bx+c(a≠0) ③y=k/x x x ④y=a ⑤y=loga √ ⑥y=sinx ⑦y=cosx ⑧y=tanx
√ 重要函数: 3 ⑨y=x ⑩y=x+a/x(a>0)
例1:若不等式mx>m-1对任意 x∈[-1,1]总成立,则m的取值 范围是__。
用复合单调性探索可能的结论
→用定义证明结论
变 1:若函数f(x)在[0,π]上单调递 增且满足f(-x)=f(x),那么f(-π),f(π/2),f(2)之间的大小关系是 ___________ 数形结合 把自变量化到同一单调 区间 变:f(x)在(0,+∞)上是增函数, 2 则f(3/4)与f(a -a+1)的大小关系 _____.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

感谢大家观看
最新学习可编辑资料
对于函数y=f(x)在某个区间上单调递增或单调递减的性质,叫做 f(x)在这个区间上的单调性,这个区间叫做f(x)的单调区间。
新课引入
y 1
o
ቤተ መጻሕፍቲ ባይዱ
1.在x=1的左边函数图像的单调性如何?
2.在x=1的左边函数图像上的各点切线的倾斜角

(锐角/钝角)?他的斜率有什么特征?
3.由导数的几何意义,你可以得到什么结论?
∴x∈(-∞,2)时, f (x) 是减函数
y
2
o
x
例2 确定函数f (x) 2x3 6x2 7 ,在哪个区间 是增函数,那个区间是减函数。
解:函数f(x)的定义域是(- ∞,+∞)
y
f '(x) 6x2 12 x
令6x2-12x>0,解得x>2或x<0
∴当x ∈(2,+∞)时,f(x)是增函数; 当x ∈(-∞,0)时,f(x)也是增函数
画出下列函数的图像,并根据图像指出每个函数的单调区间
y1 x
y x2 2x 1 y 3x
y
y
y
o
x
1
o
x
1
o
x
在(- ∞ ,0)和(0, +∞) 在(- ∞ ,1)上是
上分别是减函数。但在定义域 减函数,在(1, +∞)
上不是减函数。
上是增函数。
在(- ∞,+∞) 上是增函数
复习:单调性的概念
解: (1)求函数的定义域
函数f (x)的定义域是(- ∞,+∞) (2)求函数的导数
f ' (x) 2x 4 (3)令 f '(x) 0 以及 f '(x) 0
求自变量x的取值范围,也即函数的单调 区间。令2x-4>0,解得x>2
∴x∈(2,+∞)时, f (x) 是增函数
令2x-4<0,解得x<2
一般地,函数y=f(x)在某个区间内可导:
如果恒有 如果恒有 如果恒有
,则 f(x)在是增函数。
f’(,x)则>0f(x)是减函数。 f’(,x)则<0f(x)是常数。 f’(x)=0
步骤:
(1)求函数的定义域 (2)求函数的导数 (3)令f’(x)>0以及f’(x)<0,求自变量x 的取值范围,即函数的单调区间。
2
2
令y' 4x2 1 0解得x 1 或0 x 1
x
2
2
在(, 1 )和(0, 1 )上,f (x)是减函数。
2
2
例4.已知函数f (x) x3 ax 6的一个单调区间为(1,) 求a的值及函数的其他单调区间
解:f ' ( x) 3x 2 a
因为函数的一个单调区间是(1, ) 1是3x2 a 0的根312 a 0 a 3. y 3x2 3,由3x2 3 0得x 1, x 1 ( ,1)是函数的一个递增区间 由3x2 3 0得 1 x 1 (1,1)是函数的一个递减区间
4.在x=1的右边时,同时回答上述问题。
x 定理:
一般地,函数y=f(x)在某个区间内可导:
如果恒有 f '(x) 0 ,则 f (x) 是增函数。 如果恒有 f ' (x) 0 ,则 f (x) 是减函数。 如果恒有 f ' (x) 0 ,则 f (x) 是常数。
例1.确定函数 f (x) x2 4x 5 在哪个区间是减 函数?在哪个区间上是增函数?
o
x
令6x2-12x<0,解得,0<x<2
∴当x ∈(0,2)时,f(x)是减函数。
例3求函数 y 2x2 ln x 的单调区间。
解: y' 4x 1 4x2 1
x
x
令y' 4x2 1 0
x
x(4x2 1) 0解得x 1 或 1 x 0
22
在( 1 ,0)和( 1 ,)上,f (x)是增函数。
对于给定区间上的函数f(x): 1.如果对于这个区间上的任意两个自变量x1,x2,当x1<x2时,都有
f(x1)<f(x2),那么就说f(x)在这个区间上是增函数(或单调递增函数)
2.如果对于这个区间上的任意两个自变量x1,x2,当x1<x2时,都有 f(x1)>f(x2),那么就说f(x)在这个区间上是减函数(或单调递减函数)
变式训练:若函数f (x) ax3 x2x 5 在( , )上单调递增,求a的取值范围
解:f (x) 3ax2 2x 1 函数在R上时单调递增, f (x) 0 即3ax2 2x 1 0在R上恒成立 即a 0, 0.即a 0,4 12a 0 所以a 1
3
知识点:
定理:
相关文档
最新文档