初中数学竞赛教程20图形面积的计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年暑期初一数学竞赛第二十讲:图形面积的计算
【例题精选】
例1.你会用几种不同的方法把一个三角形的面积平均分成4等份吗?
变式.已知P是矩形ABCD的边AB上任意一点,试过P作两条直线,将矩形分成三个面积相等的图形。
例2.在△ABC内部或边界上任取一点P,记P到三边a,b,c的距离依次为x,y,z.求证:ax+by+cz是一个常数.
变式.不等边三角形ABC的两条高的长度分别为4和12.若第三条高也为整数,那么它的长度最大可能是().
(A)4 (B)5 (C)6 (D)7
例3.如图所示,长方形ABCD中,AB=24cm,BC=36cm,E是BC的中点,F,G分别是AB,CD 的4等分点,H为AD上任意一点。则阴影部分面积为。
变式.如图,△ABC的面积为1,分别延长AB、BC、CA到D、E、F,
使AB=BD,BC=CE,CA=AF,连DE、EF、FD,求△DEF的面积.
B F D
E C
A
B
A F
E
D
C
D
B A F C
(3)E 例4.已知△ABC 中,3
1
===CA CF BC BE AB AD ,求:ABC DEF S △△S 的值。
变式1.如图,AD=12
DB,AF=4FC,BE=EC,求S ΔDEF ∶S ΔABC 的值.
变式2.如图,设△ABC 的面积为1,AD=
1m AB,BE=1
n
BC ,CF=1p CA ,
则△DEF 的面积是___________.
例5.如图,三角形ABC 的面积为1,BD:DC=2:1,E 是AC 的中点,AD 与BE 相交于点P,
那么四边形PDCE 的面积为_______.
变式1.如图所示,已知 1.2,2,2.ABC S BF AF CD BD AE CE ∆====
求图中阴影部分PMN ∆的面积.
A
B
C
D
F
A B
C
N
M
P
D
E
F
变式2.如图,三角形ABC 各边的四等分点D 、E 、F 分别与点C 、B 、A 相连,得到一个小
三角形GHI ,那么三角形GHI 的面积与三角形ABC 的面积的比是 。
变式3.如图,已知长方形的面积是36平方厘米,在边AB 、AD
上分别取点E 、•F,•使得AE=3EB,DF=2AF,DE 与CF 的
交点为O,求△FOD 的面积.
例6.已知MN 是△ABC 的中位线,P 在MN 上,BP ,CP 交对边于D ,E 。
求证:1=+DC
AD
BE AE
【巩固拓展】
1.如图,一个大长方形被两条线段AB 、CD 分成四个小长方形,如 果其中图形Ⅰ、Ⅱ、Ⅲ的面积分别为8,6,5,那么阴影部分的面 积为( ). A.
92 B. 72 C. 103 D. 158
2、等腰△ABC 中,一腰上的高线长为,这个高线与底边的夹角是
,△ABC 的面积
是( )
(A )3 (B )23 (C )2 (D )
3
B O F
D
E C
A
3.已知等腰△ABC一腰上的中线为15,底边上的高为18,则△ABC的面积是()(A)124 (B)144 (C)150 (D)以上答案都不对
4.在图的平面图形中,边AF与CD平行,BC与ED平行,各边长
为1,且∠FAB=∠BCD=,该图形的面积是()
(A)(B)1 (C)(D)(E)2
5.如图,正方形的边长为a,以各边为直径在正方形内画半圆,所围成
的图形(•阴影部分)的面积为( ).
π .2π2 C 1
2
π
1
4
π
6.如图,△ABC中,点D、E、F分别在三边上,E是AC的中点,AD、BE、
CF交于一点G,BD=2DC,S△GEC=3,S△GDC=4,则△ABC的面积
是( ).
7.如图,将面积为2a的小正方形与面积为2b的大正方形放在一起
)0
,0
(>
>b
a,则三角形ABC的面积是.
8.已知△ABC中三边长分别为a,b,c,对应边上的高分别为h a=4,h b=5,hc=3.则a∶b∶c= .
10.如图,平行四边形ABCD中,AE=2EC,BF=2AF,SΔBEF=2.则平行四边形ABCD的面积为 .
11.这是一个正方形,图中所标的数字单位是厘米,问:涂红色的部分的面积是多少平方厘米?
F
E
D C
B
A
60︒60︒
D
A C
B
(1)
E
F
A
B
C