数控手工编程的方法及步骤
数控机床程序编制的一般步骤和手工编程

数控机床程序编制的一般步骤和手工编程数控机床程序编制〔又称数控编程〕是指编程者〔程序员或数控机床操作者〕根据零件图样和工艺文件的要求,编制出可在数控机床上运行以完成规定加工任务的一系列指令的过程。
具体来说,数控编程是由分析零件图样和工艺要求开始到程序检验合格为止的全部过程。
一般数控编程步骤如下〔见图19-22〕。
图19-22 一般数控编程顺序图1.分析零件图样和工艺要求分析零件图样和工艺要求的目的,是为了确定加工方法、制定加工方案,以及确认与生产组织有关的问题,此步骤的内容包括:1〕确定该零件应安排在哪类或哪台机床上进行加工。
2〕采用何种装夹具或何种装卡位方法。
3〕确定采用何种刀具或采用多少把刀进行加工。
4〕确定加工路线,即选择对刀点、程序起点〔又称加工起点,加工起点常与对刀点重合〕、走刀路线、程序终点〔程序终点常与程序起点重合〕。
5〕确定切削深度和宽度、进给速度、主轴转速等切削参数。
6〕确定加工过程中是否需要提供冷却液、是否需要换刀、何时换刀等。
2.数值计算根据零件图样几何尺寸,计算零件轮廓数据,或根据零件图样和走刀路线,计算刀具中心〔或刀尖〕运行轨迹数据。
数值计算的最终目的是为了获得编程所需要的所有相关位置坐标数据。
3.编写加工程序单在完成上述两个步骤之后,即可根据已确定的加工方案〔或方案〕及数值计算获得的数据,按照数控系统要求的程序格式和代码格式编写加工程序等。
编程者除应了解所用数控机床及系统的功能、熟悉程序指令外,还应具备与机械加工有关的工艺知识,才能编制出正确、实用的加工程序。
4.制作控制介质,输入程序信息程序单完成后,编程者或机床操作者可以通过CNC机床的操作面板,在EDIT方式下直接将程序信息键入CNC系统程序存储器中;也可以根据CNC系统输入、输出装置的不同,先将程序单的程序制作成或转移至某种控制介质上。
控制介质大多采用穿孔带,也可以是磁带、磁盘等信息载体,利用穿孔带阅读机或磁带机、磁盘驱动器等输入〔输出〕装置,可将控制介质上的程序信息输入到CNC系统程序存储器中。
数控铣床和加工中心的手工编程

51
孔底平面 加工盲孔时孔底平面就是孔底的Z轴高度,加工
通孔时一般刀具还要伸出工件底平面一段距离, 主要是保证全部孔深都加工到尺寸,钻削加工时 还应考虑钻头钻尖对孔深的影响.
孔加工循环与平面选择指令(G17、G18或 G19)无关,即不管选择了哪个平面,孔加工都 是在XY平面上定位并在Z轴方向上钻孔。
44
数控铣床编程实例
例18:某零件外形轮 廓如图,厚度为5 ,试 编写其外形轮廓精加 工程序.
45
➢ 刀具选择:φ10 ➢ 安全高度 ➢ 工艺路线 ➢ 基点计算 ➢ 编写程序
46
O0001
N010 G54 G90 G00 X20.Y-35.;
点A
N020 Z10.0 S500 M03 M08 ;
35
注意:半径补偿时的过切现象 (a)加工半径小于刀具半径的内圆弧
过渡圆角R≥刀具半径 r+精加工余量
36
(b)被铣削槽底宽小于刀具直径
37
(c)无移动类指令
补偿模式下,两段程序使用无坐标轴 移动类指令——过切
➢ M05; ➢ G04 X1000; ➢ G90 ➢ G91 X0; ➢ G17 Z2000.; ➢ S1000;
N030 G01 Z-5.0 F300 ;
N040 G41 X0 Y-35.0 D01 ;
点1
N050 G02 X-5. Y-30. R5.0 ; 点
2
N060 G03 X-30. Y-5. R30.; 点
3
N070 G02 Y5.0 R5.0;
点4
N080 G03 X-5.0 Y30.0 R30.0;
数控机床的加工工艺及编程步骤

外圆车刀 螺纹车刀
内孔车刀Βιβλιοθήκη 2.2.5 切削用量及刀具的选择
铣削刀具:
方肩 铣刀
整体硬质 合金铣刀
仿形 铣刀
三面刃和 螺纹铣刀
2.2.6 数值计算
1.基点、节点的含义 编程时的数值计算主要是计算零件加工轨迹的尺寸,即计算零件轮廓 基点和节点的坐标,或刀具中心轨迹基点和节点的坐标。 l 数控机床一般只有直线和圆弧插补功能,因此,对于由直线和圆弧组 成的平面轮廓,编程时主要是求各基点的坐标。 基点:就是构成零件轮廓不同几何素线元素的交点或切点。如直 线与直线的交点,直线段和圆弧段的交点、切点及圆弧与圆弧的 交点、切点等。根据基点坐标就可以编写出直线和圆弧的加工程 序。基点的计算比较简单,选定坐标原点以后,应用三角、几何 关系就可以算出各基点的坐标,因此采用手工编程即可。
2.2.5 切削用量及刀具的选择
切削用量包括主轴转速、进给速度和切削深度等。各种机床切削用量的 选择根据数控机床使用说明书、手册,并结合实践经验加以确定。 2.进给速度 进给速度根据零件的加工精度、表面粗糙度和刀具、工件的材 料选择,最大进给速度受机床刚度和进给系统的性能限制,并与脉冲 当量有关。在精度要求较高时,进给量应选小一些,一般在 20mm/min一50mm/min范围内选取。 3.切削深度 主要根据机床、刀具、夹具和工件的刚性确定。在机床刚度允许 的情况下,尽量选择较大的切削深度,以提高加工效率。有时为了改 善表面粗糙度和加工精度,要留一点余量,以便最后精加工一次。
在数控加工中,加工路线除了要保 证工件的加工精度、表面粗糙度外, 还要尽量缩短空行程时间,并能简 化程序。
例如在铣削外轮廓时,为防止刀具 在切入,切出时产生刀痕,一般采 用切线切入、切出方式以保证工件 轮廓的光滑过渡,如图2.2.2所示。
数控机床编程步骤有哪些

数控机床编程步骤有哪些
当今工业制造中,数控机床是一种关键的生产设备,广泛应用于各种领域。
数
控机床的编程是其操作的重要环节,本文将介绍数控机床编程的一般步骤,帮助读者更好地了解数控机床的工作原理。
步骤一:准备工作
在开始数控机床编程之前,首先需要对工件和加工要求进行详细的分析和确定。
了解工件尺寸、形状、材质以及加工精度要求是非常重要的。
步骤二:确定加工工艺
根据工件加工要求,确定合适的加工工艺,包括切削速度、进给速度、刀具选
择等。
这些参数将直接影响加工效果和加工成本。
步骤三:选择编程方式
数控机床编程有手动编程和自动编程两种方式。
手动编程需要操作员逐步输入
加工指令,而自动编程则通过专门的软件生成加工程序。
根据实际情况选择合适的编程方式。
步骤四:编写加工程序
根据加工工艺和工件要求,编写数控机床加工程序。
程序中包括刀具路径、加
工深度、速度等加工参数。
编程人员需要非常熟悉数控机床的工作原理和加工规范。
步骤五:调试程序
编写完加工程序后,需要对程序进行调试,确保程序运行无误。
对于复杂的加
工过程,可能需要进行多次调试和修改。
步骤六:开始加工
完成程序调试后,可以将加工程序加载到数控机床中,开始加工工件。
在加工
过程中,需要及时监控加工状态,确保加工质量。
结语
数控机床编程是一项复杂而又重要的工作,只有经过认真的准备、编写和调试,才能保证加工过程的顺利进行。
希望本文对读者有所帮助,更好地理解数控机床编程的步骤和流程。
数控手工编程的方法与步骤

数控手工编程的方法与步骤一、数控手工编程的方法1.手工编程:将加工工艺和机床运动规律直接翻译成G代码进行编程。
这种方法需要对加工工艺和机床的运动参数非常熟悉,适用于简单的工艺,例如直线、圆弧等。
2.图形化编程:使用CAD/CAM软件进行编程,通过绘制工件的图形图像,再进行加工路线的规划和G代码的生成。
这种方法可以提高编程效率,减少错误。
适用于复杂的零件加工。
3.常用加工模板编程:在实际加工中,存在许多相似的零件,可以将这些零件的加工工艺和G代码保存为模板,以便下次进行类似的加工操作。
使用模板编程可以提高编程的效率和一致性。
二、数控手工编程的步骤1.确定零件的几何形状和尺寸:首先需要对待加工零件的几何形状和尺寸进行测量和分析,明确加工的要求。
2.选择机床和刀具:根据零件的几何形状和加工要求,选择合适的数控机床和刀具。
3.加工工艺规划:根据几何形状和加工要求,规划加工工艺,包括切削量、切削速度、进给速度等参数的确定。
4.编写G代码:根据加工工艺规划,编写G代码,控制机床进行具体的加工操作。
G代码包括刀具的起始位置、切削轨迹、切削速度、进给速度等。
5.调试和修改:将编写好的G代码输入数控机床进行加工,检查零件的加工质量和尺寸是否符合要求,如有问题需要进行调试和修改G代码。
6.优化加工工艺:根据加工过程中的经验和实际情况,对加工工艺进行优化,包括切削参数的调整和G代码的修改,以提高加工效率和质量。
总结:数控手工编程是数控加工中非常重要的一环,通过合理编写G代码可以控制数控机床进行精确、高效的加工。
数控手工编程可以通过手工编程、图形化编程和常用加工模板编程等方法实现,每种方法都有其特点和适用范围。
在进行数控手工编程时,需要经过几个步骤,包括确定零件的几何形状和尺寸、选择机床和刀具、加工工艺规划、编写G代码、调试和修改以及优化加工工艺。
通过不断的实践和经验积累,可以提高数控手工编程的效率和质量。
数控编程全

第三节 刀具补偿功能
31
第三节 刀具补偿功能
1.刀具补偿指令 G41——刀具半径左补偿 G42——刀具半径右补偿 G40——刀具半径补偿取消 格式: G41/G42/G40 G00/G01 D_ X(U)_ Z(W)_ (F_)
32
第三节 刀具补偿功能
2.刀尖圆弧半径对加工的影响
33
第三节 刀具补偿功能
40
第四节 车削固定循环
3.4.1 单一形状的固定循环 1.内外直径的切削循环(G90) 直线切削循环: G90 X(U)___Z(W)___F___ ;
41
第四节 车削固定循环
2.锥体切削循环: G90 X(U)___Z(W)___R___ F___ ; 必须指定锥体的 “R” 值。切削功能的用法与直线切削循环 类似 。
数控编程知识简介
➢ 数控编程定义
根据被加工零件的图纸和技术要求、工艺要求 等切削加工的必要信息,按数控系统所规定的指令 和格式编制成加工程序文件。
➢ 常用编程方法
手工编程 自动编程(图形交互式)
1
手工编程
利用一般的计算工具,通过各种数学方法,人 工进行刀具轨迹的运算,并进行指令编制。
这种方式比较简单,很容易掌握,适应性较大。 适用于中等复杂程度程序、计算量不大的零件编程, 对机床操作人员来讲必须掌握。
T0101 G00 X50. Z2.
程序主体
…… G00 X100 Z100
程序结束指令
M30
程序结束符
%
11
基础
1.2 程序指令字 1. 顺序字 N 1)作用 (1)对程序的校对和检索修改; (2)可直观地检查程序; (3)条件转向的目标。
12
数控线切割机床自动编程的步骤和方法

数控线切割机床自动编程的步骤和方法随着数控技术的不断发展,数控线切割机床已经成为了现代工业生产中不可或缺的设备,其具有高效、精度高、自动化程度高等优点。
而对于数控线切割机床来说,自动编程是其最重要的功能之一。
下文将从步骤和方法两个方面详细介绍数控线切割机床自动编程的过程。
一、数控线切割机床自动编程的步骤1. 零件图形输入数控线切割机床自动编程的第一步是将要加工的零件图形输入到计算机中。
这一步可以通过手工绘制图形,然后扫描或输入到计算机中;也可以通过CAD软件直接绘制图形。
无论采用哪种方式,都需要确保图形的准确性和完整性。
2. 编写切割程序在完成零件图形的输入之后,需要编写切割程序。
切割程序是数控线切割机床自动编程的核心,它包含了加工路径、切割速度、切割深度等信息。
编写切割程序可以采用G代码或CAM软件,其中G 代码是一种通用的数控编程语言,而CAM软件则是一种图形化编程软件,可以根据零件图形自动生成切割程序。
3. 进行数控仿真在编写好切割程序之后,需要进行数控仿真。
数控仿真是将切割程序加载到数控系统中,然后在计算机上进行仿真运行,以验证切割程序是否正确。
在仿真过程中,可以模拟切割路径、切割速度、切割深度等信息,以确保切割程序的正确性和可靠性。
4. 生成切割程序在完成数控仿真之后,需要生成切割程序。
切割程序可以通过数控系统直接输出,也可以通过U盘或其他存储设备输出到数控线切割机床上。
在输出切割程序之前,需要进行一些参数设置,如加工速度、加工深度等。
5. 进行数控加工最后一步是进行数控加工。
在数控加工过程中,数控系统会根据切割程序自动控制线切割机床进行加工。
在加工过程中,需要对加工状态进行监控,以确保加工质量和安全性。
二、数控线切割机床自动编程的方法1. 手工编程法手工编程法是最原始的数控编程方法,它需要编程人员熟练掌握G 代码语言,并手工编写切割程序。
手工编程法的优点是灵活性高,可以根据具体情况进行调整和优化;缺点是效率低、易出错。
数控编程教程(共95张PPT)

第二节 数控编程常用的指令及其格式
主程序、子程序
在一个零件的加工程序 中,若有一定量的连续 的程序段在几处完全重 复出现,则可将这些重 复的程序串单独抽出来, 按一定的格式做成子程 序。
11/7/2023
-25-
第二节 数控编程常用的指令及其格式
码的程序段中有效; ● 模态M功能(续效代码):一组可相互注销的 M功
能,这些功能在被同一组的另一个功能注销前一直 有效。
第三章 数控系统编程指令体系
模态 M功能组中包含一个缺省功能,系统上电时 将被初始化为该功能。
M 功能还可分为前作用 M 功能和后作用 M 功能二类。 ● 前作用 M 功能:在程序段编制的轴运动之前执行; ● 后作用 M 功能:在程序段编制的轴运动之后执行。
迹生成功能进行数控编程。
4.后置代码生成 后置处理的目的是形成数控指令文件,利用CAM系统提供的后置
处理器可方便地生成和特定机床相匹配的加工代码。
5.加工代码输出
第一节 数控编程的几何基础
1.1 机床坐标系 为了确定机床个运动部件的运动方向和移动距离,需要
在机床上建立一个坐标系,这个坐标系就叫做机床坐标系 1.2 机床坐标轴及其方向
常用地址码的含义如表所示
机能 程序号 顺序号 准备机能
坐标指令
进给机能 主轴机能 刀具机能
辅助机能
补偿 暂停 子程序调用 重复 参数
地址码
O N G X.Y.Z A.B.C.U.V.W R I.J.K F S T
M B
H.D P.X
I P.Q.R
意义
程序编号 顺序编号 机床动作方式指令 坐标轴移动指令 附加轴移动指令 圆弧半径 圆弧中心坐标 进给速度指令 主轴转速指令 刀具编号指令
CNC手工编程讲解

吹气/切削液 关 *第四轴夹紧(因系统不同可能存在差异) *第四轴松开(因系统不同可能存在差异)
主轴定向 程式结束返回主程式起始
调用子程式 调用外装置子程式 子程式结束返回主程式/单程式循环
M代码:
机床或外接设备辅助代码,起到机床的辅 助控制作用。因PLC编程影响,不同类型 的机床的辅助代码存在一定差异。
Y
P点
100
X
0
50
G代码 --- G10/G11
G10 可编程数据输入;
1、格式: G10 L_ ; …… ; G11 ;
数据写入开始 数据写入结束
G11 可编程数据输入取消
1)、G10 L n P_ R_ ;
n:10 H的几何补偿值 11 H的磨损补偿值 12 D的几何补偿值 13 D的磨损补偿值
数值计算 根据零件图的几何尺寸、确定的工艺路线及设定的坐标系,计算零件粗、精加工运动的轨迹,得到刀位数据法; 编写零件加工程序 根据加工路线、切削用量、刀具号码、刀具补偿量、机床辅助动作及刀具运动轨迹; 制作控制介质 把编制好的程序单上的内容记录在控制介质上,作为数控装置的输入信息; 程序校验与首件试切 编写的程序和制备好的控制介质,必须经过校验和试刀才能正式使用
* G80 固定循环取消
G代码 --- G82
G82 钻孔循环
1、格式: G82 X_Y_Z_R_P_F_K_ ;
X/Y: 孔位置数据 Z:孔底深度位置 R:安全高度/基准平面到R点距离 P:孔底的暂停时间 F:切削进给速度 K:重复次数(一般不用)
== 讨论时间 ==
G代码 --- G90/G91
G90 绝对指令; G91 增量指令;
1、格式: G90/G91 G00 X_ Y_ Z_ ;
数控机床程序编制的步骤与和手工编程

数控机床程序编制的步骤与和手工编程数控机床在制造工业中,特别是在大批量和高精度机械制造领域中发挥着重要作用。
数控机床程序编制是数字控制技术的重要组成部分。
通过使用计算机软件和硬件技术,可以编制出高效、可重复使用和精确的数控机床工作程序。
本文将介绍数控机床程序编制的步骤和与手工编程的比较。
一、数控机床程序编制的步骤数控机床程序编制通常包括以下几个步骤:1. 零件CAD 建模:使用计算机辅助设计(CAD)软件将机器零件进行三维建模,模型中包括零件的尺寸、形状和特征。
这个步骤比较重要,因为代码的输出取决于零件建模的质量。
2. 制定CAM 策略:制定计算机辅助制造(CAM)策略,这个步骤包括设定刀具、切削参数和刀具配对等操作,以确保最佳配置。
在制定策略时,需要考虑零件的形态、尺寸和材质等特征。
3. 定义刀具路径:为了确保机器能够准确切割零件,需要定义机器在零件表面上移动的路径并为每一个路径赋予合适的运动,并根据机器的性能参数进行优化。
4. 机器仿真:进行机器仿真来确保机器可以按照定义的刀具路径正常运转。
机器仿真可用于验证程序的正确性和特征,以减少机器错误和零件损坏。
5. 编译程序代码:主要是将CAM 策略、路径定义和机器参数编译为数控机床可以识别的机器代码。
6. 上传代码到机器:将编译好的程序代码上传到数控机床中,以便开始加工零件。
二、数控机床程序编制和手工编程比较在过去,机械制造领域中的机器操作都是采用手工编程完成。
手工编程需要操作人员有严格的机器操作知识和技能,并且需要相当的时间进行机器设置和工艺参数调整。
取代手工编程的数字式编程则解决了这些问题。
与手工编程相比,数控机床程序编制具有以下优点:1. 缩短了生产周期:数控机床程序编制自动化程度高,加工速度快,生产周期短。
2. 提高了工艺精度:数控机床程序编制可以实现高度精确的加工,避免了因人工操作产生的误差和瑕疵。
3. 减少了机器损坏风险:数控机床程序编制可以通过模拟和检查机器行为以避免机器错误和零件损坏。
数控铣手工编程

工件
刀具
刀具半径补偿(G41、G42、G40)
左刀补:沿着刀具前进方向刀具在工 件轮廓左侧的补偿
右刀补:沿着刀具前进方向刀具在工 件轮廓右侧的补偿
刀具半径补偿(G41、G42、G40)
指令格式:
刀具半径补偿的建立:
XY
XZ
D
YZ
刀具补偿号
刀具补偿起刀时必须为G00或G01 左、右刀补的设置
刀具半径补偿(G41、G42、G40)
螺旋线进给G02/G03
说明 1.X, Y, Z 中由G17/G18/G19 平面选定的两个坐标为螺旋线投影圆弧的终点 意义同圆弧进给第3 坐标是与选定平面相垂直的轴终点其余参数的意义同圆弧进 给。 2.该指令对另一个不在圆弧平面上的坐标轴施加运动指令对于任何小于360 的 圆弧可附加任一数值的单轴指令。
G90 时为中间点在工件坐标系中的坐标。 G91 时为中间点相对于起点的位移量。
G28 指令首先使所有的编程轴都快速定位到中间点,然后再从中间 点返回到参考点。
一般G28 指令用于刀具自动更换或者消除机械误差,在执行该指 令之前应取消刀具半径补偿和刀具长度补偿。
自动返回参考点G28
利用G28从当前点直接回参考点:
该指令使刀具以F指定的进给速度插补加
工出任意斜率的直线, 指令格式如下: G01 X__ Y __ Z __ F __ ;
其中, X、 Y、 Z为直线的终点坐标, 可以是绝对坐标, 也可以是增量坐标, 不移动的坐标轴可以省略; F为刀具移 动的速度, 单位为mm/min。
直线插补(G01)
直线插补编程实例:
圆弧半径 圆弧终点的坐标值
圆弧插补G02/G03
圆弧的终点位置与圆心
数控手工编程的步骤

数控手工编程的步骤
嘿,今天咱来聊聊数控手工编程那点事儿哈。
你知道不,我之前有一次给一个小零件编程,那可真是个有趣的经历。
就说一开始啊,咱得先搞清楚要加工啥样的零件,这就像咱要去一个陌生地方,得先知道目的地在哪儿呀。
我对着那个小零件,左看看右看看,心里琢磨着它的形状和要求。
然后呢,就开始规划路径啦,这就好比给零件设计一条“旅行路线”。
我在那比划来比划去,想着怎么让刀具走得最顺溜,最能把这个零件给完美加工出来。
接着就是选刀具啦,这可不能马虎,就像咱出门得选双合脚的鞋子一样。
不同的刀具就像不同的鞋子,得根据零件的特点来挑。
再之后就是设置各种参数啦,什么转速啦、进给速度啦,这就像给车子调速度一样,得恰到好处,不然可就出问题咯。
等这些都搞定了,就可以开始编程啦。
我一个代码一个代码地敲,就跟盖房子一块砖一块砖往上垒似的。
最后,看着程序运行起来,刀具在零件上欢快地切削,就好像看着自己的小宝贝一点点长大一样开心。
总之啊,数控手工编程就是这么个过程,得细心,得耐心,就像照顾小娃娃一样。
虽然有时候会有点麻烦,但看到加工出的完美零件,那感觉,真是太棒啦!哈哈!。
数控手工编程的方法与步骤

数控手工编程的方法与步骤随着科技的不断发展,数控(CNC)技术也越来越普遍地应用于各行各业。
实现CNC加工需要程序员进行手工编程,本文将详细介绍数控手工编程的方法与步骤。
一、数控手工编程的定义及流程数控手工编程是根据工件的图形和加工要求,经过分析、计算和排样得出的指令序列的编制过程。
数控手工编程分为二维数控手工编程和三维数控手工编程,二维编程适用于平面加工,三维编程适用于曲面加工。
无论是二维还是三维编程,其主要流程如下:1、理解工件图形和加工要求先要理解工件的形状和加工要求,明确工件的尺寸、形状和加工精度等关键技术要求。
2、确定刀具和工艺根据加工需要,选择合适的刀具和加工工艺,比如平面加工用平面铣刀,切削参数包括切削深度、进给速度等。
3、进行计算和分析分析工件的形状和加工工艺,利用相关软件进行计算,得出加工的G代码。
4、编写G代码依据计算结果和加工要求,使用代码编辑器编写G代码。
G代码是一种编程语言,标准化的G代码包含了一些常用的命令,例如G0、G1、G2、G3等,这些命令能够控制数控机床沿着预定轨迹进行运动,实现工件的加工。
5、进行程序检查和修正操作人员需要对编写的代码进行检查和修正,确保程序正确无误,操作人员还可以使用数控机床上装载的仿真软件来模拟程序加工过程,避免出现不必要的错误。
6、传输程序最后,编好的G代码通过U盘等媒介传输到数控机床上,操作人员按照程序设定好切削参数、调整夹紧位置等后,就可以开始自动化加工。
二、数控手工编程的注意事项在进行数控手工编程时,要注意以下几点:1、尽可能简单,少用冗余指令。
指令简明、紧凑,可以减少程序运行时间、减少机床的负载,提高加工效率。
2、注重减少刀具的行进距离。
程序应通过合理的工具路径规划来减少刀具空行程,缩短加工时间,提高加工效率。
3、注意刀具磨损和进给速度。
合理的切削速度和进给速度对加工效果至关重要。
刀具磨损的程度也要及时检查,以保证正常的加工结果。
数控手工编程的方法及步骤

数控手工编程的方法及步骤数控手工编程是数控机床加工的一种基础方法,它可以帮助操作人员在数控系统的帮助下,将加工工件的图纸转换成数控程序。
由于数控手工编程的过程比较繁琐,因此需要操作人员针对每个步骤进行详细的了解和掌握。
本文将详细介绍数控手工编程的方法及步骤。
一、数控手工编程的方式在数控手工编程中,有两种编程方式,分别为绝对编程和增量编程。
绝对编程可以直接输入工件的坐标值,从而确定刀具到零点之间的逻辑距离,使刀具在所需位置进行工作。
增量编程是根据平面坐标系加上刀具的绝对位置进行编程的方式,通过输入刀具的位移距离和刀具的方向来确定刀具在不同位置进行工作的方式。
二、数控手工编程的步骤(一)确认工件及设备的物理尺寸在进行数控手工编程前,需要根据设计图纸中的工件尺寸,测量工件与设备的物理尺寸,确认工件与设备的匹配程度。
同时,还需要注意设备的行程限制,避免因行程限制导致加工失败问题。
(二)选择数控机床的坐标系统在进行数控编程前,需要根据机床控制系统选择相应的坐标系统。
常用的坐标系统有笛卡尔坐标系统、极坐标系统、直角坐标系统等。
同时还需要根据工件的形状和加工方式,确认工件的加工坐标轴,选择相应的坐标系。
(三)确定数控加工的加工流程在确定数控手工编程的过程时,需要根据加工方式和工件的几何图形,选择不同的加工策略。
常用的加工策略有螺旋线式加工、单行或多行加工、螺旋线优先加工等。
同时还需要根据工件的加工难度和精度要求,确定工件的加工次序和切削数据。
(四)制定刀具路径及切削参数在进行数控手工编程时,需要制定刀具路径和切削参数。
特别是在刀具半径、刀具进给速度、切削原理等方面,需要考虑到刀具的特性和机床的工作状态,确保切削效果稳定,同时保证加工精度和质量符合一定的要求。
(五)编写数控程序在确定数控机床的加工流程和切削参数后,需要根据加工策略和几何图形,编写数控程序。
编写数控程序需要导入一些预置的格式,如:变量定义,迭代循环,分支命令,数学函数等,从而编制出相应的加工程序。
CNC手工编程

CNC手工编程CAM数控编程技术1.1数控机床程序编制步骤数控机床程序编制的内容主要包括以下步骤:(1)工艺方案分析1.确定加工对象是否适合于数控加工(形状较复杂,精度一致要求高)2.毛坯的选择(对同一批量的毛坯余量和质量应有一定的要求)。
3.工序的划分(尽可能采用一次装夹、集中工序的加工方法)。
(2)工序详细设计1.工件的定位与夹紧。
2.工序划分(先大刀后小刀,先粗后精,先主后次,尽量“少换刀”)。
3.刀具选择。
4.切削参数。
5.工艺文件编制(工序卡(即程序单),走刀路线示意图。
程序单包括:程序名称,刀具型号,加工部位与尺寸,装夹示意图。
(3)编写数控加工程序1.用MaterCAM设置编出数控机床规定的指令代码(G,S,M)与程序格式。
2.后处理程序,填写程序单。
3.拷贝程序传送到机床4.程序校核与试切。
1.2数控系统基本功能和手工编程范例一.数控系统基本功能1.准备功能(1)准备功能指令由字母“G”和其后的2位数字组成。
从G00至G99可有100种,该指令的作用,主要是指定数控机床的运动方式,为数控系统的察布运算做好准备,所以在程序段中G指令一般位于坐标字指令的前面。
(2)表中00组G代码是非模态代码,其他各组代码均为模态代码。
模态代码表示一经被应用,就保留继续有效,直到后继程序段出现同组其他G代码时才失效,因此可以略不写。
非模态代码表示只在本程序段有效,下一程序段需要时必须重写。
(3)在固定钻削循环方式(G80-G89)中,如果规定了01组中的任何G代码,则固定循环功能被自动取消,系统处于G80状态。
2.辅助功能辅助功能也称M功能,它是用来指令机床辅助动作及状态的功能。
M功能代码常因机床生产厂家以及机床的结构的差异和规格的不同而有所差别。
3.主轴功能主轴功能也称主轴转速功能或S功能,它是用来指令机床主轴转速的功能。
S功能用S用其后的数字来表示,在编程时除用S代码指令主轴转速外,还要用M代码指令主轴的旋10转方向。
简述数控编程的内容与方法

简述数控编程的内容与方法
数控编程是数控加工准备阶段的主要内容之一,通常包括以下步骤:
1. 分析零件图样,确定加工工艺过程。
2. 计算走刀轨迹,得出刀位数据。
3. 编写数控加工程序。
4. 制作控制介质。
5. 校对程序及首件试切。
数控编程的方法主要有两种:手工编程和自动编程。
手工编程是由编程人员根据零件图纸和加工工艺过程,手动编写数控加工程序。
自动编程则是利用计算机辅助编程软件,根据零件图纸和加工工艺过程,自动生成数控加工程序。
在多轴加工中,还需要给出刀轴矢量。
刀位点一般为刀具轴线与刀具表面的交点。
在计算机自动编程中,可以采用图形交互式自动编程,即计算机辅助编程。
这种方法能够适应复杂形状零件的加工、多轴加工、高速加工等需求。
在数控编程过程中,需要合理选择加工方案与加工参数,包括刀具、刀轴控制方式、走刀路线和进给速度等。
这些参数的优化选择是满足加工要求、机床正常运行和刀具寿命的前提。
对于高速加工,这些问题尤其重要。
以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询专业编程人员。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控手工编程的方法及步骤
数控编程的主要内容有:分析零件图样确定工艺过程、数值计算、编写加工程序、校对程序及首件试切。
编程的具体步骤说明如下:
1.分析图样、确定工艺过程
在数控机床上加工零件,工艺人员拿到的原始资料是零件图。
根据零件图,可以对零件的形状、尺寸精度、表面粗糙度、工件材料、毛坯种类和热处理状况等进行分析,然后选择机床、刀具,确定定位夹紧装置、加工方法、加工顺序及切削用量的大小。
在确定工艺过程中,应充分考虑所用数控机床的指令功能,充分发挥机床的效能,做到加工路线合理、走刀次数少和加工工时短等。
此外,还应填写有关的工艺技术文件,如数控加工工序卡片、数控刀具卡片、走刀路线图等。
2.计算刀具轨迹的坐标值
根据零件图的几何尺寸及设定的编程坐标系,计算出刀具中心的运动轨迹,得到全部刀位数据。
一般数控系统具有直线插补和圆弧插补的功能,对于形状比较简单的平面形零件(如直线和圆弧组成的零件)的轮廓加工,只需要计算出几何元素的起点、终点、圆弧的圆心(或圆弧的半径)、两几何元素的交点或切点的坐标值。
如果数控系统无刀具补偿功能,则要计算刀具中心的运动轨迹坐标值。
对于形状复杂的零件(如由非圆曲线、曲面组成的零件),需要用直线段(或圆弧段)逼近实际的曲线或曲面,根据所要求的加工精度计算出其节点的坐标值。
3.编写零件加工程序
根据加工路线计算出刀具运动轨迹数据和已确定的工艺参数及辅助动作,编程人员可以按照所用数控系统规定的功能指令及程序段格式,逐段编写出零件的加工程序。
编写时应注意:第一,程序书写的规范性,应便于表达和交流;第二,在对所用数控机床的性能与指令充分熟悉的基础上,各指令使用的技巧、程序段编写的技巧。
4.将程序输入数控机床
将加工程序输入数控机床的方式有:光电阅读机、键盘、磁盘、磁带、存储卡、连接上级计算机的DNC接口及网络等。
目前常用的方法是通过键盘直接将加工程序输入(MDI方式)到数控机床程序存储器中或通过计算机与数控系统的通讯接口将加工程序传送到数控机床的程序存储器中,由机床操作者根据零件加工需要进行调用。
现在一些新型数控机床已经配置大容量存储卡存储加工程序,当作数控机床程序存储器使用,因此数控程序可以事先存入存储卡中。
5.程序校验与首件试切
数控程序必须经过校验和试切才能正式加工。
在有图形模拟功能的数控机床上,可以进行图形模拟加工,检查刀具轨迹的正确性,对无此功能的数控机床可进行空运行检验。
但这些方法只能检验出刀具运动轨迹是否正确,不能查出对刀误差、由于刀具调整不当或因某些计算误差引起的加工误差及零件的加工精度,所以有必要经过零件加工的首件试切的这一重要步骤。
当发现有加工误差或不符合图纸要求时,应分析误差产生的原因,以便修改加工程序或采取刀具尺寸补偿等措施,直到加工出
合乎图样要求的零件为止。
随着数控加工技术的发展,可采用先进的数控加工仿真方法对数控加工程序进行校核。
数控加工程序指令代码
在数控机床加工程序中,我国和国际上都广泛使用准备功能G指令、辅助功能M指令、进给功能F指令、刀具功能T指令和主轴转速功能S指令等5种指令代码来描述加工工艺过程和数控机床的各种运动特征。
1.准备功能字G。
准备功能字的地址符是G,又称G功能或G指令。
它是建立机床或控制数控系统工作方式的一种命令,一般用来规定刀具和工件的相对运动轨迹(即插补功能)、机床坐标系、坐标平面、刀具补偿和坐标偏置等多种加工操作,以及厂家自定义的多种固定循环指令和宏指令调用等。
它由地址符G及其后的两位数字或三位数字组成。
一个数控系统的G代码多少可衡量其功能的强弱。
2.主轴转速功能字S
主轴转速功能字的地址符是S,所以又称S功能或S指令。
它由主轴转速地址符S及数字组成,数字表示主轴转数,其单位按系统说明书的规定。
现在一般数控系统主轴已采用主轴控制单元,能使用直接指定方式,即可用地址符S的后续数字直接指定主轴转数。
例如,若要求
1200r/min,则编程指令为S1200。
3.进给功能字F
进给功能字的地址符是F,所以又称F功能或F指令。
它由进给地址符F及数字组成,数字表示切削时所指定的刀具中心运动的进给速度。
这
个数字的单位取决于每个系统所采用的进给速度的指定方式。
现在一般数控系统都能使用直接指定方式,即可用地址符F的后续数字直接指定进给速度。
对于车床系统,可分为每分钟进给和主轴每转进给两种方式表示,一般分别用G94、G95规定;对于铣床系统,一般只用每分钟进给方式表示。
F地址在螺纹切削程序段中还常用来指定螺纹导程。
4.刀具功能T
刀具功能字的地址符是T,所以又称T功能或T指令。
它用以指定切削时使用的刀具的刀号及刀具自动补偿时编组号。
其自动补偿的内容有:刀具对刀后的刀位偏差、刀具长度及刀具半径补偿。