纳米银的制备及应用研究
纳米银复合材料的制备及其生物活性研究
纳米银复合材料的制备及其生物活性研究近年来,纳米技术的发展已经在许多领域得到了广泛的应用,其中纳米材料的特殊物性使其成为研究热点。
其中,纳米银复合材料是一类具有良好生物活性的材料,在生物医学领域应用广泛。
本文将介绍纳米银复合材料的制备方法及其生物活性研究进展。
一、纳米银复合材料的制备方法目前,纳米银复合材料的制备方法有很多种,主要包括物理法、化学法和生物法三种。
其中,化学法制备的纳米银复合材料应用最为广泛。
1. 物理法物理法制备纳米银复合材料包括溅射法、磁控溅射法和高能球磨法。
这些方法制备的纳米银颗粒粒径一般在10~100 nm之间,具有很高的晶格度和稳定性。
而由于这些方法制备过程中需要高温、高能、真空等特殊条件,导致制备成本较高,且所得产物晶粒尺寸难以控制。
2. 化学法化学法制备纳米银复合材料包括溶胶凝胶法、沉淀法、还原法、微波合成法等。
其中,还原法是目前应用最为广泛的一种方法。
该方法通过还原银离子制备纳米银颗粒,可以在常温下制备,且使用简单、成本低廉。
同时,该方法也可制备出形貌和结构不同的纳米银颗粒,如球形、棒状、四面体等。
由于该方法不需要高温、高能等特殊制备条件,因此,制备成本也相对较低。
3. 生物法生物法制备纳米银复合材料包括细菌法、真菌法、酵母法等。
这些方法主要利用了特定微生物的代谢产物,如还原酶等,来制备纳米银颗粒。
这种方法不仅环保、低成本,而且易于控制纳米颗粒粒径和形态。
但是,使用这种方法需要建立稳定的微生物培养体系,制备过程比较繁琐。
二、纳米银复合材料的生物活性研究纳米银复合材料由于表面积大、反应活性高、生物相容性良好等特点,具有广泛的应用前景。
目前,纳米银复合材料在医学领域、食品安全、环境污染等方面得到了广泛研究和应用。
1. 抗菌性能纳米银复合材料具有优异的抗菌性能,可广泛应用于水净化、医疗器械、餐具等领域。
研究表明,纳米银颗粒能够与细菌细胞膜上的蛋白质、DNA等结合,引起其结构和功能的改变,导致细胞死亡或抑制细胞生长。
纳米银纺织抗菌应用方法
纳米银纺织抗菌应用方法全文共四篇示例,供您参考第一篇示例:纳米银纺织材料作为一种新型的抗菌材料,其在医疗、防护和日常生活中的应用逐渐受到人们的重视。
纳米银纺织材料具有独特的抗菌性能,可以有效地抑制细菌、真菌和病毒的生长,被广泛应用于医用卫生用品、服装、家居用品等领域。
下面将介绍一些关于纳米银纺织抗菌应用方法的信息。
一、制备纳米银纺织材料纳米银纺织材料的制备主要分为两种方法:一种是将纳米银颗粒直接加工到纺织品中,另一种是利用化学方法将纳米银涂覆在纺织品表面。
前者常用于制备长效抗菌纺织品,后者则适用于制备消毒效果较强的医用防护服等产品。
制备纳米银纺织材料需要注意控制纳米银颗粒的分散均匀度和稳定性,以确保其在纺织品中具有持久的抗菌效果。
二、纳米银纺织材料的应用1. 医疗卫生用品纳米银纺织材料在医疗卫生用品中的应用包括医用口罩、外科手术服、绷带、护士服等。
这些产品利用纳米银的抗菌性能,可以有效地预防医院内感染的传播,保障患者和医护人员的安全。
2. 功能性服装纳米银纺织材料还被广泛应用于功能性服装中,如运动服、内衣等。
这些服装利用纳米银的抗菌性能,可以有效地减少细菌和真菌在衣物上的滋生,保持衣物的清洁和卫生。
3. 家居用品纳米银纺织材料也被应用于家居用品领域,如毛巾、床上用品、窗帘等。
这些产品利用纳米银的抗菌性能,可以有效地抑制细菌、真菌在家居用品上的生长,起到保持家居环境清洁卫生的作用。
三、使用方法及注意事项1. 洗涤注意纳米银纺织材料在日常使用中需要注意避免过于严格的洗涤方式,以免影响纳米银的抗菌性能。
通常建议采用温和的洗涤方式,避免使用含氯漂白剂或强酸强碱的洗涤剂。
2. 注意避免受损纳米银纺织材料的抗菌效果主要来自纳米银颗粒的释放,因此需要避免使用过于激烈的物理方式对纺织品进行剧烈拉扯或弯曲,以免损坏纳米银颗粒的稳定结构。
3. 定期更换在医疗卫生用品中使用纳米银纺织材料时,需要注意定期更换产品,以确保其抗菌效果的持久稳定。
制备纳米银的方法
制备纳米银的方法
1. 化学还原法呀!就像变魔术一样,把银盐和还原剂混合,哇塞,纳米银就慢慢出现啦!比如在实验室里,把硝酸银溶液和硼氢化钠溶液一混合,嘿嘿,看着纳米银一点点生成,那感觉可奇妙啦!
2. 光化学还原法呢,利用光的能量来促使反应进行,这不是超级酷嘛!就好像太阳给植物能量让它们生长一样,把含有银离子的溶液放在光下,不一会儿,纳米银就“诞生”咯!比如说用紫外线照一下,真的好神奇呀!
3. 电化学法也很棒哦!通过电流的作用让银离子变成纳米银,这不就像是给银离子通上了“魔法电流”嘛!在特定的装置里,通上电,哇哦,就可以收获纳米银啦,就像变戏法一样,太有意思啦!
4. 溶胶凝胶法呀,像揉面团一样把各种材料混合起来,然后纳米银就藏在里面啦!比如把银的化合物和一些其他东西混合搅拌,慢慢就出现纳米银啦,多有趣呀!
5. 模板法呢,就像是给纳米银打造一个特殊的“房子”,让它按照要求生长。
用特定的模板,哇,纳米银就乖乖地长成我们想要的样子,是不是很神奇呀!
6. 微波辅助法哟,利用微波的力量来加速反应,这简直就是科技的魔力呀!就像微波炉快速加热食物一样,让纳米银快速生成,酷不酷呀!
7. 超声法也不错呀,超声的震动让一切变得不一样了呢!就好像给反应来了一场“音乐会”,纳米银就在这“音乐”中诞生啦,想想都觉得好玩呢!
8. 生物合成法更特别啦,利用生物的力量来制造纳米银!比如说用植物提取物,哇,植物居然能帮我们合成纳米银,这也太牛了吧!
我觉得制备纳米银的这些方法都太神奇啦,各有各的奇妙之处,真的让人忍不住想要去探索和尝试呢!。
基于纳米银的新型光学传感器研究
基于纳米银的新型光学传感器研究随着纳米技术的不断发展,各行各业都纷纷开始了对纳米材料的利用和研究。
光学传感器作为一种重要的检测手段,在医疗、环境、能源等领域都有广泛的应用。
基于纳米银的光学传感器在其中发挥着极为重要的作用。
本文将从纳米银的制备、光学传感器的原理以及应用、未来研究方向等方面,对基于纳米银的新型光学传感器进行详细的探讨。
一、纳米银的制备纳米银是指直径在1-100纳米范围内的银颗粒,这种材料具有极高的比表面积和活性。
制备纳米银的方法主要分为物理和化学两种。
物理制备一般采用电子束蒸发、离子束法、分子束蒸发法等。
这些方法所制备的纳米银粒子形貌较为规则、均匀,能够获得较高的纯度和晶形。
化学制备主要是通过还原银盐溶液,通过改变还原剂的种类和量来控制粒径和形貌。
该方法具有操作简单、产量高的优点,但对于产生的副产物的处理也需要一定的考虑。
二、光学传感器的原理和应用光学传感器通过利用物质与光的相互作用实现信号的检测和转换。
其原理主要分为折射率、吸收、荧光等方面。
基于纳米银的光学传感器主要利用到了纳米银颗粒的局域表面等离激元共振(Localized Surface Plasmon Resonance,LSPR)现象。
简单来说,当光照射到纳米银粒子表面时,激发出一种集体震动的电磁波,产生了强烈的吸收、散射和透射光谱,同时也导致了粒子表面的折射率发生变化,从而实现了信号的检测。
基于纳米银的光学传感器在医疗、环境、能源等领域都有广泛的应用。
例如,在医疗领域,可以通过检测生物分子与纳米银颗粒之间的相互作用来实现对疾病的快速诊断。
在环境监测领域,可以利用纳米银传感器检测空气中的VOCs、重金属等污染物质,从而实现对环境的监测和预警。
在能源领域,纳米银传感器可以用于太阳能电池、氢能源等领域的检测和质量控制等方面。
三、未来研究方向虽然基于纳米银的光学传感器已经取得了很大的进展,但也面临着一系列挑战和待解决的问题。
其中,纳米银的涉及生物毒性、颗粒自组装机制、稳定性等方面都需要进一步深入研究和探讨。
纳米银材料在生物医学领域中的应用研究
纳米银材料在生物医学领域中的应用研究随着科学技术的不断进步,纳米技术越来越被广泛应用于医学领域中。
其中,纳米银材料在生物医学中的应用受到越来越多的关注和研究。
本文将从纳米银材料的特性和制备方法、生物医学领域中的应用以及未来研究趋势三个方面来进行探讨。
一、纳米银材料的特性和制备方法1.特性:纳米银材料指的是粒径在1到100纳米的银颗粒,具有许多独特的特性。
首先,它具有极高的比表面积,使得其表面能够与生物分子充分接触;其次,因为其尺寸很小,纳米银材料能够在生物组织中穿透到更深处,为治疗和诊断提供更好的条件;此外,纳米银材料还具有优良的光学、热学和电学特性,可以应用于各种生物传感器、光学成像以及微纳加工等领域。
2.制备方法:纳米银材料的制备方法多种多样,如化学还原法、物理气相沉积、激光烧蚀、电化学法、微乳液法等等。
其中,化学还原法是较为常见的一种方法,其通过还原银离子制备纳米银颗粒。
但是,由于化学还原法中存在有毒有害的化学试剂,因此也有人开始关注绿色纳米银材料的制备,如生物还原法等。
二、生物医学领域中的应用近年来,纳米银材料在生物医学领域的应用得到了广泛研究,主要包括以下几个方面:1. 纳米银材料在治疗感染方面的应用纳米银材料具有很强的抗菌、抗病毒和抗真菌的能力,并且可以抑制生物膜的形成,因此,被广泛应用于治疗感染性疾病,如烧伤创口感染、牙周病等。
2. 纳米银材料在生物传感器方面的应用纳米银材料的高敏感度和优异的光学、电学特性,使得它在生物传感器方面有广泛的应用,如生物分子探测、细胞成像、荧光标记等。
3. 纳米银材料在肿瘤治疗中的应用纳米银材料可以被作为光热治疗、化疗和放射治疗的载体,以使得其提高了药物的作用效率、减少毒副作用。
同时,纳米银材料也有利于肿瘤的光热治疗,其在近红外光的照射下产生的局部高温可以破坏肿瘤细胞,达到治疗肿瘤的效果。
三、未来研究趋势虽然纳米银材料在生物医学领域的应用已经有了一定的进展,但是还需要通过进一步的研究来完善其应用,同时也要关注其安全性和环保性。
纳米银颗粒的制备及其生物应用
纳米银颗粒的制备及其生物应用第一章纳米银颗粒的制备近年来,纳米技术的快速发展为制备纳米材料提供了新的思路和手段。
纳米银颗粒是一种重要的纳米材料,具有优异的物理化学性质和广泛的生物应用价值。
本章将介绍几种常见的纳米银颗粒制备方法。
1. 溶胶-凝胶法溶胶-凝胶法是制备纳米银颗粒的一种常用方法。
其基本原理是在水相中加入氢氧化钠、硝酸银等化学试剂,调节溶液的pH值和温度,使之发生聚合反应,最终制得纳米银颗粒。
2. 化学还原法化学还原法是制备纳米银颗粒的常见方法之一。
该方法基于还原剂对银离子的还原作用,使银离子逐渐为金属银还原成纳米银颗粒。
3. 光化学法光化学法是使用光去还原银离子制备纳米银颗粒的方法。
其具体原理是利用光照后的电子能量使得还原剂对银离子进行还原,形成纳米银颗粒。
第二章纳米银颗粒的生物应用纳米银颗粒具有优异的物理化学性质和生物学特性,已被广泛应用于医学领域、生物成像、抗菌材料等领域。
1.抗菌作用纳米银颗粒具有较强的抗菌作用,对多种细菌、真菌和病毒等有杀灭作用。
其抗菌机制主要是通过破坏细胞膜和细胞壁、电子转移和氧化应激等方式实现。
2.生物成像纳米银颗粒在生物成像中表现出较好的成像效果。
其主要原因是纳米银颗粒表面的等离子体共振(SPR)效应,使得其在近红外区域具有强烈的吸收和散射光信号,因此在纳米粒子标记的生物体内成像效果非常突出。
3.治疗肿瘤近年来,纳米银颗粒因其优异的物理化学性质和生物学特性被广泛应用于肿瘤治疗。
研究表明,纳米银颗粒可以抑制肿瘤细胞增殖,并对肿瘤组织产生热效应,从而达到治疗作用。
第三章纳米银颗粒的应用前景随着纳米技术的不断发展,纳米银颗粒在医学、生物学、环境保护等领域有着广阔的应用前景。
纳米银颗粒在医药领域可以应用于抗菌材料、诊断成像和疾病治疗等方面,同时也可作为环境净化材料、电子材料、植物保护等领域的新兴应用。
总之,纳米银颗粒作为一种重要的纳米材料,在生物医学应用、环境治理等领域有着广泛的应用前景。
利用拉曼光谱研究纳米银颗粒的制备过程与机理:实验与模拟
利用拉曼光谱研究纳米银颗粒的制备过程与机理:实验与模拟一、实验结果与分析(一)纳米银颗粒的拉曼光谱表征通过对纳米银颗粒进行拉曼光谱分析,我们可以了解其制备过程中的结构演变和粒子尺寸分布。
实验中,我们采用了不同制备方法(如溶胶-凝胶法、水热法、光还原法等)制备了纳米银颗粒,并对其进行了拉曼光谱表征。
结果表明,不同制备方法得到的纳米银颗粒在拉曼光谱上有明显的差异,表现为峰位、峰形和强度等方面的变化。
(二)纳米银颗粒形貌与结构分析借助扫描电子显微镜(SEM)和透射电子显微镜(TEM),我们进一步分析了纳米银颗粒的形貌和结构。
实验结果显示,不同制备方法得到的纳米银颗粒形貌各异,如球形、立方形、树枝状等。
同时,拉曼光谱的结果也揭示了纳米银颗粒在制备过程中的结构演变,如晶格振动模式的变化等。
(三)纳米银颗粒光学性能研究通过紫外-可见吸收光谱和光致发光光谱(PL),我们探讨了纳米银颗粒的光学性能。
实验结果表明,纳米银颗粒在紫外-可见光谱中有明显的吸收边缘,且不同制备方法得到的纳米银颗粒吸收边缘位置和强度有所不同。
此外,光致发光光谱结果显示,纳米银颗粒在光激发下具有明显的发光现象,且发光强度与纳米银颗粒的尺寸、形状等因素密切相关。
二、模拟计算与讨论(一)纳米银颗粒的拉曼光谱模拟为了更深入地了解纳米银颗粒的拉曼光谱特性,我们采用了第一性原理计算方法对其进行了模拟。
模拟过程中,我们考虑了纳米银颗粒的晶格结构、原子间相互作用以及声子谱等因素。
结果显示,模拟光谱与实验光谱具有较好的一致性,证实了实验结果的可靠性。
(二)纳米银颗粒光学性能的模拟研究基于第一性原理计算,我们进一步模拟了纳米银颗粒的光学性能。
模拟结果显示,纳米银颗粒的光学吸收和发光性质与其尺寸、形状和晶格结构等因素密切相关。
此外,我们还发现纳米银颗粒在特定条件下具有潜在的光催化性能。
三、结论本研究通过实验和模拟计算相结合的方法,对纳米银颗粒的制备过程、结构、形貌和光学性能进行了系统研究。
纳米银一种制备方法
纳米银一种制备方法纳米银是一种具有很高的表面活性和较小颗粒大小的银颗粒。
它具有良好的电导性、抗菌性和光学特性,被广泛应用于电子、能源、生物医学等领域。
制备纳米银的方法有多种,下面我将介绍几种常见的制备方法。
1. 化学还原法化学还原法是最常见的制备纳米银的方法之一。
其中,多数方法采用还原剂将银离子(Ag+)还原成纳米银颗粒。
常用的还原剂包括氢氯化酸、乙醇、乙二醇和葡萄糖等。
首先在溶液中加入适量的还原剂,然后缓慢滴加银盐溶液,在搅拌的同时观察溶液颜色的变化。
当颜色由无色变为淡黄色或黄色时,说明纳米银颗粒已经形成。
最后,对溶液进行离心分离,用去离子水洗涤沉淀,通过重复洗涤和离心的过程来除去未反应的离子,最终得到纳米银颗粒。
2. 光还原法光还原法是一种利用光照作用将银盐还原成纳米银颗粒的方法。
通常使用紫外光或可见光照射含有银盐和表面活性剂的溶液。
在光照的作用下,银盐中的电子从价带跃迁到导带,与表面活性剂分子发生反应,形成纳米银颗粒。
光还原法制备的纳米银颗粒粒径较小,分散性好,被广泛应用于生物医学领域。
3. 剪切法剪切法是一种通过机械剪切作用将大尺寸的银片剪切成纳米尺寸的方法。
在实验中,通常将银片与特殊介质(如聚合物或液态介质)一起置于剪切设备中,并进行剪切操作。
在剪切的过程中,银片会发生剪切变形,由于表面的高能态,会形成纳米尺寸的微颗粒。
通过调节剪切时间和剪切速率等工艺参数,可以控制纳米银颗粒的尺寸和形态。
4. 电化学法电化学法是一种利用电化学反应制备纳米银颗粒的方法。
通常采用三电极系统,将含有银离子的电解液作为阳极溶液,银电极或其他符合要求的电极作为阴极。
施加合适的电压或电流后,阴极上的还原反应会将银离子还原成纳米银颗粒。
通过调节电化学参数,如电压、电流密度和电解液成分等,可以控制纳米银颗粒的大小和形态。
综上所述,纳米银的制备方法有化学还原法、光还原法、剪切法和电化学法等多种。
这些方法各有优缺点,可以根据需要进行选择,并通过调节反应条件来控制纳米银颗粒的尺寸和形态,以满足不同领域的需求。
纳米银的制备及其应用
纳米银的制备及其应用纳米银的制备及其应用1. 引言纳米材料的研究和应用正在成为当今材料科学领域的热点之一。
在此背景下,纳米银作为一种具有优异性能和多样应用的纳米材料,吸引了众多研究者的关注。
本文将介绍纳米银的制备方法以及其在各个领域中的应用。
2. 纳米银的制备方法2.1 物理法制备纳米银物理法制备纳米银的方法主要包括热蒸发法、气相沉积法和溅射法等。
热蒸发法通过将银材料加热至高温,使其蒸发并在冷凝器上沉积成纳米颗粒。
气相沉积法则是通过在气氛中蒸发银材料,使其在基底上沉积成薄膜,然后通过后处理制备纳米银。
溅射法是将固态的纯银靶材置于惰性气体环境中,在电场的作用下,使银离子从靶材上溅射出来,并在基底上沉积成薄膜。
2.2 化学法制备纳米银化学法制备纳米银的方法主要包括溶胶凝胶法、微乳液法和还原法等。
溶胶凝胶法是通过使银盐在溶剂中溶胀,然后通过热处理使其凝胶成纳米颗粒。
微乳液法则是通过调节表面活性剂和溶剂的比例,形成一个稳定的微乳液,然后通过还原剂还原金属离子生成纳米银颗粒。
还原法是通过还原剂对金属离子进行还原,生成纳米银颗粒。
3. 纳米银的应用3.1 导电材料纳米银由于其优异的导电性能,在导电材料领域有着广泛的应用。
例如,纳米银可用于制备导电油墨,用于印刷电路板和导电胶带中。
此外,纳米银还可用于制备电子元器件中的导电粘接剂和导电胶水。
3.2 抗菌材料纳米银具有广谱的抗菌活性,因此在抗菌材料的制备中得到广泛应用。
纳米银常被添加到纺织品、医疗材料和食品包装材料等中,以增强其抗菌性能并减少细菌滋生。
3.3 催化剂纳米银具有优异的催化活性,可用于有机反应和氧化反应等催化过程中。
纳米银被广泛应用于催化剂的制备,如催化剂载体、催化剂固定化等领域。
3.4 生物传感器纳米银在生物传感器领域有着重要的应用。
纳米银能够与生物分子发生特定的相互作用,可用于检测和监测生物分子的存在和浓度。
纳米银还可用于制备光学传感器、电化学传感器和表面增强拉曼光谱传感器等。
拉曼光谱与纳米银颗粒:制备与表征
拉曼光谱与纳米银颗粒:制备与表征一、纳米银颗粒的拉曼光谱表征(一)纳米银颗粒的制备与性质纳米银颗粒是一种广泛应用于催化、抗菌、光电等领域的纳米材料。
在本文中,我们主要关注纳米银颗粒的制备及其拉曼光谱表征。
首先,通过化学还原法合成纳米银颗粒。
将AgNO3溶液与还原剂(如葡萄糖、硼氢化钠等)混合,通过控制反应条件,如温度、浓度和反应时间等,得到不同形貌和尺寸的纳米银颗粒。
(二)纳米银颗粒的拉曼光谱表征利用拉曼光谱对纳米银颗粒进行表征,可以得到有关其结构、尺寸、形貌等信息。
首先,对纳米银颗粒进行拉曼光谱测试,得到其拉曼散射光谱图。
然后,通过分析光谱图中的特征峰,如Ag-Ag、Ag-O、Ag-N等,了解纳米银颗粒的结构和化学组成。
此外,通过对拉曼光谱进行高斯拟合,可以得到纳米银颗粒的尺寸和形状等信息。
(三)纳米银颗粒的拉曼光谱应用纳米银颗粒的拉曼光谱表征在材料科学、纳米技术等领域具有广泛的应用。
通过拉曼光谱,可以实现对纳米银颗粒的尺寸、形貌、晶体结构等参数的实时监测,为制备具有特定性能的纳米银颗粒提供实验依据。
此外,拉曼光谱还可以用于纳米银颗粒在催化、抗菌、光电等领域的性能评估,为实际应用提供理论支持。
二、结论本文对拉曼光谱与纳米银颗粒的制备与表征进行了详细综述。
首先,介绍了拉曼光谱的基本原理及其在纳米材料表征中的应用。
然后,重点讨论了纳米银颗粒的制备方法及其拉曼光谱表征,包括纳米银颗粒的制备与性质、拉曼光谱表征方法以及拉曼光谱在纳米银颗粒应用中的作用。
最后,总结了拉曼光谱在纳米银颗粒研究中的重要意义,为纳米银颗粒的制备和应用提供理论依据。
随着纳米技术的发展,拉曼光谱在纳米材料领域的应用将越来越广泛,为科学家们提供更多研究手段和实验依据。
纳米银材料的制备及应用研究
纳米银材料的制备及应用研究随着科技的不断创新和发展,许多新型材料也应运而生。
其中,纳米银材料因其出色的导电性和导热性,以及高度的反应活性和抗菌性,被广泛应用于许多领域,如生物医学、电子、环保等。
本文将介绍纳米银材料的制备方法和应用研究,以及未来的发展前景。
一、纳米银材料的制备方法纳米材料是指尺寸在1-100纳米之间的材料。
纳米银材料的制备方法有很多种,如化学还原法、电化学沉积法、蒸发凝结法、溶胶凝胶法等。
其中,化学还原法是制备纳米银材料的主要方法,其操作简单、成本低、适用性强,因而备受欢迎。
化学还原法制备纳米银材料的步骤如下:首先,将银离子加入还原剂中,如多聚乙烯吡咯烷酮(PVP)、聚乙二醇(PEG)等;其次,通过调节反应条件,如反应时间、反应温度、还原剂浓度等,使还原剂还原银离子,生成纳米银颗粒;最后,通过离心、滤液、洗涤等步骤,将得到的纳米银颗粒进行纯化和分散处理。
二、纳米银材料的应用研究1、生物医学领域纳米银材料在生物医学领域的应用主要体现在抗菌、治疗和诊断方面。
由于纳米银具有高度的反应活性和抗菌性,因此可以用于制备各种抗菌药物、医用敷料和外科器械等。
此外,纳米银还可以作为生物标记物和药物递送器,实现对细胞和组织的定向诊断和治疗。
2、电子领域纳米银材料在电子领域的应用主要体现在柔性电子器件、传感器和太阳能电池等方面。
由于纳米银具有出色的导电性和导热性,因此可以用于制备柔性电流传感器、透明电极和导电墨水等。
此外,纳米银还可以作为太阳能电池的透明电极,提高其能量转换效率。
3、环保领域纳米银材料在环保领域的应用主要体现在吸附、脱氮和脱硝等方面。
由于纳米银具有大比表面积和高度的活性表现,因此可以用于吸附重金属离子、去除氮氧化物和净化空气等。
此外,纳米银还可以作为抗菌剂和催化剂,降低环境污染和二氧化碳排放。
三、纳米银材料的发展前景纳米银材料具有广泛的应用前景和巨大的经济价值。
随着科技的不断创新和发展,纳米银材料在生物医学、电子、环保等领域的应用将会越来越广泛。
浅谈纳米银的制备及应用
会 产生 耐药 性 。用 纳米 银 和 精 梳 棉 纤 维 制 成 的棉 袜 ,具备 很 好 的 纳米 颗粒 的新 方法 。利 用微 乳 液 中 的 化学 反 应 生 成 固体 制 得 所 需 抗 菌 、防臭 的效果 。 的纳 米粒 子 ,可 以通 过 控 制 乳液 中水 的体 积 、各种 反应 物 的浓 度 1 .3 纳 米银 的特 点 。 ( 1 )纳 米 银 是 粉末 状 银 单 质 ,粒径 小 来控 制成 核 、生 长 ,获 得单 分 散 纳 米 银 。具 有- - 一 一 :_ - : : : : : : : : :
浅 谈 纳米 银 的制 备 及 应 用
刘齐鲁 董 立忠
( 山东科技大 学 山东 青 岛 2 6 6 5 1 0 )
摘 要 :在 大力 提倡 寻求 并制 备 新型材 料 的今天 ,纳 米银 作为 一种 重要 的新 型功 能材 料 ,有 着广 阔的应 用 前景 。近 几年 ,纳米 银这 种 金属 纳米 材料 因有 着特 殊 的应用 而成 为金 属 纳米材 料研 究 的重 点方 向 ,本 文综 述 了纳米 银 的制各 及 应用 ,并展 望 了纳 米银 制备 技 术 的研 究方 向和 前 景。
1 .2 纳 米银 的解 释 。纳 米 银 是将 粒径 做 到纳 米 级 的 金 属 银 生热 分解 反应 ,产 生 [ O H一] 和 [ H+] 等 活性 粒 子 ,利用 这 种 单 质 。纳米银 粒 径大 多在 2 5 n m 左右 ,对 大 肠杆 菌 、淋 球 菌 、沙 眼 方法 已经制备 出无 定形 金属 、氧 化物 、聚合 物等 纳米材 料 。 衣原 体 等数 十种致 病微 生 物 都 有 强 烈 的抑 制 和 杀 灭 作 用 ,而 且 不
利用拉曼光谱监测纳米银颗粒的制备过程
利用拉曼光谱监测纳米银颗粒的制备过程随着纳米科技的发展,纳米银颗粒因其独特的物理和化学性质在各种领域得到了广泛的应用。
然而,纳米银颗粒的制备过程对其性能和应用具有重要影响。
拉曼光谱作为一种表征手段,可以有效地监测纳米银颗粒的制备过程。
本文将探讨利用拉曼光谱监测纳米银颗粒制备过程的方法及应用。
一、纳米银颗粒的制备方法1.化学还原法:化学还原法是制备纳米银颗粒的常用方法,通过还原剂将Ag+还原为Ag。
常用的还原剂包括葡萄糖、果糖、乳酸等。
拉曼光谱可以用于监测还原剂与Ag+反应的过程,从而优化制备条件。
2.物理法:物理法包括溅射法、磁控溅射法、电化学沉积法等。
拉曼光谱可以用于监测制备过程中纳米银颗粒的生长速率、尺寸和形貌。
二、拉曼光谱在纳米银颗粒制备过程中的监测作用1.反应进程监测:拉曼光谱可以实时监测纳米银颗粒制备过程中的反应进程,如还原剂与Ag+的反应、纳米银颗粒的生长等。
通过观察拉曼光谱的变化,可以了解反应的进行程度和纳米银颗粒的生成情况。
2.颗粒尺寸和形貌分析:拉曼光谱具有很高的分辨率,可以对纳米银颗粒的尺寸和形貌进行表征。
通过拉曼光谱,可以了解纳米银颗粒的尺寸分布、形状、晶体结构等信息。
3.成分分析:拉曼光谱可以用于纳米银颗粒的成分分析,如银含量、杂质含量等。
这对于优化纳米银颗粒的制备过程和提高其性能具有重要意义。
三、拉曼光谱在纳米银颗粒应用领域的应用1.抗菌:纳米银颗粒因其良好的抗菌性能在医疗、食品等领域得到应用。
拉曼光谱可以用于监测纳米银颗粒抗菌性能的变化,从而优化其应用条件。
2.传感器:纳米银颗粒因其高的比表面积和良好的导电性在传感器领域具有广泛应用。
拉曼光谱可以用于监测传感器材料的制备过程,以提高其灵敏度和选择性。
3.光催化:纳米银颗粒在光催化领域具有很高的应用潜力。
拉曼光谱可以用于监测光催化材料的制备过程,从而优化其光催化性能。
总之,拉曼光谱作为一种有效的表征手段,在纳米银颗粒的制备过程中具有重要的监测作用。
纳米银材料制备及其应用研究
纳米银材料制备及其应用研究纳米科技是当今世界高科技领域的热点之一,而纳米材料则是纳米科技中的一个重要分支。
其中,纳米银材料因其在电子、光学、医学、生物工程等领域中的广泛应用而备受关注。
本文将探讨纳米银材料的制备方法及其应用研究。
一、纳米银材料制备方法1. 物理法物理法是制备纳米银材料的传统方法之一,其中包括化学气相沉积、离子束激发和溅射等。
这些技术在过去几十年中在纳米银材料的制备方面被广泛使用。
这些方法通常需要高温、高真空、高能量或其他特殊条件,因此昂贵和复杂。
2. 化学法化学法作为一种低成本、高效率的纳米银材料制备方法,近年来得到了广泛研究和应用。
其包括水相法、电化学法、微乳液法、溶胶-凝胶法、还原法等多种方法。
其中,水相法纳米银材料合成方法是一个重要的研究方向。
该合成方法在水中使用还原剂将银离子还原成纳米银粒子。
水相法具有体积大、高纯度、环保、质量稳定等优点。
此外,还原法是一种常用的纳米银材料制备方法。
该方法包括化学还原法、绿色还原法、生物还原法等。
其中,绿色还原法由于其对环境的友好性、产物的粒径分散性和产物的化学纯度而受到了广泛的研究和应用。
二、纳米银材料的应用研究1. 电子领域随着电子技术的进步,纳米银材料的应用在电子领域已经得到了大量的关注。
其中,银纳米线是近年来非常受欢迎的纳米银材料,具有很好的电导性和光学性能。
银纳米线可以用于制造透明导电薄膜,为透明电子器件提供基础材料,如柔性显示器、太阳能电池等。
此外,银纳米线还可以制造可拉伸的电子器件,为可穿戴电子设备提供新的可能性。
2. 医学领域纳米银材料在医学领域的应用主要包括治疗和诊断方面。
目前,纳米银材料被广泛地用于抗菌和抗肿瘤。
纳米银可以通过抑制微生物的生长来发挥其抗菌作用。
这项技术已经在消毒、防腐、医疗器械等应用中得到了广泛的应用。
此外,纳米银还可用于癌细胞治疗和生物成像,为临床诊断和治疗提供新的手段和可能性。
3. 环保领域纳米银材料在环保领域的应用也越来越受到关注。
纳米银
纳米银的制备方法及其应用纳米银材料具有很稳定的物理化学性能,在电学、光学和催化等方面具有十分优异的性能,现已广泛应用于陶瓷和环保材料等领域.目前,纳米银的研究仍是热点,应用前景较为广阔.1纳米银的制备纳米银的制备方法很多,分类方法也多种多样,如可按制备机理、反应条件和反应前驱体类别等进行分类.按制备机理可分为如下方法.1.1化学还原法化学还原法是制备纳米银最常用的方法之一.其原理是硝酸银和硫酸银等银盐与适当的还原剂如锌粉、水合肼、柠檬酸钠等在液相中反应,将Ag+还原为Ag,并生长为单质银颗粒.用化学还原法制备的纳米银的杂质含量较高,粒度分布宽,易团聚.因此,用化学还原法制备纳米银常需加入分散剂如聚乙二醇、聚乙烯吡咯烷酮、苯胺和甲醛磺酸萘钠盐等来降低银颗粒的团聚. 赵婷等人[1]用冠醚交联壳聚糖(CTSG)作吸附剂和保护剂,在水介质中用水合肼还原硝酸银制备了纳米银.在水合肼与硝酸银(浓度均为01mol/L)的摩尔比为61、CTSG用量为04g和40的条件下,制得粒径30~40nm的银颗粒.目前,绿色化学已逐渐成为化学领域的一个重要主题.制备金属纳米粒子的绿色化学的关键在于选择对环境友好的化学试剂和无毒的纳米粒子.Raveendran等人[2]用可溶性淀粉作模板,以D葡萄糖为还原剂,在水溶液中合成了纳米银粒子.他们认为这是制备金属纳米材料的一种绿色合成方法.Sun等人[3]以葡萄糖为原料在水热条件下制备了表面含有大量多糖基团的胶体碳球,并用这种碳球作模板制备了纳米银颗粒与碳球的核壳结构.12光还原法光还原法的机理是通过光照使有机物产生自由基,还原金属阳离子.HanMinghan等人[4]利用不同浓度的Ag+在TiO2上进行光还原反应,制备了纳米银载量不同的Ag/TiO2褐色样品,在TiO2表面的银粒子粒径小于10nm.Li等人[5]用紫外线照射硫酸银和聚丙烯酸(配位稳定剂和表面活性剂)的混合液,制成了配位稳定的纳米银颗粒蓝色胶体,将这些胶体电泳沉积,制得类似球形的配位稳定的纳米银颗粒沉积体.Zhou等人[6]以聚乙烯醇为保护剂,用紫外光辐照硝酸银溶液,制得银纳米棒和树枝状纳米晶体.13电化学法电化学法具有简单、快速、无污染等优点,是合成纳米材料的一种有效方法.ZhuJ J等人[7] 研究了在超声波辅助作用下,从含有EDTA的AgNO3水溶液中电化学沉积银纳米线.在溶液温度为30、超声波为50Hz和100W的条件下,控制沉积电流不变,可得到直径约40nm、长度大于6m的纳米线;控制阴极电极电位为-03V(相对于SCE),可得到直径约80nm、长度大于15m的纳米线.廖学红等人[89]用电化学方法以N羟乙基乙二胺N,N,N三乙酸为配位剂,制备出树枝状纳米银.研究发现,配体对纳米粒子的形成起着非常关键的作用,而且在配体存在的条件下用电化学法制备纳米银是一种简单、无污染的方法.同时,他们还用超声电化学方法以EDTA为配位剂,用AgNO3溶液制备出两种粒径的类球形和树枝状纳米银.随后,他们又用10mA电流电解AgNO3溶液,在配位剂(1g柠檬酸或013g半胱氨酸)存在的条件下制备出树枝型纳米银[10].14激光烧蚀法用激光照射金属表面制备化学纯净的金属胶体,即为激光烧蚀法.此法避免了其他方法如化学氧化还原法中电离出的阴离子或阳离子等杂质的影响.杜勇等人[11]利用Nd YAG激光器以波长1064nm的激发光照射金属银表面,通过控制光照时间,制备出5~20nm的银胶体粒子.照射时间低于25min时,所制备的胶体粒子为5~35nm.在实验过程中很少观测到处于凝聚状态的银胶颗粒,将所制得的银胶体放置数周也未出现聚沉物,说明用该法所制备的银胶体的稳定性较好.TsujiTakeshi等人[12]用飞秒波长800nm的激光脉冲照射水中的银片制得纳米银胶,后用纳秒激光脉冲照射也制得了纳米银胶.将这两者进行比较发现,用纳秒激光脉冲照射制银胶的效率比用飞秒激光脉冲照射高,而且银胶的分散性较好.另外,无论是飞秒激光脉冲还是纳秒激光脉冲,对空气中银的烧蚀效率都比对水中银的烧蚀效率高.15化学电镀法金属纳米线在超大集成电路和光导纤维等领域中有潜在的应用价值.用模板组装的纳米线阵列具有设备简单和成本低廉的特点.王银海等人[13]以铝阳极氧化形成的有序多孔氧化铝为模板,利用交流电在模板孔洞中沉积银得到纳米银粒子/Al2O3组装体系.经过分析,交流电能使金属沉积在孔洞中的原因是Al/Al2O3界面的整流特性.迟广俊等人[14]以多孔铝阳极氧化膜(Al2O3/Al)为模板,采用交流电沉积的方法制备了平均长度约5m、直径25nm的银线,纳米银线在Al2O3/Al孔内互相平行,显示凸凹相间的条纹结构.电子衍射(SAED)证实,该纳米银线为面心立方(FCC)的多晶结构.16辐射法在射线的辐照下,水和乙醇等溶剂可产生具有很强还原能力的溶剂化电子,将金属离子还原成金属单质.利用射线的这一特点可将溶液中的银离子还原.陈祖耀等人[15]在005mol/LAgNO3溶液中加入适量的异丙醇和聚乙烯醇或其它表面活性剂和添加剂,用7104居里的Co60射线源辐照,制得粒径分布比较均匀、平均粒径10nm的银颗粒,其粒子结构形态趋于各向异性树枝状.Zhu等人[16]用射线和水热处理相结合的方法,制备出平均粒径约8nm的银颗粒.熊金钰等人[17]以硝酸银为银源,聚乙烯醇(PVA)为稳定剂,利用超声波的空化作用,制备出纳米银及其分形生长的有序体.17微乳液法该法是将表面活性剂溶解在有机溶剂中,当表面活性剂浓度超过临界胶束浓度(CMC)时,形成亲水极性头向内、疏水有机链向外的液体颗粒结构,其内核可增溶水分子或亲水物质.微乳液一般由表面活性剂、助表面活性剂(一般为脂肪醇)、有机溶剂(一般为烷烃或环烷烃)和水4种组分组成.它是一种热力学稳定体系,可合成大小均匀、粒径为10~20nm的液滴.该方法具有装置简单、操作容易、粒子可控、不易团聚等优点.根据油和水的比例,可以将微乳液分为正相(OPW)、反相(WPO)和双连续相微乳液体系,其中WPO微乳液体系适用于无机纳米粒子的制备.路林波等人[18]将环己烷、异戊醇、十二烷基硫酸钠(SDS)和水以一定比例混合,制成均匀透明、热力学性质稳定的反相微乳液体系.然后将一定浓度的银铵盐和水合肼溶液按等体积分别加入上述反相微乳液中,常温下制得20~30nm黑色纳米银粒子.Rong等人[19]用环己烷作溶剂,聚环氧乙烯基壬苯醚作表面活性剂,与银盐水溶液混合制成微乳液及用同样的方法制得NaBH4微乳液.将上述两种乳液混合,当反应进行到一定时间后,离心分离制得纳米银.18晶种法这种方法是以纳米粒子为晶种,在晶种表面用还原剂还原银离子,制得纳米银粒子.在还原过程7第2卷第1期殷焕顺,等:纳米银的制备方法及其应用中,可通过控制晶种和银离子的比例来控制所制得的银粒子粒径.邹凯等人[20]以柠檬酸钠和NaBH4为还原体系还原AgNO3,制得粒径(42)nm的银粒子.以该纳米银为晶种制成悬浮液,将其加入3mL的1mmol/L硝酸银和2mmol/L聚乙烯吡咯烷酮(Mw=58000)溶液中,然后置于15W低压汞灯(=25317nm)下照射48h,可制备出直径50~120nm、长度约50m的银纳米线及树枝状的纳米银.赵彦保等人[21]用水合肼还原硝酸银,在聚乙烯吡咯烷酮存在的条件下,通过控制反应条件制备出粒径均一、有良好分散性的银纳米微粒,并以此为种子,在十六烷基三甲基溴化铵的棒状胶束环境中制备出银纳米棒和纳米线.2纳米银的应用21抗菌材料随着生活水平的提高,人们对健康安全的生活方式愈来愈关注.研发高效无(低)毒的抗菌剂是一个既有社会意义又有经济意义的课题.银离子具有突出的杀菌效果和安全性,在无机抗菌剂中常作为抗菌成分.由于银的成本高及银离子的化学性能不稳定,因此,影响了其应用.抗菌陶瓷是一种功能性新材料,是在制陶的原料中,特别是在陶瓷釉中加入无机抗菌剂制成.刘维良等人[22]采用液相共沉淀法制得纳米磷酸锆载Ag抗菌粉体材料.当该抗菌剂在日用陶瓷釉中的质量分数达到21%时,抗菌陶瓷餐具的抗菌率可达9919%以上,而且对日用陶瓷的生产工艺、技术性能和微观结构的影响不大,其性能指标均符合国家日用陶瓷质量标准的要求.保鲜膜能够控制储藏环境的气体和湿度,延缓果蔬的采后衰老.利用纳米技术,可以使常规保鲜膜具备调气、保湿和防霉等多种功效.李喜宏等人[23]以常规LDPE保鲜膜配方的组分为载体,添加银系纳米材料母粒,研制出含银粒径40~70nm的防霉保鲜膜,通过缓释溶出的Ag+阻止微生物酶的合成.纳米银对常见的食品污染菌也有抑制作用.刘伟等人[24]研究了纳米银对几种常见细菌、酵母菌、霉菌等菌种的抑制作用.结果表明,纳米银对供试菌种有明显的抑制作用;在试验浓度的条件下,对革兰氏阳性菌的抑制作用最强,对革兰氏阴性菌抑制的作用次之,对酵母菌和霉菌的抑制作用最弱.在作用时间相同的条件下,纳米银浓度越高,抑菌率越高.在纳米银浓度相同的条件下,作用时间越长,抑菌率越高.纳米银有良好的热稳定性,经高温处理后仍然有良好的抑菌效果.22催化作用纳米银可以用作多种反应的催化剂.HanMinghan等人[4]通过真空蒸镀法制备了用于光催化还原离子的沉积纳米银的TiO2.在蚁酸存在的条件下,光催化剂TiO2和Ag/TiO2对还原Se()都有效.只是使用没有修饰的TiO2光催化剂时,在Se()被完全还原为Se后,还需进一步将Se 还原为以H2Se形式存在的Se2-.而使用Ag/TiO2催化剂时,Se()被还原为Se,同时还生成H2Se,在pH=315时还原率最高.这说明纳米银极大地加强了Se粒子的电子强度,并通过Se的自还原生成H2Se.Li等人[25]通过考察纳米级复合催化剂Ag/H ZSM S在CH4选择还原NO反应中的活性和选择性发现,当催化剂中纳米银质量分数高于7%时,NO转化率显著提高.这表明,分子筛外表面纳米银的存在提高了银催化剂在CH4选择还原NO反应中的活性.在聚苯乙烯和聚甲基丙烯酸甲酯的激光离解反应过程中,加入纳米银粒子后,导致聚合物炭化,在界面诱导产生石墨化作用;同时纳米银粒子与聚甲基丙烯酸甲酯的界面发生反应,改变了粒子对激光能量的转化方式,减弱了其激光炭化作用.总之,纳米银粒子的加入改变了聚合物体系对激光能量的吸收和转换方式,导致其激光离解发生变化.23在修饰电极中的应用纳米银粒子具有比其他纳米粒子更为优异的导电性能和电催化性能.因此,研究纳米银粒子修饰电极具有重要的意义.任祥忠等人[26]采用电化学方法在AgNO3的柠檬酸水溶液中制备了纳米银,并以所制备的纳米银和接枝酪蛋白为复合载体,制备了葡萄糖氧化酶电极.该电极的线性响应范围1010-6 ~1510-2mol/L,响应时间为12s,并且重现性和选择性好.李茂国等人[27]用共价修饰法制备了纳米银修饰的金电极.该修饰电极对灿烂甲酚蓝(BCB)的电化学氧化还原有较强的催化作用,氧化峰电流与8材料研究与应用2008BCB浓度在4010-7~2110-4mol/L范围内成线性关系,检出限为1510-8mol/L.后来,他们[28]用经纳米银修饰的玻碳电极进行痕量硫氰根的检测.在pH=60的磷酸盐缓冲溶液中,采用示差脉冲伏安法测得,氧化峰电流和硫氰根浓度在5010-7~4010-4mol/L范围内成良好的线性关系,检出限为413710-8mol/L.将此修饰电极用于测定吸烟和非吸烟人的唾液中痕量硫氰根,结果与光度法测定值基本一致.24在生物材料方面的应用基因诊断和生物传感器发展的一大进步就是功能化的纳米银粒子及其相结合的使用.DNA生物传感器包含了DNA探针的生物识别过程和与之相适应的生物亲合力反应的换能器,换能器的功能是将固定化的单链或双链DNA杂交信号转换成可识别或能测量的信号.纳米金和银粒子所产生的局域表面等离子体共振光谱或所具有的电学性能,成为各种新型的、能把生物识别反应转换成放大的光学或电学信号装置的基础.R P VanDuyne等人[29]的研究证明:将掩膜上沉积的尺寸和形状均匀的银粒子限定在一个足够大的、间距固定的表面上,可使它们独立起作用,而不是作为一个阵列,并且环绕粒子的介电环境比较容易控制.他们将小生物分子修饰的三角形纳米银粒子用于病床护理和医学诊断的纳米生物传感器,使其得以进一步发展.J Wang等人[30]提出了电化学溶出检测DNA杂交的间接法:把涂有抗生蛋白链菌素的磁性胶乳微球连接到DNA探针上,在探针同靶核酸杂交之后,再把涂有抗生蛋白链菌素的直径20nm金粒子连接到这个生物共轭靶上,然后将银离子沉积在纳米金粒子上,最后用HBr Br2溶解银,并于薄膜碳电极上恒电位溶出测定银而间接求得靶DNA量.该方法能够在10L杂交溶液中(20min的杂交连接)检测出10pmol的乳腺癌DNA基因片段.功能化的纳米银粒子具有明显的增强作用和良好的生物相容性,易同DNA分子杂交结合.这些性质成为它们在生物传感器中应用的基础,也为DNA计算机的开发带来了光明的前景,是生命科学中分析化学研究的重要组成部分和当今发展的重点领域.25在光学领域的应用纳米银可用作表面增强喇曼光谱(SERS)的基质[31],实验证明SERS的获得与吸附分子的电性和纳米银的表面电性有关.选取电性合适的纳米银,可以获得较强的SERS,进而扩大SERS的研究范围.由于纳米银粒子表面等离子振荡吸收峰附近具有超快的非线性光学响应,科学家发现把纳米银掺杂在半导体或绝缘体中,可获得较大的非线性极化率,利用这一特性可制作光电器件,如光开关、高级光学器件的颜色过滤器等.3结论纳米银的制备方法很多,但各有优缺点.采用现有的方法,已合成出多种粒径的球形纳米银粒子和各种颜色的纳米银溶胶,也合成出纳米银线和树枝状的具有一定空间结构的银纳米材料等.随着科技的进步,未来的纳米银生产技术将向成本低、消耗低、污染低的方向发展.在现有的制备方法中,具有独特的技术和成本优势的生物还原法将可能成为未来纳米银生产技术的突破口,寻找新的对银具有较强还原能力的菌种并优化其还原条件,将是这种新技术的主要发展方向.参考文献:[1]赵婷,戴红,肖尧,等.冠醚交联壳聚糖吸附原位还原制备纳米银[J].中国皮革,2006,35(9):2629[2]RAVEENDRANP,FUJ,WALLENSL Completely greensynthesisandstabilizationofmetalnanoparticles[J].JournaloftheAmericanChemicalSociety,20 03,125:1394013941[3]SUNX,LIY Colloidalcarbonspheresandtheircore/shellstructureswithnoble metalnanoparticles[J].An gewandteChemieInternationalEdition,2004,4 3(5):597601[4]HANMH,LINHF,YUANYH,etal Pressuredropfortwophasecounter currentflowinapackedcol umnwithanovelinternal[J].ChemicalEngineeri ngJournal,2003,94(3):171260[5]LIHX,LINMZ,HOUJG Electrophoreticdepositionofligand stabilizedsilvernanoparticlessynthesizedbytheprocessofphotochemicalreduction[J].Jour nalofCrystalGrowth,2000,212:222226[6]ZHOUY,YUSH,WANGCY,etal Anovelultravi oletirradiationphotoreductiontechniquefortheprepara tionofsingle crystalAgnanorodsandAgden drites[J].AdvancedMaterials,1999,11(10):8508529第2卷第1期殷焕顺,等:纳米银的制备方法及其应用[7]ZHUJJ,QIUQF,WANGH,etal Synthesisofsilver nanowiresbyasonoelectrochemicalmethod[J].InorganicChemistryCommunications,2002,5(3):242 244[8]廖学红,李鑫.电化学制备纳米银[J].黄冈师范学院学报,2001,21(5):5859[9]廖学红,赵小宁,邱晓峰,等.类球形和树枝状纳米银的超声电化学制备[J].南京大学学报:自然科学版,2002,38(1):119123[10]廖学红,朱俊杰,赵小宁,等.纳米银的电化学合成[J].高等学校化学学报,2006,12(21):18371839[11]杜勇,杨小成,方炎.激光烧蚀法制备纳米银胶体及其特征研究[J].光电子激光,2003,14(4):383386[12]TSUJIT,KAKITAT,TSUJIM Preparationofnano sizeparticlesofsilverwithfemtosecondlaserablationinwater[J].AppliedSurfaceScience,2003,206(1 4):314320[13]王银海,牟季美,蔡维理,等.交流电在Al2O3模板中沉积金属机理探讨[J].物理化学学报,2001,17(2):116118[14]迟广俊,姚素薇,范君,等.银纳米线的TEM表征[J].物理化学学报,2002,18(6):532535[15]陈祖耀,朱英杰,陈敏,等.射线辐照制备金属和金属氧化物纳米级超细粉[J].化学通报,1996(1):4445[16]ZHUYJ,QIANYT,ZHANGMW,etal Preparation ofnanocrystallinesilverpowdersby rayradiationcom binedwithhydrothermaltreatment[J].Materi alsLetters,1993,17:314318[17]熊金钰,徐国财,吉小利,等.纳米银的超声合成及分形研究[J].安徽理工大学学报,2004,24(3):6972[18]路林波,陈建中,高绍康,等.反相微乳液法制备纳米金属银粉[J].福州大学学报,2004,32(2):208211[19]RONGM,ZHANGM,LIUH Synthesisofsilver nanoparticlesandtheirself organizationbehaviorinepoxyresin[J].Polymer,1999,40:61696178[20]邹凯,张晓宏,吴世康,等.光化学法合成银纳米线及其形成机理的研究[J].化学学报,2004,62(18):17711774[21]赵彦保,刘锦,娄云鹏,等.银纳米晶体的制备与表征[J].化学研究,2005,16(4):5254[22]刘维良,陈汴琨.纳米抗菌粉体材料的制备与应用研究[J].江苏陶瓷,2002,35(1):912[23]李喜宏,陈丽,关文强,等.PE/纳米银防霉保鲜膜研制[J].食品科学,2002,23(2):129132[24]刘伟,张子德,王琦,等.纳米银对常见食品污染菌的抑制作用研究[J].食品研究与开发,2006,27(5):135137[25]LIZ,MARIAFS OnthepromotionofAg ZSM5by ceriumfortheSCRofnobymethane[J].JournalofCa talysis,1999,182:31332。
《纳米银的制备及其在电化学传感器中的应用》范文
《纳米银的制备及其在电化学传感器中的应用》篇一一、引言随着纳米技术的不断发展,纳米材料在诸多领域展现出独特的性能和应用潜力。
其中,纳米银作为一种重要的纳米材料,因其优异的导电性、良好的生物相容性以及独特的表面效应,在电化学传感器领域得到了广泛的应用。
本文将详细介绍纳米银的制备方法,并探讨其在电化学传感器中的应用。
二、纳米银的制备纳米银的制备方法主要包括物理法、化学法和生物法。
其中,化学法因其操作简便、成本低廉等特点,得到了广泛的应用。
1. 化学法制备纳米银化学法制备纳米银主要利用还原剂将银离子还原为银原子,进而形成纳米银。
常见的还原剂包括硼氢化钠、抗坏血酸、银氨溶液等。
在制备过程中,通过控制反应温度、浓度、时间等参数,可以获得不同形状、尺寸的纳米银。
2. 其他制备方法除了化学法,还有物理法和生物法可以制备纳米银。
物理法主要包括真空蒸发、激光烧蚀等;生物法则利用微生物、酶等生物分子进行还原反应。
这些方法各有优缺点,在实际应用中需根据需求选择合适的制备方法。
三、纳米银在电化学传感器中的应用电化学传感器是一种将化学信号转换为电信号的装置,广泛应用于环境监测、生物医学等领域。
纳米银因其优异的导电性和良好的生物相容性,在电化学传感器中发挥着重要作用。
1. 纳米银在电极修饰中的应用纳米银可以用于修饰电极表面,提高电极的导电性和敏感度。
通过将纳米银与其他材料(如碳纳米管、石墨烯等)复合,可以进一步提高电极的性能。
修饰后的电极具有更好的响应速度和检测灵敏度,能够实现对目标物质的快速、准确检测。
2. 纳米银在电化学传感器信号放大中的应用纳米银具有良好的催化性能,可以用于放大电化学传感器的信号。
通过将纳米银与其他催化剂(如酶、抗体等)结合,可以实现信号的放大和增强。
这有助于提高电化学传感器的检测范围和灵敏度,从而实现对低浓度目标物质的检测。
四、结论纳米银作为一种重要的纳米材料,在电化学传感器领域具有广泛的应用前景。
纳米银的制备及应用
纳米银的制备及应用随着技术的不断进步,人们对纳米材料的研究变得越来越深入,而纳米银作为一种广泛应用于各个领域的纳米材料,备受科学家们的关注。
本文将介绍纳米银的制备方法以及在不同领域的应用。
一、纳米银的制备方法目前,制备纳米银的方法主要分为两大类:物理方法和化学方法。
物理方法主要包括电子束物理气相沉积法(E-Beam PVD)、热蒸发气体凝聚法(TEGC)、电弧等离子体法(Electric Arc Inert Gas Condensation)等。
这些方法通常需要高昂的设备成本,并且制备出来的纳米银颗粒分布不均匀,或者表面有氧化、硫化等问题。
化学方法则包括化学还原法、微波辅助化学法、光化学还原法等。
化学方法简单易行,成本低廉,并且生成的纳米银颗粒尺寸分布均匀,表面质量也较好。
其中,化学还原法是目前应用最广泛的一种方法,其步骤包括将一种银盐与一种还原剂混合,随后加热并搅拌,以获得纳米银颗粒。
二、纳米银的应用1. 医疗领域纳米银作为一种有杀菌、消炎功能的材料,在医疗领域应用广泛。
纳米银的抗菌效果已经得到多项研究的证实,因此被广泛应用于制备抗菌绷带、护士衣、手术器械等。
此外,纳米银还可以制备出一种叫做“纳米银水”的消毒剂,可以杀死多种细菌,并且没有任何副作用。
2. 环保领域纳米银还可以应用于环保领域,例如制备光触媒以净化空气、消除异味。
同时,纳米银还可以制备成一种叫做“银离子水”的材料,这种水可以杀死水中的细菌、病毒等微生物,在水处理、饮用等方面具有广泛的应用前景。
3. 电子领域纳米银在电子领域的应用十分广泛,例如制备导电材料、柔性电路、纳米电子器件等。
纳米银作为一种良好的导电材料,可以被应用在电池、电容器、传感器等设备中。
4. 食品领域在食品加工中,纳米银也可以发挥一定的作用。
例如,将纳米银溶液喷洒在食品的表面上,可以起到温和消毒的作用,减少食品变质的可能性。
总之,纳米银作为一种具有杀菌、消炎、导电、光触媒等特性的纳米材料,在各个领域都有着广泛的应用前景。
纳米银的制备及其应用
段志 伟等E3 用 自 研 制 的直 流 电弧 等离 子 me h d,e e to h m i lr d c i n me h d,p o o h m i lr d c i n me h d a d S n a e r v e d u t to o lcr c e c e u t t o a o h t c e c e u t t o n O o r e iwe .Th p a o ea —
纳米银 制备方法 应用
述 了纳米 银 在 催 化 反 应 、 菌领 域 及 导 电 等领 域 的应 用 , 抗 并展 望 了纳 米银 粉 制 备技 术 的研 究发 展 方 向 。
Pr pa a i n a d App i a i n o n - iv r e r to n lc to fNa o s l e
得到 了平均 粒径 约 为 2 n 的银 颗 粒粉 末 。杜 勇 等[ 利 用 0m 8
N Y G激 光 器 以波 长 16 n 的激 发 光 照 射 金 属银 表 d: A 04m 面, 通过控 制光照 时间 , 制备 出 5 0 m 的银胶体 粒子 ,  ̄2n 照射
时间少 于 2 mi , 制 备 的胶 体粒 径 为 5 5 m; 时很 5 n时 所 ~3 n 同
备 制备 的银 粉纯净无 污染 , 多 晶型结 构 , 属 呈球 链状 形 态 , 平
均粒 径在 3  ̄20 m 范 围内 , 8 2n 粒径 分布 窄 , 最大 产率 比 同类 研究 结果 提高 了近 1 倍 。魏智 强等 l 采用 阳极 弧放 电等离 7 _ 1 妇 子体 蒸发冷 凝法 制备 银 纳米 粉末 , 最佳 工 艺参 数 下 ( 在 热功
三角板纳米银的研究进展
摘要近年来,纳米技术在各领域获得广泛应用,其应用范围不断扩大,其中三角板状纳米银是一种研究热点。
本文主要介绍三角板纳米银的制备方法及其在生物医学、环境污染控制、食品保鲜等领域的应用研究进展。
关键词:纳米银;三角板;制备方法;生物医学;环境污染控制;食品保鲜一、引言纳米技术是一种新兴技术,它具有广泛的应用前景。
纳米技术的最大特点就是能够发挥材料的本质性能,改变材料的物理、化学性质,从而创造出新的材料。
纳米银是具有广泛应用前景的一种纳米材料,因为它具有良好的抗菌、导电性能和催化性能。
其中,三角板状纳米银是一种研究热点。
它具有大比表面积,高稳定性,易于分散等优点,已被广泛应用在生物医学、环境污染控制、食品保鲜等领域。
本文将对三角板纳米银的制备方法、物理化学性质和应用研究进展作一综述。
二、三角板纳米银的制备方法目前,制备三角板纳米银的方法繁多,可分为物理、化学、生物法等方法。
物理法主要有热气相法、溅射法、水相法、等离子激发法等。
热气相法是通过控制反应条件来制备纳米银,但是该方法需要高温高压下反应,制备过程复杂且不易控制。
溅射法是将固态目标材料置于真空室中,通过高能量电子轰击离子化并沉积在基底上,该方法容易受成分不均匀等因素影响,且成本较高。
水相法是将金属盐溶液中的金属离子还原为金属纳米材料,该方法成本较低,制备过程简单,但是颗粒分散不均匀、固定颗粒尺寸难度大等问题仍待解决。
等离子激发法是将高能量电子加速到固体目标表面,使其挥发产生等离子体,形成三角状银纳米结构。
化学法包括还原法、阳离子法、微乳液法、微波法等。
还原法是最常用的制备纳米银的方法之一,通过还原剂将金属离子还原成金属纳米颗粒,该方法简单易行,但仍存在颗粒分散度不均匀和产生污染等问题。
阳离子法是通过阳离子聚合体与阳离子表面活性剂协同还原剂来制备高质量的三角板状纳米银,该方法制备过程稳定,且可控性强。
微乳液法是将混合两个不相容的溶剂,一个是水溶液,另一个是非极性有机溶剂,形成胶束,将形成的胶束作为微反应器,制备银纳米颗粒。