随机模拟,蒙特卡洛方法

合集下载

随机模拟

随机模拟

随机模拟(蒙特卡罗算法)一 随机模拟法随机模拟法也叫蒙特卡罗法,它是用计算机模拟随机现象,通过大量仿真试验,进行分析推断,特别是对于一些复杂的随机变量,不能从数学上得到它的概率分布,而通过简单的随机模拟就可以得到近似的解答。

M onte Carlo 法也用于求解一些非随机问题,如重积分、非线性方程组求解、最优化问题等。

需要指出的是,Monte Carlo 计算量大,精度也不高,因而主要用于求那些解析方法或常规数学方法难解问题的低精度解,或用于对其他算法的验证。

蒙特卡罗方法的基本思想是:当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。

在解决实际问题的时候应用蒙特·卡罗方法主要有两部分工作: 用蒙特卡罗方法模拟某一过程时,需要产生各种概率分布的随机变量。

用统计方法把模型的数字特征估计出来,从而得到实际问题的数值解。

使用蒙特卡罗方法进行分子模拟计算是按照以下步骤进行的:使用随机数发生器产生一个随机的分子构型。

对此分子构型的其中粒子坐标做无规则的改变,产生一个新的分子构型。

计算新的分子构型的能量。

比较新的分子构型于改变前的分子构型的能量变化,判断是否接受该构型。

若新的分子构型能量低于原分子构型的能量,则接受新的构型。

若新的分子构型能量高于原分子构型的能量,则计算玻尔茲曼常数,同时产生一个随机数。

若这个随机数大于所计算出的玻尔兹曼因子,则放弃这个构型,重新计算。

若这个随机数小于所计算出的玻尔兹曼因子,则接受这个构型,使用这个构型重复再做下一次迭代。

如此进行迭代计算,直至最后搜索出低于所给能量条件的分子构型结束。

二 随机模拟法应用实例考虑二重积分(,)AI f x y dxdy =⎰⎰,其中(,)0,(,)f x y x y A ≥∀∈根据几何意义,它是以(,)f x y 为曲面顶点,A 为底的柱体C 的体积。

蒙特卡洛随机模拟

蒙特卡洛随机模拟

蒙特卡洛随机模拟蒙特卡洛模拟法简介蒙特卡洛(Monte Carlo)方法是一种应用随机数来进行计算机摸你的方法。

此方法对研究对象进行随机抽样,通过对样本值的观察统计,求得所研究系统的某些参数。

作为随机模拟方法,起源可追溯到18世纪下半叶蒲峰实验。

蒙特卡洛模拟法的应用领域蒙特卡洛模拟法的应用领域主要有:1.直接应用蒙特卡洛模拟:应用大规模的随机数列来模拟复杂系统,得到某些参数或重要指标。

2.蒙特卡洛积分:利用随机数列计算积分,维数越高,积分效率越高。

蒙特卡洛模拟法求解步骤应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。

解题步骤如下:1.根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。

通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。

3. 根据概率模型的特点和随机变量的分布特性,设计和选取合适的抽样方法,并对每个随机变量进行抽样(包括直接抽样、分层抽样、相关抽样、重要抽样等)。

4.按照所建立的模型进行仿真试验、计算,求出问题的随机解。

5. 统计分析模拟试验结果,给出问题的概率解以及解的精度估计。

在可靠性分析和设计中,用蒙特卡洛模拟法可以确定复杂随机变量的概率分布和数字特征,可以通过随机模拟估算系统和零件的可靠度,也可以模拟随机过程、寻求系统最优参数等。

一. 预备知识:1.随机数的产生提示:均匀分布(0, 1)U 的随机数可由C 语言或Matlab 自动产生,在此基础上可产生其他分布的随机数. 2.逆变换法:设随机变量U 服从(0,1)上的均匀分布,则)(1U F X -=的分布函数为)(x F . 步骤:(1) 产生)1,0(U 的随机数U ;(2) 计算)(1U F X -=, 则X 服从)(x F 分布. 问题:练习用此方法产生常见分布随机数.例如“指数分布,均匀分布),(b a U ”.还有其它哪种常见分布的随机数可用此方法方便产生? 3.产生离散分布随机数已知离散随机变量X 的概率分布:)2,1(,)( ===K P x X P k k ,产生随机变量X 的随机数可采用如下算法:a) 将区间[0.1]依次分为长度为 ,,21p p 的小区间 ,,21I I ;b) 产生[0,1]均匀分布随机数R ,若k I R ∈则令k x X =,重复(b),即得离散随机变量X 的随机数序列.问题:(1) 下表给出了离散分布X 的概率分布表,试产生100个随机数.X 的概率分布表(2) 用此方法给出100个二项分布(20, 0.1)B 的随机数及10个泊松分布P(1)的随机数. 4. 正态分布的抽样提示:设21,U U 是独立同分布的)1,0(U 变量,令)2sin()ln 2()2cos()ln 2(22/11222/111U U X U U X ππ-=-=则1X 与2X 独立 ,均服从标准正态分布. 步骤:(1) 由)1,0(U 独立抽取1122,U u U u ==(2) 用(*)式计算21,x x .用此方法可同时产生两个标准正态分布的随机数.问题: 有关随机数产生方法很多,查阅相关材料进行系统总结.二. 随机决策问题1.某小贩每天以一元的价格购进一种鲜花,卖出价为b 元/束,当天卖不出去的花全部损失,顾客一天内对花的需求量是随机变量, 服从泊松分布,(),0, 1, 2,,!kP X k ek k λλ-=== .其中常数λ由多日销售量的平均值来估计, 问小贩每天应购进多少束鲜花?(准则:期望收入S(u)最高) 问题:(1) 在给定 1.25, 50b λ==的值后, 画出目标函数S(u)连线散点图, 观察单调性,给出最优决策*u ;(2) 选取其他的λ,b ,再观察S(u)的单调性;(3) 用计算机模拟方法来求出最优决策*u .对固定的u ,例如,u=40,对随机变量X 模拟100次,每次模拟得到一个收入,求出100个收入的平均值,即得到在决策u=40情况下的可能收入;(4) 对所有的可能的u ,重复(3),从中找最大的,并与(1)的结果相比较. 3.一重定积分的蒙特卡罗算法问题描述:假设函数()f x 在[,]a b 内有界连续,且()0f x ≥,求解定积分()baI f x dx =⎰.为计算出其值,可构造概率模型如下:取一个边长分别为b a -和c 的矩形D ,使曲边梯形在矩形域之内,如图2,并在矩形内随机投点,假设随机点均匀地落在整个矩形之内,则落在图中灰色区域内的随机点数k 与投点总数N 之比k/N 就近似地等于曲线下方面积(即阴影面积)与矩形面积之比,从而得出近似积分()kI b a c N≈-.图2例 求211x e--⎰由于2x e -是非初等函数,我们很难求出其原函数,所以用牛顿-莱布尼茨公式无法求解,但可以运用蒙特卡罗方法求出其近似值.将上述方法推广到一般情况:假设函数()f x 在[a ,b]内有界连续,对于定积分()baI f x dx =⎰,为计算出其值,可构造如下概率模型:取一个边长分别为b a -和c d -的矩形D ,使曲线[,]a b 段的值在矩形域之内,如图3,并在矩形内随机投点,假设随机点均匀地落在整个矩形之内,则落在图中x 轴上下灰色区域内的随机点数m 与n 的差与投点总数p 之比(m-n)/P 就近似地等于曲线上下方面积之差(即阴影面积之差)与矩形面积之比,从而得出近似积分()()m nI b a c d P-≈--.图34. 二重积分的蒙特卡罗算法问题描述:实际计算中常常要遇到如(,)Df x y dxdy ⎰⎰的二重积分,发现被积函数的原函数往往很难求出,或者原函数根本就不是初等函数,对于这样的重积分,蒙特卡罗方法也有成熟的计算方法. 方法1: 步骤:1,取一个包含D 的矩形区域Ω:,a x b c y d ≤≤≤≤,面积()()A b a d c =--;2,(,), 1,2,,i i x y i n = ,为Ω上的均匀分布随机数列,不妨设(,),1,2,i i x y i n = ()为落在D 中的n 个随机数,则n 充分大时,有1(,)(,)ki i i DA f x y dxdy f x y n =≈∑⎰⎰.方法2: 对二重积分(,)AI f x y dxdy =⎰⎰,假设(,)f x y 为区域A 上的有界函数,且(,)0f x y ≥,几何意义对应的是以(,)f x y 为曲面顶, A 为底的曲顶柱体C 的体积.因此,用均匀随机数计算二重积分的蒙特卡罗方法基本思路为:假设曲顶柱体C 包含在己知体积为DV的几何体D 的内部,在D 内产生N 个均匀随机点,统计出在C 内部的随机点数目C N ,则DC V I N N=.例:计算(1Adxdy +⎰⎰,其中22{(,)|1}A x y x y =+≤.分析:该二重积分可以看作以1+曲顶柱体在一个边长为2的立方体内,用数学分析方法可计算出其精确值为π.。

MonteCarlo模拟教程

MonteCarlo模拟教程
蒙特卡罗方法的关键步骤在于随机数的产生, 计算机产生的随机数都不是真正的随机数(由算 法确定的缘故),如果伪随机数能够通过一系列 统计检验,我们也可以将其当作真正的随机数 使用。
rand('seed',0.1);
rand(1) %每次运ra行nd程('s序tat产e',s生um的(1值00*是clo相ck同)*r的and);
1901 3408
3.1415929
蒙特卡罗投点法是蒲丰投针实验的推广:
在一个边长为a的正方形内随机投点,
该点落在此正方形的内切圆中的概率 y
(a/2,a/2)
应为该内切圆与正方形的面积比值,
即 πa/22 : a2 π/4
n=10000; a=2; m=0; for i=1:n
ox
x=rand(1)*a; y=rand(1)*a;
举例
例1 在我方某前沿防守地域,敌人以一个炮排(含两门火炮) 为单位对我方进行干扰和破坏.为躲避我方打击,敌方对其阵地 进行了伪装并经常变换射击地点.
经过长期观察发现,我方指挥所对敌方目标的指示有50%是准 确的,而我方火力单位,在指示正确时,有1/3的射击效果能毁 伤敌人一门火炮,有1/6的射击效果能全部毁伤敌人火炮.
Monte Carlo 模拟
内容提纲
➢1.引言 ➢2.Monte Carlo模拟基本思想 ➢3.随机数生成函数 ➢4.应用实例举例 ➢5.排队论模拟 ➢6.Monte Carlo模拟求解规划问题
Monte Carlo方法:
引言(Introduction)
蒙特卡罗方法,又称随机模拟方法,属于计算数学的一个分支,它是在上世纪四 十年代中期为了适应当时原子能事业的发展而发展起来的。亦称统计模拟方法, statistical simulation method 利用随机数进行数值模拟的方法

蒙特卡洛随机模拟方法

蒙特卡洛随机模拟方法

蒙特卡洛随机模拟方法一、概述蒙特卡洛随机模拟方法是一种基于随机数的数值计算方法,它通过随机抽样来模拟实验过程,从而得到实验结果的概率分布。

在金融、物理、工程等领域有着广泛的应用。

二、基本思想蒙特卡洛随机模拟方法的基本思想是通过大量的随机抽样来模拟实验过程,从而得到实验结果的概率分布。

其主要步骤包括:1. 确定问题和目标:确定需要解决的问题和目标,例如计算某个事件发生的概率或者某个变量的期望值。

2. 建立模型:建立与问题相关的数学模型,并将其转化为计算机程序。

3. 生成随机数:根据所选用的分布函数生成符合要求的随机数。

4. 进行模拟实验:利用生成的随机数进行多次重复实验,并记录每次实验结果。

5. 统计分析:对多次重复实验结果进行统计分析,得到所需结果。

三、常用应用1. 金融领域中对衍生品价格进行估值;2. 工程领域中对结构可靠性进行评估;3. 物理领域中对粒子运动进行模拟;4. 生物领域中对药物作用机制进行研究。

四、具体步骤1. 确定问题和目标:首先需要明确需要解决的问题和目标,例如计算某个事件发生的概率或者某个变量的期望值。

2. 建立模型:建立与问题相关的数学模型,并将其转化为计算机程序。

例如,如果需要计算某个事件发生的概率,可以采用蒙特卡洛方法生成符合要求的随机数,并根据随机数判断事件是否发生。

如果需要计算某个变量的期望值,可以通过多次重复实验得到该变量在不同条件下的取值,并根据统计学原理计算其期望值。

3. 生成随机数:根据所选用的分布函数生成符合要求的随机数。

常见的分布函数包括均匀分布、正态分布、指数分布等。

4. 进行模拟实验:利用生成的随机数进行多次重复实验,并记录每次实验结果。

通常情况下,需要进行大量重复实验才能得到准确可靠的结果。

5. 统计分析:对多次重复实验结果进行统计分析,得到所需结果。

常见的统计分析方法包括求和、平均值、方差等。

五、优缺点1. 优点:蒙特卡洛随机模拟方法具有灵活性、精度高、适用范围广等优点,可以处理各种复杂问题,并且可以通过增加样本容量来提高精度。

蒙特卡罗方法

蒙特卡罗方法

c3
c4 e3
c5 e4 b5 t
b1
b2 ci=ci-1+ xi ei=bi+yi bi=max(ci,ei-1)
b3
b4
[3] 模拟框图
初始化: =1, =0, 初始化:令i=1,ei-1=0,w=0
服从参数为0.1 0.1的指数分布 产生间隔时间随机数xi服从参数为0.1的指数分布 ci=xi , bi=xi 服从[4,15] [4,15]的均匀分布 产生服务时间随机数yi服从[4,15]的均匀分布 ei=bi+yi 累计等待时间: 累计等待时间:w=w+bi-ci 准备下一次服务: 准备下一次服务:i=i+1 产生间隔时间随机数xi服从参数为0.1的指数分布 服从参数为0.1 0.1的指数分布 ci=ci-1+ xi 确定开始服务时间: 确定开始服务时间:bi=max(ci,ei-1) Y bi>480? N
unifrnd(a,b)
仿真与模拟的目的和原理
仿真和模拟可以说是针对同一内容的不同角 度的看法描述, 度的看法描述,当需要对某一问题观察研究而 相应的观察和实验时间和成本花费太高时, 相应的观察和实验时间和成本花费太高时,可 以考虑用一个模型代替原型, 以考虑用一个模型代替原型,用模型的研究达 到原型的研究的目的(以节约时间和成本), 到原型的研究的目的(以节约时间和成本), 这就是仿真, 这就是仿真,其在计算机上的实现过程也称为 模拟。 模拟。
i=i-1,t=w/i
输出结果:完成服务个数: 输出结果:完成服务个数:m=i 平均等待时间: 平均等待时间:t
停止
返回
To MATLAB(liti1)
停止
例2:蒙特卡罗法求π的(近似)值

蒙特卡洛类方法

蒙特卡洛类方法

蒙特卡洛类方法
蒙特卡洛方法是一类随机化的计算方法,主要应用于求出高维度空间中的定积分或概率分布的特性。

该方法以随机样本为基础,通过大量生成且符合某种分布律的随机数,从中抽取样本,利用样本的统计性质来计算近似解。

常见的蒙特卡洛方法包括:
1.随机模拟法
在数学建模、广告投放、经济预测等领域,随机模拟(也称蒙特卡罗方法)已经成为了一个重要的工具。

其基本思想是,系统表现出的某些规律和性质可以用随机过程进行模拟和预测。

2.随机游走算法
随机游走是一种基于随机过程的数值计算算法,通过简单的偏随机移动来解决复杂问题,被广泛应用于物理、化学、生物学、金融等领域。

随机游走算法的核心思想是通过随机漫步遍历所有可能的状态,找到最终解。

3.马尔可夫链蒙特卡罗方法
马尔可夫链蒙特卡罗方法(MCMC)是一种近似随机模拟算法,用于计算高维空间中的积分和概率分布。

这种方法通过构造一个马尔可夫链来模拟复杂的概率
分布,并通过观察链的过程来获得所求的统计量。

4.重要性采样
重要性采样是一种通过迭代抽样来估算积分值或概率分布的方法。

它的基本思想是利用不同的概率分布来采样目标分布中的样本,从而增加目标分布中采样到重要样本的概率,从而提高采样的效率。

总之,蒙特卡洛方法在物理学、统计学、金融学、计算机科学、生物科学等众多领域都有广泛的应用,是一种很实用的工具。

蒙特卡罗(Monte Carlo)方法简介

蒙特卡罗(Monte Carlo)方法简介

蒙特卡罗(Monte Carlo)方法简介蒙特卡罗(Monte Carlo)方法简介蒙特卡罗(Monte Carlo)方法,也称为计算机随机模拟方法,是一种基于"随机数"的计算方法。

一起源这一方法源于美国在第二次世界大战进研制原子弹的"曼哈顿计划"。

Monte Carlo方法创始人主要是这四位:Stanislaw Marcin Ulam, Enrico Fermi, John von Neumann(学计算机的肯定都认识这个牛人吧)和Nicholas Metropolis。

Stanislaw Marcin Ulam是波兰裔美籍数学家,早年是研究拓扑的,后因参与曼哈顿工程,兴趣遂转向应用数学,他首先提出用Monte Carlo方法解决计算数学中的一些问题,然后又将其应用到解决链式反应的理论中去,可以说是MC方法的奠基人;Enrico Fermi是个物理大牛,理论和实验同时都是大牛,这在物理界很少见,在“物理大牛的八卦”那篇文章里提到这个人很多次,对于这么牛的人只能是英年早逝了(别说我嘴损啊,上帝都嫉妒!);John von Neumann可以说是计算机界的牛顿吧,太牛了,结果和Fermi一样,被上帝嫉妒了;Nicholas Metropolis,希腊裔美籍数学家,物理学家,计算机科学家,这个人对Monte Carlo方法做的贡献相当大,正式由于他提出的一种什么算法(名字忘了),才使得Monte Carlo方法能够得到如此广泛的应用,这人现在还活着,与前几位牛人不同,Metropolis很专一,他一生主要的贡献就是Monte Carlo方法。

蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特•罗方法正是以概率为基础的方法。

与它对应的是确定性算法。

二解决问题的基本思路Monte Carlo方法的基本思想很早以前就被人们所发现和利用。

早在17世纪,人们就知道用事件发生的"频率"来决定事件的"概率"。

蒙特卡罗方法 matlab

蒙特卡罗方法 matlab

蒙特卡罗方法matlab
蒙特卡罗方法(Monte Carlo method)是一种随机模拟方法,用于估算数值问题的解。

它通过随机抽样和统计分析来获得问题的近似解。

在MATLAB中,可以使用随机数生成函数和统计函数来实现蒙特卡罗方法。

下面是一个简单的例子,用蒙特卡罗方法估算圆周率π的值:
matlab
N = 1000000; % 抽样点数
count = 0; % 落入圆内点数
for i = 1:N
x = rand(); % 生成0到1之间的随机数
y = rand();
if x^2 + y^2 <= 1 % 判断点是否落在单位圆内
count = count + 1;
end
end
pi_estimate = 4 * count / N; % 估算的π值
在上述代码中,通过循环生成N个均匀分布的随机点,然后判断每个随机点是否落在单位圆的内部。

统计落入圆内的点的数量,并通过比例关系来估算π的值。

当N足够大时,通过蒙特卡罗方法可以获得较为精确的估算结果。

除了估算圆周率π之外,蒙特卡罗方法还可以用于求解其他数值问题,如求解定积分、求解微分方程等。

具体实现方法可以根据问题的特点和具体要求进行调整和改进。

蒙特卡罗树搜索算法的应用

蒙特卡罗树搜索算法的应用

蒙特卡罗树搜索算法的应用随着人工智能技术的快速发展,各种算法也不断涌现。

其中蒙特卡罗树搜索算法就是一种非常实用的算法。

这种算法被广泛应用于棋类游戏、自动驾驶、机器人等方面。

本文将介绍蒙特卡罗树搜索算法的基本原理、应用及优势。

一、蒙特卡罗树搜索算法的基本原理蒙特卡罗树搜索算法是一种通过模拟随机事件来得到问题解决方案的方法。

它通常用于求解那些难以找到确定性答案的问题。

蒙特卡罗树搜索算法的基本过程分为以下四个步骤:1. 随机模拟:随机模拟是蒙特卡罗树搜索算法的核心步骤。

它的基本思想是通过随机模拟事件的结果来估计事件的概率。

例如,在围棋游戏中,随机模拟就是让计算机随机下棋,模拟完成后统计获胜次数以及最终的胜率等信息。

2. 构建搜索树:在随机模拟之前,需要首先构建搜索树。

搜索树包括树根节点,各种可能的棋子位置以及对应的胜率节点。

3. 执行单步搜索:执行单步搜索一般通过选择搜索树中的节点,来确定下一步应该执行哪个行动。

4. 更新搜索树:一旦完成了单步搜索,就需要更新搜索树,以反映新的胜率信息。

基于以上四个步骤,蒙特卡罗树搜索算法可以根据当前的搜索树结构,以及之前经验的胜率信息来评估不同行动的优劣,从而获得较优的策略。

二、作为一种优秀的算法,蒙特卡罗树搜索算法在各个领域被广泛应用。

下面我们分别介绍其在围棋、自动驾驶以及机器人领域的应用。

1. 围棋领域围棋是一种棋类游戏,与其他的棋类游戏不同,它的搜索空间非常大。

由于搜索空间的复杂性,围棋一直以来被认为是人工智能领域中最具挑战性的问题之一。

而蒙特卡罗树搜索算法就是在这种背景下应运而生的。

随着AlphaGo 等围棋人工智能的问世,蒙特卡罗树搜索算法在围棋领域的应用也取得了巨大的成功。

2. 自动驾驶领域随着人工智能技术的不断发展,自动驾驶已经成为一个备受关注的领域。

在自动驾驶领域,蒙特卡罗树搜索算法被广泛应用于路径规划以及交通流优化等方面。

例如,在一个高速公路上,蒙特卡罗树搜索算法可以模拟车辆的转向、加速以及制动等行为,并且计算出最优的路线,从而提高车辆的安全性以及驾驶效率。

马尔可夫链蒙特卡罗方法

马尔可夫链蒙特卡罗方法

马尔可夫链蒙特卡罗方法1. 简介马尔可夫链蒙特卡罗方法(Markov Chain Monte Carlo, MCMC)是一种基于马尔可夫链的随机模拟方法,用于解决概率统计中的问题。

它通过从一个马尔可夫链中采样来估计目标分布的性质,是一种重要的数值计算工具。

在许多实际问题中,我们希望从某个复杂的分布中采样,但由于该分布不易直接抽样,或者其概率密度函数无法明确表达,因此需要借助MCMC方法来进行近似采样。

MCMC方法基于马尔可夫链的性质,通过在状态空间中进行随机游走,并根据转移概率进行状态转移,最终收敛到目标分布。

这种随机游走能够在整个状态空间内探索,并通过长时间运行而收敛到平稳分布。

2. 马尔可夫链马尔可夫链是一种离散时间随机过程,在给定当前状态下,未来状态只依赖于当前状态而不依赖于过去状态。

换句话说,它满足无后效性。

马尔可夫链由状态空间和转移概率组成。

状态空间是所有可能的状态的集合,转移概率描述了从一个状态到另一个状态的概率。

马尔可夫链可以用矩阵形式表示,称为转移矩阵。

转移矩阵的元素表示从一个状态到另一个状态的概率。

3. 蒙特卡罗方法蒙特卡罗方法是一种基于随机采样的数值计算方法,通过大量重复实验来估计目标分布或计算某个数学期望。

蒙特卡罗方法基于大数定律,当样本数量足够大时,样本均值将收敛于真实值。

它不需要对目标分布进行任何假设,适用于各种问题。

蒙特卡罗方法在统计学、物理学、金融学等领域有广泛应用。

它可以用于求解高维积分、模拟随机过程、优化问题等。

4. 马尔可夫链蒙特卡罗方法马尔可夫链蒙特卡罗方法结合了马尔可夫链和蒙特卡罗方法的优点,用于从复杂分布中进行采样和估计。

马尔可夫链蒙特卡罗方法的基本思想是构建一个满足某个平稳分布的马尔可夫链,通过从该马尔可夫链中采样来近似得到目标分布。

具体步骤如下:1.选择一个初始状态。

2.根据转移概率进行状态转移,得到下一个状态。

3.重复上述步骤,直到达到一定的采样次数或满足收敛条件。

蒙特卡洛随机模拟

蒙特卡洛随机模拟

蒙特卡洛随机模拟随着计算机技术和数学理论的飞速发展,模拟技术在生产、科学研究和决策方面的应用越来越广泛。

蒙特卡洛随机模拟是一种重要的模拟技术,被广泛应用于金融、医学、环境和工业等领域。

本文将介绍蒙特卡洛随机模拟的基本概念、方法和应用。

一、蒙特卡洛随机模拟的基本概念蒙特卡洛随机模拟是一种用随机数统计方法解决问题的数学模型。

其基本思路是,通过随机抽样、模拟实验和数值计算等方法,从概率的角度分析问题,得到结论。

蒙特卡洛随机模拟通过随机抽样的方法,模拟出具有相同概率分布的样本,利用这些样本对问题进行模拟实验和数值计算,最终得到问题的结果。

二、蒙特卡洛随机模拟的方法蒙特卡洛随机模拟的方法主要包括随机抽样、样本生成、模拟实验和数值计算四个步骤。

1.随机抽样随机抽样是蒙特卡洛随机模拟的第一步。

它决定了模拟实验的样本大小和概率分布。

随机抽样的方法有多种,可以利用计算机的随机数生成器进行伪随机数的生成,也可以利用物理上的随机过程产生真正的随机数。

2.样本生成样本生成是蒙特卡洛随机模拟的第二步。

它根据随机抽样得到的样本,生成符合概率分布的样本数据。

样本生成的方法有很多种,根据问题的不同,选择不同的方法。

例如,对于连续型随机变量,可以采用逆变换法、接受-拒绝法、重要性抽样等方法;对于离散型随机变量,可以采用反映现实情况的近似分布,如泊松分布、二项分布或几何分布等。

3.模拟实验模拟实验是蒙特卡洛随机模拟的第三步。

它利用采样后的样本数据,对实际问题进行模拟实验。

模拟实验的方法根据问题的不同而有所不同。

例如,对于金融领域的股票价格预测问题,可以利用随机漫步模型、布朗运动模型等进行模拟实验;对于天气预报问题,可以利用大气环流模型、海洋模型等进行模拟实验。

4.数值计算数值计算是蒙特卡洛随机模拟的最后一个步骤。

它对模拟实验得到的结果进行统计分析和计算,得出问题的解答。

数值计算涉及到估计期望、方差、置信区间、概率密度函数等概率特征。

《蒙特卡罗模拟》课件

《蒙特卡罗模拟》课件

蒙特卡罗模拟的基本原理
重复实验:多次重复抽样实 验,得到大量样本
统计分析:对样本进行统计 分析,得到估计值
随机抽样:从概率分布中随 机抽取样本
误差估计:计算估计值的误 差,评估模拟结果的准确性
蒙特卡罗模拟的应用领域
金融领域:风 险评估、投资 决策、期权定
价等
工程领域:可 靠性分析、优 化设计、系统
建立模型:根据问 题建立数学模型
设定参数:设定模 型中的参数
模拟实验:进行模 拟实验,验证模型 的准确性
实现随机抽样
确定抽样范围:确定需要抽样的总体范围
生成随机数:使用随机数生成器生成随机数
确定抽样方法:选择合适的抽样方法,如简单随机抽样、 分层抽样等
实施抽样:根据抽样方法,从总体中抽取样本
Part Four
蒙特卡罗模拟的案 例分析
金融衍生品定价
蒙特卡罗模拟在金融 衍生品定价中的应用
案例分析:期权定价 模型
蒙特卡罗模拟在期权 定价中的应用
案例分析:利率衍生 品定价模型
蒙特卡罗模拟在利率 衍生品定价中的应用
风险评估
蒙特卡罗模拟是一种风险评估方法,通过模拟随机事件来预测可能的结果 案例分析可以帮助我们更好地理解蒙特卡罗模拟的应用场景和效果 风险评估可以帮助我们更好地理解风险,并采取相应的措施来降低风险 蒙特卡罗模拟在金融、工程、医学等领域都有广泛的应用
统计分析:对计算得到的统计量进行统计分析,得出结论
分析和解读结果
蒙特卡罗模拟是一种随机模拟方法,通过模拟随机事件来估计概率分布
实现步骤包括:设定随机变量、设定随机数生成器、设定模拟次数、模拟随机事件、计算结 果
结果分析:通过模拟结果可以估计出概率分布,从而进行决策

随机模拟与蒙特卡洛方法

随机模拟与蒙特卡洛方法

随机模拟与蒙特卡洛方法随机模拟是一种通过生成随机数来模拟实际问题的方法。

它在许多领域都有应用,如金融、物理学、统计学等。

其中,蒙特卡洛方法是随机模拟的一种重要技术。

一、随机模拟的基本思想随机模拟的基本思想是通过生成服从某种概率分布的随机数来近似估计或演算实际问题。

在随机数的基础上,进行大量的重复试验,以获取更加准确的结果。

这种方法的优势在于可以处理复杂的问题,并且可以灵活应对各种实际情况。

二、蒙特卡洛方法的原理蒙特卡洛方法是一种基于概率统计的数值计算方法,其核心原理是通过随机取样得到数值近似解。

蒙特卡洛方法的应用范围非常广泛,可以用来解决数理问题、优化问题、模拟问题等。

蒙特卡洛方法的步骤如下:1. 确定问题的数学模型和要求解的量;2. 通过随机数生成器产生大量的样本数据;3. 根据概率分布和统计规律进行统计分析,并得出要求解的量的估计值;4. 根据所得到的结果,对模型进行修正和改进,不断提高估计值的准确性。

三、蒙特卡洛方法的应用1. 金融领域:蒙特卡洛方法在金融衍生品的定价、投资组合优化、风险管理等方面有重要应用。

通过模拟随机的资产价格变动和市场波动,可以评估投资组合的风险水平,并对衍生品的定价进行建模。

2. 物理学领域:蒙特卡洛方法在粒子物理学、量子力学、热力学等领域的研究中起到了关键作用。

通过生成随机粒子,并模拟其运动轨迹,可以得到实验结果的近似解。

3. 统计学领域:蒙特卡洛方法在统计分析、模拟实验、抽样推断等方面有广泛应用。

通过生成随机样本,并对样本进行分析,可以获得总体的统计特征,并进行一系列的统计推断。

四、蒙特卡洛方法的优缺点蒙特卡洛方法具有以下优点:1. 可以处理高维、非线性、复杂的问题;2. 可以适应各种分布,灵活性较高;3. 可以通过增加样本量来提高结果的精确性。

然而,蒙特卡洛方法也存在一些缺点:1. 对于复杂问题,计算量较大,需要大量的计算资源;2. 随机取样可能存在偏差,导致估计结果的不准确;3. 随机模拟的过程可能较为困难,需要对问题进行适当的简化和抽象。

随机模拟与蒙特卡洛方法

随机模拟与蒙特卡洛方法

随机模拟与蒙特卡洛方法随机模拟和蒙特卡洛方法是一组用于解决复杂问题的统计模拟方法。

它们可以模拟具有随机因素的过程,并通过重复实验来获取结果的概率分布,从而得到问题的近似解。

本文将介绍随机模拟和蒙特卡洛方法的基本原理、应用范围以及一些实例。

一、随机模拟的基本原理随机模拟是通过在问题的输入空间中随机抽样,使用这些样本数据进行问题求解过程,从而得到问题的近似解。

它的基本原理是通过模拟大量的随机事件,使得这些事件的概率分布足够接近于真实情况下的概率分布,从而获取问题的解或者评估一个系统的性能。

二、蒙特卡洛方法的基本原理蒙特卡洛方法是一种基于统计的模拟方法,它通过在问题的输入空间中随机抽样,使用这些样本数据进行问题求解过程。

与随机模拟不同的是,蒙特卡洛方法更强调对问题的概率分布进行抽样,通过大量的模拟实验来近似得到问题的解。

三、随机模拟与蒙特卡洛方法的应用范围随机模拟和蒙特卡洛方法可以应用于许多领域,包括金融、物理、工程、计算机科学等。

在金融领域,随机模拟和蒙特卡洛方法可以用于期权定价、投资组合管理和风险评估。

在物理领域,蒙特卡洛方法可以用于模拟分子运动、核反应和统计物理等。

在工程领域,随机模拟和蒙特卡洛方法可以用于系统可靠性评估、性能优化和参数优化等。

在计算机科学领域,蒙特卡洛方法可以用于机器学习、数据挖掘和图形渲染等。

四、随机模拟与蒙特卡洛方法的实例1. 随机模拟在交通流量预测中的应用在交通规划中,人们需要预测未来某个地区或者某个道路的交通流量,以便进行交通规划和交通控制。

通过随机模拟和蒙特卡洛方法,可以根据历史交通数据和一些影响因素,如节假日、天气等,模拟未来一段时间内的交通流量。

这种方法可以帮助交通规划者准确预测交通状况,从而合理规划交通路线、提前布置交通设施。

2. 蒙特卡洛方法在投资组合优化中的应用在投资组合优化中,人们需要确定一个最佳的投资组合,以达到最大的收益或最小的风险。

通过蒙特卡洛方法,可以根据历史的股票价格和收益率,模拟不同的投资组合,并通过多次实验评估其预期收益和风险。

随机模拟法(蒙特卡罗法)

随机模拟法(蒙特卡罗法)

随机模拟法(蒙特卡罗法)
用计算机或计算器模拟试验的方法,具体步骤如下:
(1)用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;
(2)统计代表某意义的随机数的个数M和总的随机数个数N;
(3)计算频率()
n M
f A
N
作为所求概率的近似值.
要点诠释:
1.对于抽签法等抽样方法试验,如果亲手做大量重复试验的话,花费的时间太多,因此利用计算机或计算器做随机模拟试验可以大大节省时间.
2.随机函数RANDBETWEEN(a,b)产生从整数a到整数b的取整数值的随机数.
3.随机数具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验,比如现在很多城市的重要考试采用产生随机数的方法把考生分配到各个考场中.
第1 页共1 页。

蒙特卡罗方法的原理介绍

蒙特卡罗方法的原理介绍

蒙特卡罗方法的原理介绍蒙特卡罗方法是一种基于随机抽样的数值计算方法,广泛应用于各个领域,如物理学、金融学、计算机科学等。

它的原理是通过随机抽样来模拟实验,从而得到近似的结果。

本文将介绍蒙特卡罗方法的原理及其应用。

一、蒙特卡罗方法的原理蒙特卡罗方法的原理可以简单概括为以下几个步骤:1. 定义问题:首先需要明确要解决的问题是什么,例如计算某个函数的积分、求解某个方程的解等。

2. 建立模型:根据问题的特点,建立相应的数学模型。

模型可以是一个函数、一个方程或者一个概率分布等。

3. 随机抽样:通过随机抽样的方法,生成符合模型要求的随机数。

这些随机数可以是服从某个特定分布的随机数,也可以是均匀分布的随机数。

4. 计算结果:利用生成的随机数,根据模型进行计算,得到近似的结果。

通常需要进行多次抽样和计算,以提高结果的准确性。

5. 分析结果:对得到的结果进行统计分析,计算均值、方差等统计量,评估结果的可靠性。

二、蒙特卡罗方法的应用蒙特卡罗方法在各个领域都有广泛的应用,下面以几个具体的例子来介绍。

1. 积分计算:蒙特卡罗方法可以用来计算复杂函数的积分。

通过在函数的定义域内进行随机抽样,计算抽样点的函数值的平均值,再乘以定义域的面积,即可得到函数的积分近似值。

2. 随机模拟:蒙特卡罗方法可以用来模拟随机事件的概率分布。

例如,在金融学中,可以使用蒙特卡罗方法来模拟股票价格的变动,从而评估投资组合的风险。

3. 数值求解:蒙特卡罗方法可以用来求解复杂方程的解。

通过在方程的定义域内进行随机抽样,计算抽样点的函数值,找到满足方程的解的概率分布。

4. 优化问题:蒙特卡罗方法可以用来求解优化问题。

通过在优化问题的定义域内进行随机抽样,计算抽样点的函数值,找到使函数取得最大或最小值的概率分布。

三、蒙特卡罗方法的优缺点蒙特卡罗方法具有以下优点:1. 适用范围广:蒙特卡罗方法可以应用于各种类型的问题,无论是求解数学问题还是模拟实际系统。

蒙特卡罗模拟方法

蒙特卡罗模拟方法

蒙特卡罗模拟方法的优点: (1)模拟算法简单,过程灵活; (2)可模拟分析多元风险因素变化 对结果的影响; (3)模拟成本低,并可方便地补充 更新数据。
蒙特卡罗模拟方法的局限性: (1)蒙特卡罗方法要求的数据信息较多。 (2)进行模拟的前提是各输入变量是相 互独立的。 (3)对一些复杂问题,要想达到较高的 模拟精度需要进行较多的模拟次数。
有了这些随机产生函数,就 可以直接产生满足分布F(x)的随 机数了,而无需通过先求出连 续均匀分布的随机数,在通过 抽样公式得出所求分布的随机 数。下面来通过一个实例来加 深对蒙特卡罗模拟方法的理解。
第五节 项目风险案例分析
现以成都某房地产开发公司对一综合开 发用地进行投资开发为例,用基于蒙特卡 罗模拟方法为原理的 EXCEL 插件—— Crystal Ball工具对该开发项目进行风险决 策分析。 一、项目概况和基本数据的确定
a,b,c为三角分布 的参数
分布
a ( b a ) r1
f [ a ( b a ) r1 ] f ( m ) r2 b r 1 a s 1
m rs2
r,s为函数参数
实际上,Matlab软件为我们提供了一种 简单快捷的产生各种常用分布随机数的方 法。其功能和特点: (1)界面友好,编程效率高。 (2)功能强大,可扩展性强。 (3)强大的数值计算功能和符号计算功 能。 (4)图形功能灵活方便。
二、采用蒙特卡罗方法进行风险决策分析
(一)、识别项目风险 在投资开发项目时,实际情况千差万别,重要 的风险变量也各不相同,这就需要分析人员根据 项目的具体情况,运用适当的风险辨识的方法从 影响投资的众多因素中找出关键的风险变量。本 案例采用“德尔菲法”确定影响该项目的7个主要 风险变量:住宅销售收入(P1*S1)、商业销售 收入(P2*S2)、土地费用(K1)、前期费用 (K2)、开发建设费用(K3)、营销费用 (K4)、其他费用(K5)。

随机模拟和蒙特卡洛方法

随机模拟和蒙特卡洛方法

随机模拟和蒙特卡洛方法随机模拟和蒙特卡洛方法是一种常见的数值计算技术,广泛应用于金融、工程、物理学等领域的问题求解与决策分析。

本文将介绍随机模拟和蒙特卡洛方法的基本原理、常见应用以及优缺点。

一、随机模拟的基本原理随机模拟是通过生成符合特定概率分布的随机数来模拟感兴趣的问题,从而得到问题的近似解。

其基本思想是通过对问题建立数学模型,使用随机数作为模型中的参数,在大量的实验中进行模拟,通过统计分析模拟结果得出问题的解或者近似解。

随机模拟包括两个主要步骤:随机数生成和模拟实验。

随机数生成是产生服从特定概率分布的伪随机数,常见的方法有线性同余法、反余弦法、Box-Muller变换等。

模拟实验是根据问题的数学模型,使用随机数来模拟事件的发生情况,从而获得问题的统计特性,例如期望值、方差等。

二、蒙特卡洛方法的基本原理蒙特卡洛方法是一种以概率统计理论为基础,通过大量的随机数实验来估计问题的解或近似解的方法。

其基本思想是将问题表示为随机实验的形式,通过模拟足够多的实验次数,根据概率统计的规律,得到问题的数值解或者概率分布。

蒙特卡洛方法的核心是随机抽样,通过生成服从特定概率分布的随机数,对问题进行建模和模拟,从而得到问题的解。

蒙特卡洛方法相比于传统的解析方法,能够处理复杂的问题,无需求解复杂的数学方程,因此具有广泛的应用前景。

三、随机模拟和蒙特卡洛方法的应用1. 金融领域的风险评估:随机模拟和蒙特卡洛方法可用于对金融资产的风险进行评估,例如计算投资组合的价值变动情况、评估期权的价格以及估计市场指数的未来波动性等。

2. 工程领域的可靠性分析:随机模拟和蒙特卡洛方法可用于分析工程系统的可靠性,例如估计系统的失效概率、计算可靠性指标,从而进行系统设计和改进。

3. 物理学领域的粒子模拟:随机模拟和蒙特卡洛方法在研究微观粒子的行为和相互作用方面具有重要的应用,例如模拟粒子在高能碰撞实验中的运动轨迹、研究自旋系统的行为等。

4. 统计学中的抽样方法:随机模拟和蒙特卡洛方法在统计学中具有广泛应用,例如用于概率分布的抽样、参数估计和假设检验等。

蒙特卡罗(Monte Carlo算法)算法

蒙特卡罗(Monte Carlo算法)算法

随机数的取得
• 如果你对随机数有更高的要求,需要自己 编辑“随机数生成器”
• 最简单、最基本、最重要的一个概率分布 是(0,1)上的均匀分布(或称矩形分布)
• 例如在Matlab中,命令“rand()”将产生 一个(0,1)中均匀分布的随机数
• 你可以根据需要给随机数一个“种子”, 以求不同的数
Matlab 的随机数函数
• 大大改善了结果!
随机数的产生
• 随机数是我们实现蒙特卡罗模拟的基本工具。 • 随机数的产生就是抽样问题。可以用物理方法
产生随机数,但价格昂贵,不能重复,使用不 便。另一种方法是用数学递推公式产生。这样 产生的序列,与真正的随机数序列不同,所以 称为伪随机数,或伪随机数序列。不过,经过 多种统计检验表明,它与真正的随机数,或随 机数序列具有相近的性质,因此可把它作为真 正的随机数来使用。
用Monte Carlo 计算定积分
• 考虑积分 • 假定随机变量具有密度函数 •则
用Monte Carlo 计算定积分-
• 抽取密度为e^{-x}的随机数X_1,…X_n • 构造统计数
•则
用Monte Carlo 计算定积分--
•且
•即
用Monte Carlo 计算定积分---
• 例如 α=1.9
Monte Carlo Simulation 简介
概述
• 蒙特卡罗(Monte Carlo)方法,或称计算 机随机模拟方法或随机抽样方法或统计 试验方法 ,属于计算数学的一个分支。 是一种基于“随机数”的rlo方法的基本思想很 以前就 被人们所发现和利用。 在17世纪,人 们就知道用事件发生的“频率”来决定 事件的“概率”。19世纪人们用投针试
• 它是以一个概率模型为基础,按照这个模型所 描绘的过程,通过模拟实验的结果,作为问题 的近似解。。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机模拟的优势
对无法实施的一类问题进行模拟 对大量方案的比较和选优 对大型复杂系统进行模拟 对有危险的试验或训练进行模拟 对无法重复的现象进行模拟
随机数的产生
随机模拟能够成功应用的关键是在计算机上 实现随机抽样,而随机抽样的基础是随机数 随机数:具有给定概率分布的随机变量的可 能值。 最重要的随机数:(0,1)均匀分布的随机 数 伪随机数 产生随机数的方法:迭代取中法、移位法、 同余法
蒲丰投针问题 1777年法国科学家蒲丰提出了下面的著名问 题,这是几何概率的一个早期例子。 平面上画着一些平行线,它们之间的距离都等 于a,向此平面任意投一长度为l的针(l<a),试 求此针与任一平行线相交的概率. 2l p 根据几何概率的知识可求得此概率为 πa 。 由于最后的答案与π有关,因此不少人想利用它来 计算π的数值,其方法是投针N次,计算出针与线 相交的次数n,再用频率值n/N作为概率p的值代入 上式,求得 π 2 lN/an 。
随机模拟的应用: 报童问题
利润公式:
ra (n r )b, r n, L na, r n.
随机模拟的应用: 报童问题
产生服从经验概率分布的随机数 产生一[0,1]上的均匀分布的随机数U, Y=1000*U
300 350 400 450 r 500 550 600 650 700 0 Y<25 25 Y<75 75 Y<175 175 Y<350 350 Y<650 650 Y<825 825 Y<925 925 Y<975 975 Y 1000
Байду номын сангаас随机模拟与蒙特卡洛方法
随机模拟与蒙特卡洛方法
模拟:把某一现实的或抽象的系统的部分状 态或特征用另一系统(称为模型)来代替或模 仿 计算机模拟在复杂系统或过程的研究中发挥 着越来超重要的作用 随机模拟和蒙特卡洛(Monte CarIo)方法
蒙特卡洛方法的基本思想
基本思想:把各种随机事件的概率特征 与 数学分析的解联系起来,用试验的方法确定 事件的相应概率与数学期望 特点:概率模型的解是由试验得到的,而不 是计算出来的。 作用:可以解决其它方法无法解决的实际问 题、对理论研究进行补充及辅助
程序如下: a=2; l=1.2; N=100000; n=0; for i=1:1:N x=a*rand(1)/2; t= pi*rand(1); rand(1); if x<l*sin(t)/2 n=n+1; end end n pii=2*l*N/n/a
增加N值试验,改变a和l的值,重新试验,观察pii的值。
为了分析码头的效率,我们考虑共有
n
条船到达码头卸货的情形,原则上讲,
n 越大越好。
随机模拟试验的目的
系统的比较与评价,在指定的性能指标下对实际存 在的或所设计的系统性能做出对比和评价; 系统的分析与预测,分析确定一些因素对整个系统 性能的影响以及系统在某些条件下的性能; 系统的优化,在许多因素中找出使系统性能最优的 因素参数; 系统的假设检验,用模拟结果与系统实际状态作对 比以检验对系统所作假设是否合理。
随机模拟的应用: 报童问题
具体实现:对n=300,…,700,分别进行以下操 作: 产生随机数r; 计算利润L 重复N次进行平均 选出L平均值最大的n
随机模拟的应用:码头卸货效率分析
问题的提出 有一个只有一个舶位的小型卸货专用码头,船舶运送某些 特定的货物(如矿砂,原油等)在此码头卸货。若相邻两 艘船到达的时间间隔在15分钟到145分钟之间变化,每艘 船的卸货时间由船的大小、类型所决定,在45分钟到90分 钟的范围内变化。 现在需对该码头的卸货效率进行分析,即设法计算每艘船 在港口停留的平均时间和最长时间;每艘船等待卸货的时 间;卸货设备的闲置时间的百分比等。
乘加同余
xn 1 (axn c)(modm) n xn / m
n [0,1]
MATLAB软件中随机数的产生
rand(m,n) 生成区间(0,1) 上的均匀分布的m 行n 列随机矩阵; randn(m,n) 生成标准正态分布N(0,1) 的m行 n 列随机矩阵; randperm(N) 生成1,2,…,N的一个随机排列 随机种子 例将种子设置为系统时间,: rand (‘state’,surn(100 * clock))
数学模型的建立 为简单计,假设前一艘船卸货结束后马上离开码头,后一艘船立 即可以开始卸货。 引进如下记号: a j ——第j艘船的到达时间。 t j ——第j艘船与第j+1艘船到达之间的时间间隔。 u j ——第j艘船的卸货时间。 l j ——第j艘船的离开时间。 wj ——第j艘船的等待时间。 s j ——第j艘船在港口的停留时间。 d j ——卸完第j艘到开始卸第j+1艘船之间的设备闲置时间。 wm ——船只最长等待时间。 wa ——船只平均等待时间。 sm ——船只最长停留时间。 s a ——船只平均停留时间。 dl ——设备闲置总时间。 Rd ——设备闲置百分比。
随机模拟的应用: 报童问题
问题提出:报童,每天批发报纸后零售,每卖一份报 可赚钱a元,卖不完则可再退回每退一份报要赔钱b元 历史数据:
k pk 300 0.025 350 0.05 400 0.1 450 0.175 500 0.3 550 0.175 600 0.1 650 0.05 700 0.025
进行计算机模拟需要大样本的均匀分布随机 数数列,如何获得? 真随机数:由随机物理过程来产生,如:放射性 衰变、电子设备的热噪音、宇宙射线的触发时间 伪随机数:由计算机按递推公式大量产生
r 2 2r x 2 x mod 2 冯.诺曼平方取中法 n 1 n
n xn / 22 r
相关文档
最新文档