田口方法稳健设计的详细教程案例

合集下载

田口实验方法ppt课件

田口实验方法ppt课件
• 直交表(orthogonal array)是由勞博士(C.R. Rao)所提出
• 田口博士引用,並提出一系列表格,希望
以最少的實驗次數就能對因子主效果做
不偏的估計
最新版整理ppt
33
直交表特性
• 对于任意一个直交表都应当具备下列两个 特性:
• 每一列都是自我平衡的(self-balanced),在 每一列 中因子的各水准出现的频率是相同 的;
• 每两列间都是平衡的(mutual-balanced),也
就是 在某一列中出现某一水准的所有实验
组,与在另一 列中,出现此水准的频率是
最新版整理ppt
34
直交表L8(27)
Exp
A
B
1
1
1
2
1
1
3
1
2
4
1
2
5
2
1
6
2
1
7
2
2
8
2
2
Level 1 1.8
1.55
Level 2 1.65
1.9
Effect -0.15 0.35
最新版整理ppt
9
为什么田口实验设计能以最少
好 的实验次數,获取最 的效果?
最新版整理ppt
10
实验设计
一种安排实验和分析实验数据的数理 统 计方法;实验设计主要对实验进行 合理 安排,以较小的实验规模(实验 次数)、 较短的实验周期和较低的实 验成本,获得理想的实验结果和正确 的结论
最新版整理ppt
35
直交表的表示方法
最新版整理ppt
36
直交表的表示方法
最新版整理ppt
37
直交表

稳健性设计Robust Design

稳健性设计Robust Design

六西格玛培训—优化阶段模块稳健性设计Robust DesignPatrick ZhaoI&CIM Deployment Champion稳健性设计•稳健性设计也称田口设计,由Dr. Genichi Tuguchi在70 年代创立。

质量损失•车主在汽车行驶过程中听到发动机有异响,担心出问题,他请假开到4S 店检修。

工作人员安排检查,两个小时后报告显示异响噪音满足标准,无法赔偿。

车主十分不满,几年后换车时,他选择了其他品牌。

传统田口传统质量损失VS 田口质量损失LSL USLTarget LSL USLTargetLoss Loss Loss Loss什么是稳健性?•稳健性定义:产品或过程在周围不可控或未控制因子(噪音因子)不断变化的条件下,持续稳定工作的能力。

(The ability of a product or process to function consistently as the surrounding uncontrollable or uncontrolled factors vary.)在冬天转动遮阳板时很紧,在夏天时很松,产品是否稳健?发泡产品在环境干燥时需要更多原材料,潮湿时需要很少原材料,过程是否稳健?产品不稳健的原因–遮阳板•温度低,使材料变硬,遮阳板难以转动。

过程不稳健的原因–发泡•湿度低时,反应变慢,填充同样模具所用材料更多。

解决策略1.直接减少噪音•控制环境温度?•控制环境湿度?•建造恒温恒湿车间?成本?2.根据噪音制定不同的策略•制定两套工艺参数应对不同环境?•产品在客户端的条件能预测吗?3.稳健性设计•减少噪音因子对产品/过程的影响!•三种策略可能同时需要。

稳健性指标•衡量一个产品/过程是否稳健的指标是信噪比,S/N –Signal to Noise Ratio。

•通过比较两种设计的信噪比差值来确定设计优化的程度。

•信噪比越大,产品/过程越稳健,越不受噪音因子的影响。

田口参数实验设计案例

田口参数实验设计案例

教学案例一:田口参数实验设计1田口质量损失函数田口对产品质量提出了一个新概念,他认为:质量就是产品上市后给于社会的损失。

一般,一个产品的成本分为两个主要部分:销售前成本和出售后成本,前者是指制造成本,后者是指产品销售给用户后由于产品质量的损失(质量特性偏离目标值)所需的费用,这就是上述产品质量定义中的“给予社会的损失”对此中损失,田口提出用质量损失函数来度量。

为了描述产品的质量损失,引入了以下几种类型质量特性的损失函数。

1. 望目特性的质量损失函数望目特性质量损失函数适用于产品的输出特性y 有一个确定的目标值y 0(通常不为零),并且质量损失在目标值的两侧呈对称分布,如图3所示,这种质量特征称为望目特性。

则质量损失函数为:20)()(y y K y L -=(1)其中K 是不依赖于y 的常数,称为质量损失系数。

若y 离y 0越近,则L(y)值越小,表明该项设计的质量损失小,功能质量好。

式(1)说明,由于功能波动所造成的损失与偏离目标值y0的偏差平方成正比。

这也可以说明,不仅不合格产品会造成损失,即使合格产品也会造成损失。

输出特性值偏离目标值越远,造成的损失越大。

这就是田口玄一对产品质量概念的一个观点。

由于产品的质量特性y 表现为随机性,所以L(y)亦为随机变量,故有必要取L(y)的期望值作为评定产品的质量水平。

设有N 件产品,若质量特性的N 个测试值为y 1,y 2,……, y N ,则其质量损失可近似表示为:⎥⎦⎤⎢⎣⎡-=∑=N i i y y N K y L 120)(1)((2)L(y)A 0 y Ly 0y u图3 功能质量损失函数称L(y)为这N 件产品的平均质量损失。

质量损失系数K 的确定可以有两种方法确定,一种是根据功能界限和相应的损失来确定;另一种是根据容差Δy 和相应的损失来确定。

2. 望小特性的质量损失函数有些产品的质量特征是:不取负值,越小越好,目标值为零;当其输出特性值增大时,其性能逐渐变差,质量损失逐渐变大。

实验设计DOE田口方法

实验设计DOE田口方法

1.2. 应用领域、目的、特点
二战之后,日本的田口玄一博士,将试验设计方法应用于改进产品和系统质 量,并研究开发出“田口品质工程方法”,简称田口方法。从而提升了日本产品 品质及日本产业界的研发设计能力,成为日本战后质量管理及设计开发的核心工 具。
田口方法具有很强的抗干扰能力,因此又称为“稳健参数设计”——通过 调整可控因子的水平,来降低或弱化噪音对Y的影响, 从而提高设计方案的抗干扰 能力.
田口方法的优势: 通过调整可控因子的水平,来降低或弱化噪音对Y的影响, 从而提高设计方案
的抗干扰能力.
16
1.9. 田口方法中正交表的特点
试验观察值
实验次数成倍数增加: 9*8 = 72 次
一次游程(设置)重复了8次,在重复试验每一次对噪音a,b,c,d的水平有调整,—— 会造成 Nhomakorabea件间的变异。
对于噪音的识别分类,还可以有更多的分类,只要有益于改进,就应该做深入地分析!
噪音是量产过程“人、机、料、法、环”的非可控部分;它不是人为的破坏或不遵守,不 是硬件资源故障,不是违背管理要求的非批准供方物料,不是原材料的彻底不合格等。它 是过程要素在批准准备或批准(作为PPAP的前提条件或已经PPAP)条件下(即许可的量 产条件下)的非受控波动。如:资格(拟)认可的两个班次的操作者;(拟)批准两家合 格供应商供应的同一材料号或不同批号;(拟)批准的两种测量方法;(拟)批准的常规 生产环境;(拟)批准的协变量(非受控的连续变量)-如:环境温度等等
正交表具有正交性,导致对试验结果有“均衡分散,整齐可比”的特点,有 利于计算回归方程。因此,虽然是局部试验(使用了全部试验的一部分),但 仍有可靠的代表性。 ➢ 信噪比 —— 评价品质优劣的基础

田口方法案例分享

田口方法案例分享
创建田口试验
在“田口设计 — 设计”回话框下点选“L18” “L18”选项中“18”
表示实验总运行数为18 其中“2**1”表示有1个
2水平因子,“3**7”表 示有7个3水平因子. 按下“确定”按钮
10
5
田口试验案例
创建田口试验
在“田口设计 — 因子”回话框下默认其“分配因子”选项 在该回话框下可以进行
F 9.31 6.17 0.44 0.45 4.48 21.23 0.96 14.50
P 0.093 0.139 0.696 0.691 0.182 0.045 0.511 0.065
结论:对于均值而言,因子A、F、H在统计上是显著的. (以P-value值<0.10做判断)
26
13
田口试验案例
图形解析 (1/2)
21
22
11
田口试验案例
试验解析 (1/4)
线性模型分析:信噪比 与 A, B, C, D, E, F, G, H
信噪比 的模型系数估计

系数 系数标准误
T
P
常量 41.2190
0.2082 197.987 0.000
A 1 1.8834
0.2082 9.046 0.012
B 1 -0.9599
引起瓷砖尺寸的变异,很明显地在制程中,是一个杂音因素。 解决问题,使得温度分布更均匀,只要重新设计整个窑就可以了,但
需要额外再花50万元,投资相当大。
4
2
田口试验案例
内部瓷砖 外层瓷砖 (尺寸大小有变异)
改善前
上限
改善前




外部瓷砖
内部瓷砖
下限

实验设计:田口方法(ppt 204页)

实验设计:田口方法(ppt 204页)
)
相同產品 相同功能
為什麼可以做出 低成本高質量的產品?
3
日本工業強盛的原因
•日本人在多種製造業,如汽車、鋼鐵、電子和 紡織方面,居於領導地位,主要是因為他們能 以具競爭力的價格,生產高品質產品。
•美國研究後認為而他們致勝的法寶主要有二項:
–QFD(自顧客要求一直策劃到相應的製造管理要求) –田口方法(實驗設計方法之一,簡單易用,沒有複
上限


大 小
Байду номын сангаас外部瓷磚
改善前
內部瓷磚
下限
18
)
原材料粉碎及混合 成型 燒成 上釉 燒成
控制因素 A:石灰石量 B:某添加物粗細 度 C:蠟石量 D:蠟石種類 E:原材料加料量 浪費料回收量 長石量
水准一(新案) 5% 細
53% 新案組合 1300公斤 0% 0%
)
水准二(現行) 1% 粗
43% 現行組合 1200公斤 4% 5%
19
實驗方法
•一次一個因素法
–每次只改變一個因子,而其他因子保持固定。 –但它的缺點是不能保證結果的再現性,尤其
是當有交互作用時。
•例如在進行A1和A2的比較時,必須考慮 到其他因子,但目前的方法無法達成。
20
)
一次一因素的實驗
A 實驗次

B
C
DE
F
G
實驗結 果
1 A1 B1 C1 D1 E1 F1 G1 1
8
DOE的應用階段
雙贏 夥伴 供 應 商
線外 品管
線上 品管
系統設計
產品 設計
參數設計
公差設計
製程 設計
診斷 預測 測量

第五章田口方法 Ⅰ

第五章田口方法 Ⅰ

例1:(单指标的分析方法) 某炼铁厂为提高铁水温度,需要通过试验选择最好的 生产方案经初步分析,主要有3个因素影响铁水温度,它 们是焦比、风压和底焦高度, 每个因素都 考虑3个水 平,具体情况见表。问对这3个因素的3个水平如何安 排,才能获得最高的铁水温度?
解:如果每个因素的每个水平都互相搭配着进行全面试 验,必须做试验33=27次。现在我们使用L9(34)正交表来安 排试验。
2. 减少变异性,与额定值或目标值更为一致;
3. 减少开发时间; 4. 减少总成本;
实验设计的发展过程:
试验设计始于20世纪20年代,其发展过程大致可分为三个阶段: 1. 早期的方差分析法: 20世纪20年代由英国生物统计学 家、数学 家费歇(R.A.Fisher)提出的,开始主要应用于农业、生物学、遗 传学方面,取得了丰硕成果。二战期间,英、美采用这种方法在 工业生产中取得显著效果;
产品间干扰(产品间噪声):在相同生产条件下,生产制造出来一些 产品,由于机器、材料、加工方法、操作者、测量误差和生产环境(简称 5M1E)等生产条件的微小变化,引起产品质量特性值的波动,称之为产品间 干扰,也称为产品间噪声。 可控因素:在试验中水平可以人为加以控制的因素,称为可控因素。 标示因素:在试验水平中可以指定,但使用时不能加以挑选和控制的 因素称为标示因素。 误差因素:引起产品质量特性值波动的外干扰、内干扰、产品间干扰 统称为误差因素。
我们应当在不影响试验效果的前提下,尽可能地减少试验次数。
正交设计就是解决这个问题的有效方法。
正交设计的主要工具是正交表。
正交表:
右图是一個比较典型 的正交表. “L”表示此为正交表, “8”表示試驗次數
,
“2”表示兩水平,
“7”表示試驗最多可 以有7個因素 (包括單 個因素及其交互作 用)

DOE田口实验设计

DOE田口实验设计

DOE实验设计(田口方法)▲设计思想现代企业已经充分意识到了品质管理的重要性,不少成功企业已将品质管理(QC)很好的融入到了产品研发及生产的各个阶段。

众所周知,品质管理包括离线品管和线上品管两个部分。

离线品管活动发生在产品和制程的设计阶段。

DOE实验设计中的田口方法是一种统计方法,利用该方法可以简化或是删除许多统计设计工作。

英瑞奇特推出此课程,旨在向您讲述如何将各项实验方法运用于产品和制程设计中,以便更有效的降低杂音因素的敏感影响,减少过程中各项的变差,从而使产品及制程设计臻于完美。

一、田口方法的涵义随着市场竞争的日趋激烈,企业只有牢牢把握市场需求,用较短的时间开发出低成本、高质量的产品,才能在竞争中立于不败之地。

在众多的产品开发方法中,田口方法不失为提高产品质量,促进技术创新,增强企业竞争力的理想方法。

田口方法是日本田口玄一博士创立的,其核心内容被日本视为“国宝”。

日本和欧美等发达国家和地区,尽管拥有先进的设备和优质原材料,仍然严把质量关,应用田口方法创造出了许多世界知名品牌田口方法是一种低成本、高效益的质量工程方法,它强调产品质量的提高不是通过检验,而是通过设计。

其基本思想是把产品的稳健性设计到产品和制造过程中,通过控制源头质量来抵御大量的下游生产或顾客使用中的噪声或不可控因素的干扰,这些因素包括环境湿度、材料老化、制造误差、零件间的波动等等。

田口方法不仅提倡充分利用廉价的元件来设计和制造出高品质的产品,而且使用先进的试验技术来降低设计试验费用,这也正是田口方法对传统思想的革命性改变.为企业增加效益指出了一个新方向。

田口方法的目的在于,使所设计的产品质量稳定、波动性小,使生产过程对各种噪声不敏感。

在产品设计过程中,利用质量、成本、效益的函数关系,在低成本的条件下开发出高质量的产品。

田口方法认为,产品开发的效益可用企业内部效益和社会损失来衡量.企业内部效益体现在功能相同条件下的低成本,社会效益则以产品进人消费领域后给人们带来的影响作为衡量指标。

实验设计─田口方法

实验设计─田口方法

实验设计─田口方法实验设计是科学研究中非常重要的一环,能够有效地提高实验效率和准确性。

田口方法是一种常用的实验设计方法,可以帮助研究人员在有限的资源和时间下,确定最优的因素组合,提高产品质量和工艺效率。

本文将以田口方法为基础,设计一个关于某化工工艺优化的实验。

1. 实验目的:通过田口方法,优化某化工工艺的反应条件和操作参数,以提高产品产率和纯度。

2. 实验因素:(1)温度:低温(20℃)、常温(25℃)、高温(30℃)(2)反应时间:短时(5min)、适中(10min)、长时(15min)(3)催化剂用量:低量(0.1mol%)、适量(0.3mol%)、高量(0.5mol%)3. 响应变量:(1)产品产率:所需产品的产量百分比(2)产品纯度:目标产品的纯度百分比4. 实验设计:(1)确定实验水平:根据实验目的和工艺要求,确定每个因素的实验水平数。

在本实验中,温度有3个水平,反应时间有3个水平,催化剂用量有3个水平,因此总共有27个实验条件。

(2)随机排列实验顺序:为了避免实验结果受到顺序影响,需要随机排列实验顺序,保证每个实验条件的出现概率相等。

(3)进行实验:按照设计好的实验顺序,依次进行每个实验条件。

记录每个实验条件下的产量和纯度数据。

(4)数据分析:根据实验结果,进行数据分析,找出最佳的因素组合。

可以借助田口方法中的正交表进行实验效果的评价和因素优化。

(5)确定最佳因素组合:综合考虑产量和纯度两个响应变量,确定最佳的因素组合,以达到实验目的和工艺要求。

5. 预期结果:通过田口方法进行实验设计和数据分析,我们可以得到最佳的因素组合,从而优化某化工工艺的反应条件和操作参数。

预期结果是提高产品产率和纯度,降低生产成本和工艺风险。

总之,田口方法是一种有效的实验设计方法,可以帮助研究人员在有限的资源和时间下,确定最优的因素组合。

本文以某化工工艺的优化为例,详细介绍了田口方法的实验设计步骤和预期结果。

田口方法_

田口方法_

水平2 1% 细 53% 新组合 1200公斤 4%
G:长石含量
0%

5%
不是去改变环境(重新设计和建造新窑),而是改变产 品生产的某些参数,这些参数的改变可使产品更具抗干 扰的能力,从而减少环境温度差异对产品质量的影响。
信号因素 由产品或系统使用人或操作人设定的参数, 用以表示对产品所期望的质量参数。 控制因素 指的是工程设计师可通过自由设定来对产 品或者是系统的品质进行设计的参数。 噪声因素 指那些设计工程师所不能控制、极难控制 或者是控制成本极高的因素。
从工程角度来看田口方法就是在产品设计或设计过程中, 在不增加成本(甚至降低成本)的前提下,突破设计瓶颈 或改善生产制造流程,提高产品品质的一种试验方法。 核心思想:以最少的实验次数确定最佳的参数组合,快速筛 选出最优设计方案。(品质工程原理)
2田口方法工具
(正交表)
(信噪比)
品质:产品出厂后给予社会的最小损失
对于多因素试验,正交试验设计是简单常 用的一种试验设计方法,其设计基本程序 包括试验方案设计及试验结果分析两部分。
2.3.1试验方案设计
试 验 目 的 与 要 求
试 验 指 标
选 因 素 , 定 水 平
选 择 正 交 表
表 头 设 计
试 验 方 案
2.3.2试验方案设计实例
实例1.为提高山楂原料的利用率,研究酶法液化工艺制造山 楂原汁,拟通过正交试验来寻找酶法液化的最佳工艺条件。
主要成分,分别添加不同增效剂、被膜剂和不同的浸泡时间,进行4因素4 水平正交试验。试设计试验方案。 ① 明确目的,确定指标。本例的目的是通过试验,寻找一个最佳的鸭肉天然
复合保鲜剂。
② 选因素、定水平。根据专业知识和以前研究结果,选择4个因素,每个因素

现代设计方法之稳健性设计

现代设计方法之稳健性设计
-把质量设计进产品里面去; -量化分析并确定产品的最佳参数和合理容差; -用质量损失和经济性角度进行质量设计; -实现低成本、高质量的设计效果。
三个阶段
参数设计
决定系统中各参数的选择,使产品的性能既能达到目标 值,又使它在各种条件下波动小
系统设计
对产品进行整个系统和整个结构的设计 主要由专业技术人员完成
为了定量描述产品质量损失,田口提出了“质量损失函数”的概念,并以信 噪比来衡量设计参数的稳健程度。
质量损失函数
产品功能波动客观存在,有功能波动就会造成社会损失。所 谓质量损失函数是指定量表述产品功能波动与社会损失之间关系 的函数。
当产品特性值y与目标值m不相等时,就认为造成了质量损失。
L(y)=k(y-m)² 其中L(y)为质量损失函数,m—目标值
外噪声
由于环境因素和使用条件的波动或变化,引起质量特性值 的波动。例如,温度、湿度、位置等。
内噪声
由于在储存或使用过程中,随着时间的推移,发生材料变 质、劣化现象而引起质量特性值的波动。例如,电器产品 绝缘材料的老化等。
质量的变异性
那个设计更好?
1
产品的质量特性指标往往会有差异
即使完全相同的生产条件,由于种种
稳健性设计是田口玄一创立的质量工程观中的一个分支, 由田口玄一发展而成,因此通常被人们称之为田口方法(Taguchi Method)。
田口方法是一种低成本、高效益的质量工程方法,它强调 产品质量的提高不是通过检验,而是通过设计。
稳健性设计基本认识
传统的设计思想认为:只有质量最好的元器件 (零部件)才能组装成质量最好的整机;只有 最严格的工艺条件才能制造出质量最好的产品 。总之,成本越高,产品的质量越好,可靠性 越高。

田口实验

田口实验

望小特性: 望大特性: 望目特性:
1 n 1 2 S / N = −10 lg ∑ n y i = 1 i
1 n 2 S / N = −10 lg ∑ ( yi − m ) n i =1
动态特性SN比-零比例式
一、零比例式 有效除数 r为 总波动平方
Y = βM
可以得出最佳组合是E1,A1,H2,D3,C3,B3,G3,F3, 和我们分析结果一致。所以认为我们程序在处理静态特性的结果是比较理想的。
测试仪(动态)
某热膨胀仪的主要用途是测量金属材料的等温转变曲线、材料的临界点及热膨胀系数。 其结构如下图所示。
水冷系统 测 控 仪 热电偶 函数记录仪 炉体 试样 电感测量仪
试验影响因素有7个,都是与配料有关。因素的 水平有2个。如表1:
因子水准表
因子符号 A
因子名称 石灰含量
水平一 5%
水平二 1%
水平三
B
寿山石含量
43%
53%63%CFra bibliotek寿山石种类
新配方加添加物
原来配方
新配方无添加物
D E
烧粉含量 添加物粒径
0% 小一些
1% 原来粒径
3% 大一些
F G H
烧成少数 长石含量 黏土种类
谢谢大家 谢谢 大家
热电偶
长图记录仪
图4-12 热膨胀仪结构简图 该仪器的炉体温度采用TDW-89系列可变程序温控器自动控制,可以实现任意速率的 升温和降温。但用传统实验方法,长期不能解决温控系统控制精度问题,从而影响了整 个测试系统的测试精度。为了改进热膨胀测试精度,采用田口方法优化温控系统最佳参 数。
因子选择
根据专业知识,选择五个可控因素。其中比例带P、积分时间I、微分时间D和采样时间t 为温控系统参数。此外,炉体冷却系统的冷却速度V也是温控精度的影响因素。 表4-4 可控因素水平 因素 水平 1 2 3 冷却速 度 V 大 小 比例带 P(%) 20 40 60 积分时间 I/s 100 200 300 微分时间 D/s 50 100 200 采样时间 t/s 1 2 4

田口方法实战训练ppt课件

田口方法实战训练ppt课件
1962年田口博士获得戴明个人奖。
可编辑课件PPT
2
田口的质量哲学
定义:“质量是产品出厂后给社会带来的损失”。
品质不是检验出来的,品质必须设计到产品中去;
品质的目标是:
“最小化与目标值的偏差,且能免于噪音的影响”;
品质成本应当用与标准值偏移的函数关系来衡量——这就 是著名的“质量损失函数模型”。
综合误差法: 选择少数几个点,如3-4个
最不利误差法: 选定2个端点—— 正偏,正负
可编辑课件PPT
18
田口正交表样式(简化)
实验次数: 9*2= 18 次
可编辑课件PPT
19
信噪比 (S/N)
田口博士创造性提出了信噪比的概念,以S/N比 作为分析改善对象和评价方案的核心指标。
S/N比的特点: 综合反映关于响应位置和离散度两个特性的信
S/N = 信号/噪音
该比值越达,表明品质越好。 单位 以分贝(db)表示。
可编辑课件PPT
21
S/N 理论表达式
设实际测量值y与目标值m之偏差为y1、 y2、…,yn,则有:
总误差: ST = yi2
平均误差: 误差方差:
Sm = Ve =
1 (
n
yi2 )
ST Sm n 1
信噪比:
息,从而达到获得最理想的品质效果。 ——这也正是稳健设计的核心机理。虽然缺少统计
理论支持,但实践证明它是最优良的方法。
可编辑课件PPT20Fra bibliotekS/N 之来源
在通讯工程里,常以电讯的输出“信号”与“噪音” 之比作为品质指标,以此值越大表示通讯品质越好。S/N 比的原始定义是指信号噪音比,,可用以下公式表示:
可编辑课件PPT

实验设计─田口方法

实验设计─田口方法

7
)
硬商品买卖在阿里巴巴 软商品交易在阿里巧巧
二階段的實驗步驟
階段一:篩選試驗
決定y
把有可能影響到y的x都要考慮並做實驗,以 挑選出關鍵x
階段二:最佳條件
決定y
針對已挑出的關鍵x,進行最佳條件的試驗, 以決定最佳的x值。
控制階段
決定y
針對關鍵少數的x參數,進行持續的控制, 以spc監控其穩定性。
8
11
)
硬商品买卖在阿里巴巴 软商品交易在阿里巧巧
變異和雜音
•雜音因素就是使機能特性,如燃料效率、 換檔壓力、磨耗和轉向力等偏離目標值 的因素。雜音因素可分為三類:
–外部雜音─產品使用時,因使用條件,如溫度、濕 度、灰塵等而使機能發生變異,此類條件為外部雜 章因素。
–內部雜音(劣化)─產品組件的劣化。
•廠商現在必須致力於在生產前就使複雜的產品 能達到高品質。
•減少變異亦即要有較大的再現性和可靠性,而 最終目的就是要為製造商和消費者節省更多的 成本。
10பைடு நூலகம்
)
硬商品买卖在阿里巴巴 软商品交易在阿里巧巧
討論題
• 實驗設計的目的是為了什麼? • 實驗設計是線上品管還是線外品管? • 為什麼線外品管要比線上品管早做呢?
E:原材料加料量 1300公斤
1200公斤
浪費料回收量 0%
4%
長石量
0%
5%
19
)
硬商品买卖在阿里巴巴 软商品交易在阿里巧巧
實驗方法
•一次一個因素法
–每次只改變一個因子,而其他因子保持固定。 –但它的缺點是不能保證結果的再現性,尤其
是當有交互作用時。
•例如在進行A1和A2的比較時,必須考慮 到其他因子,但目前的方法無法達成。

第六章稳健设计

第六章稳健设计

参数设计
参数设计
参数设计
参数设计
4. 外设计 选用正交表进行外设计,采用内外表直积法,其
直积方案如表6-5所示:
参数设计
5.获得质量特性数据 由于电流强度可以计算,故由
直接求出质量特性。 现以内表第一号方案为例说明其计算过程。首先给出
第一号方案的外设计方案表(表6-6)。
参数设计
参数设计
下面进行SN比分析和灵敏度分析。
信噪比分析 由SN比方差分析表可以看出,电 阻R为高度显著因素,电感L为次要因素。并且 从表6-8可见,R的最优水平(η分析中Ti1最大 相应的水平)为 ,L的最优水平为 (因素L的 水平可任意选择),因此最优水平组合为 ,它 使SN比η值最大,是稳定性最好的设计方案。
参数设计
二、参数设计
参数设计就是应用参数组合与输出质量特 性的非线性关系,通过对试验数据的定量统计分 析,找出成本最低、稳定性最好的参数组合的过 程。
容差设计
三、 容差设计 容差设计就是在参数设计基础上,在总成本
最小的原则下,采取最佳决策确定误差因素的最 合理容差的过程。
➢对产品开发而言,一般要进行三个阶段设计的 全部程序; ➢对技术开发而言,通常不进行容差设计。
参数设计
2. 内设计 选用正交表进行内设汁。设计方案如表6-3所示:
参数设计
3. 制定误差因素水平表 误差因素有4个,它们是电压,频率,电阻和电感。
根据外界客观环境,电压和频率的水平选为:
电阻和电感采用三级品,波动为土10%,其水平 如下:
参数设计
第二水平=内表给出的中心值 第一水平=内表给出的中心值×0.9 第三水平=内表给出的中心值×1.1 以上9个方案的误差因素水平表如表6-4:

田口方法稳健设计的详细教程案例

田口方法稳健设计的详细教程案例

功能波动
产品的质量特性y不仅与目标值m之间可能会存 在差异,而且由于来自使用环境、时间因素以 及生产时各种条件等多方面的影响而产生波动, 我们称此为功能波动。为了减少产品的功能波 动,进而减少波动造成的损失,必须分析产生 功能波动的原因,以便采取正确有效的对策。 影响产品功能波动的原因大致可以分为以下3 种。
例如长时间进行储存的产品,当开始使用时, 构成该产品的材料、零部件随着时间的推移将 产生质的变化从而引起产品的功能波动。如某 种电阻的阻值在储存10年后,比初始值增大约 10%。又如当产品长时间使用后,它的一些零 部件的尺寸已发生磨损,从而引起产品的功能 波动。
产品间波动
在相同生产条件下,生产制造出来的一批产品, 由于机器、材料、加工方法、操作者、计测方 法和环境(简称5M1E)等生产条件的微小变 化,而引起的产品制造误差称为产品间波动。
计点特性是指单位产品上的质量缺陷的个数,它取 值0,1,2等。如棉布上的疵点数、铸件上的砂眼 数等均为计点特性。
计数分类值特性是指对单位产品按其质量好坏先划 分为若干个等级,并对每个等级规定合适的数值。 例如:将产品质量分为好、中、差3个等级,并规 定好为1、中为2、差为3。
望目特性
计量特性可以进一步分为望目特性、望小特性 和望大特性。
田口三次设计
邵家骏 教授
静态特性参数设计
产品质量是指产品的一组固有特性满足要求的程 度。这组固有特性称之为质量特性,它包括性能、 可靠性、安全性、经济性、维修性和环境适应性 等。采用哪些质量特性来反映产品的质量状况, 这是专业技术问题。而选取什么性质的质量特性 的分类。质量特性可分为计量和计数2大类。计 量特性又分为望目特性、望小特性和望大特性3 种类型。计数特性又可分为计件特性、计点特性 和计数分类值特性3种类型。质量特性还可分为 动态特性和静态特性2类。质量特性还可根据产 品质量形成的各个阶段(位置)的前后分为下位 特性和上位特性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档