2020年惠州市惠东县中考数学模拟试卷含答案解析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴∠AOC=2∠ABC=140°;
故选A.
5.下列图形中,是轴对称图形但不是中心对称图形的是( )
A.正三角形B.菱形C.平行四边形D.正六边形
【考点】中心对称图形;轴对称图形.
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项正确;
【解答】解:将16780000用科学记数法表示为:1.678×107.
故选:C.
3.某班10名学生体育测试的成绩分别为(单位:分)58,60,59,52,58,55,57,58,49,57(体育测试这次规定满分为60分),你们这组数据的众数,中位数分别是( )
A.58,57.5B.57,57.5C.58,58D.58,57
A.16.7×106B.1.68×107C.1.678×107D.1.678×108
3.某班10名学生体育测试的成绩分别为(单位:分)58,60,59,52,58,55,57,58,49,57(体育测试这次规定满分为60分),你们这组数据的众数,中位数分别是( )
A.58,57.5B.57,57.5C.58,58D.58,57
A.120°B.90°C.60°D.30°
【考点】旋转的性质.
【分析】利用旋转的性质计算.
【解答】解:∵∠ABC=60°,
∴旋转角∠CBC1=180°﹣60°=120°.
∴这个旋转角度等于120°.
故选:A.
10.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是( )
五、解答题(三)(本大题3小题,每小题9分,共27分)
23.为促进资源节约型和环境友好型社会建设,根据国家发改委实施“阶梯电价”的有关文件要求,广州市决定从2020年7月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准(非夏季标准)见下表:
一户居民一个月用电量的范围
电费价格(单位:元/千瓦时)
D、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x= = = <0,则对称轴应在y轴左侧,与图象相符,故D选项正确;
解法二:系统分析
当二次函数开口向下时,﹣m<0,m>0,
一次函数图象过一、二、三象限.
当二次函数开口向上时,﹣m>0,m<0,
对称轴x= <0,
1.﹣2的倒数是( )
A.2B.﹣2C. D.﹣
【考点】倒数.
【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.
【解答】解:∵﹣2×( )=1,
∴﹣2的倒数是﹣ .
故选D.
2.我国建造的长江三峡水电站,估计总装机容量达16780000千瓦,16780000用科学记数法表示为( )
这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过4次旋转而得到,
每次旋转的度数为360°除以5,为72度.
故答案为:4;72.
13Fra Baidu bibliotek分解因式:2ax﹣6ay=2a(x﹣3y).
【考点】因式分解-提公因式法.
【分析】直接提取公因式2a,得出答案即可.
【解答】解:2ax﹣6ay=2a(x﹣3y).
4.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的度数等于( )
A.140°B.130°C.120°D.110°
5.下列图形中,是轴对称图形但不是中心对称图形的是( )
A.正三角形B.菱形C.平行四边形D.正六边形
6.计算:(﹣2x)3=( )
A.6x3B.﹣6x3C.﹣8x3D.8x3
21.如图.在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F,点E是AB的中点,连接EF.
(1)求证:EF∥BC;
(2)若四边形BDFE的面积为6,求△ABD的面积.
22.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的 倍,购进数量比第一次少了30支.求第一次每支铅笔的进价是多少元?
(1)用尺规作图作线段AC的垂直平分线l(保留作图痕迹,不要求写作法、证明);
(2)若直线l与AB、AC分别相交于D、E两点,求DE的长度.
四、解答题(二)(本大题3小题,每小题7分,共21分)
20.某商场在今年“六•一”儿童节举行了购物摸奖活动.摸奖箱里有四个标号分别为1,2,3,4的质地、大小都相同的小球,任意摸出一个小球,记下小球的标号后,放回箱里并摇匀,再摸出一个小球,又记下小球的标号.商场规定:两次摸出的小球的标号之和为“8”或“6”时才算中奖.请结合“树状图法”或“列表法”,求出顾客小彦参加此次摸奖活动时中奖的概率.
24.如图,已知等边△ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.
(1)求证:DF是⊙O的切线;
(2)求FG的长;
(3)求tan∠FGD的值.
25.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.
【解答】解:(﹣2x)3=﹣8x3.
故选:C.
7.数据2、﹣1、0、5、 中,比0小的数是( )
A.2B.﹣1C. D.5
【考点】有理数大小比较.
【分析】根据正数大于负数,两个负数比较大小,绝对值大的负数反而小,可得答案.
【解答】解:∵﹣1<0< <2<5,
∴比0小的数是﹣1,
故选:B.
8.如果关于x的一元二次方程x2﹣6x+2k=0有两个实数根,那么实数k的取值范围是( )
不超过200千瓦时的部分
0.61
超过200千瓦时,但不超过400千瓦时的部分
0.66
超过400千瓦时的部分
0.91
(1)如果小明家3月用电120度,则需交电费多少元?
(2)求“超过200千瓦时,但不超过400千瓦时的部分”每月电费y(元)与用电量x(千瓦时)之间的函数关系式;
(3)试行“阶梯电价”收费以后,小明家用电量多少千瓦时,其当月的平均电价每千瓦时不超过0.71元?
12.如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过次旋转而得到,每一次旋转度.
13.分解因式:2ax﹣6ay=.
14.如果两个相似三角形的一组对应边分别为3cm和5cm,且较小三角形的周长为15cm,则较大三角形周长为cm.
15.已知反比例函数 的图象在第二、四象限,则m的取值范围是.
A、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;
B、由函数y=mx+m的图象可知m<0,对称轴为x= = = <0,则对称轴应在y轴左侧,与图象不符,故B选项错误;
C、由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;
2020年广东省惠州市惠东县中考数学模拟试卷
一、选择题(本大题5小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.
1.﹣2的倒数是( )
A.2B.﹣2C. D.﹣
2.我国建造的长江三峡水电站,估计总装机容量达16780000千瓦,16780000用科学记数法表示为( )
16.如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有个,第n幅图中共有个.
三、解答题(一)(本大题3小题,每小题6分,共18分)
17.计算:( ﹣2)0+( )﹣1+4cos30°﹣|﹣ |.
18.先化简,再求值: ,其中 .
19.如图,Rt△ABC的斜边AB=5,AC=3.
A.120°B.90°C.60°D.30°
10.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是( )
A. B. C. D.
二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.
11.正五边形的外角和等于(度).
【考点】众数;中位数.
【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
【解答】解:数据58出现了3次,出现次数最多,故这组数据的众数是58;
将这组数据从小到大的顺序排列49,52,55,57,57,58,58,58,59,60,
所以中位数是(57+58)÷2=57.5.
故选A.
4.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的度数等于( )
A.140°B.130°C.120°D.110°
【考点】圆周角定理.
【分析】欲求∠AOC,又已知一圆周角,可利用圆周角与圆心角的关系求解.
【解答】解:∵∠AOC和∠ABC是同弧所对的圆心角和圆周角,
7.数据2、﹣1、0、5、 中,比0小的数是( )
A.2B.﹣1C. D.5
8.如果关于x的一元二次方程x2﹣6x+2k=0有两个实数根,那么实数k的取值范围是( )
A. B. C. D.
9.如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于( )
(1)求抛物线的解析式;
(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.
2020年广东省惠州市惠东县中考数学模拟试卷
参考答案与试题解析
一、选择题(本大题5小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.
A. B. C. D.
【考点】根的判别式;解一元一次不等式.
【分析】由方程有两个实数根结合根的判别式,得出关于k的一元一次不等式,解不等式即可得出结论.
【解答】解:∵关于x的一元二次方程x2﹣6x+2k=0有两个实数根,
∴△=(﹣6)2﹣4×1×2k=36﹣8k≥0,
解得:k≤ .
故选A.
9.如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于( )
A. B. C. D.
【考点】二次函数的图象;一次函数的图象.
【分析】本题主要考查一次函数和二次函数的图象所经过的象限的问题,关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x= ,与y轴的交点坐标为(0,c).
【解答】解:解法一:逐项分析
B、是轴对称图形,又是中心对称图形,故此选项错误;
C、不是轴对称图形,是中心对称图形,故此选项错误;
D、是轴对称图形,又是中心对称图形,故此选项错误.
故选:A.
6.计算:(﹣2x)3=( )
A.6x3B.﹣6x3C.﹣8x3D.8x3
【考点】幂的乘方与积的乘方.
【分析】直接利用积的乘方运算法则化简求出答案.
A.16.7×106B.1.68×107C.1.678×107D.1.678×108
【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
故答案为:360°.
12.如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过4次旋转而得到,每一次旋转72度.
【考点】旋转的性质.
【分析】根据题意,五角星的五个角全等,根据图形间的关系可得答案.
【解答】解:根据题意,五角星的顶点是一个正五边形的五个顶点,
这时二次函数图象的对称轴在y轴左侧,
一次函数图象过二、三、四象限.
故选:D.
二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.
11.正五边形的外角和等于360(度).
【考点】多边形内角与外角.
【分析】根据多边形的外角和等于360°,即可求解.
【解答】解:任意多边形的外角和都是360°,故正五边形的外角和为360°.
故选A.
5.下列图形中,是轴对称图形但不是中心对称图形的是( )
A.正三角形B.菱形C.平行四边形D.正六边形
【考点】中心对称图形;轴对称图形.
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项正确;
【解答】解:将16780000用科学记数法表示为:1.678×107.
故选:C.
3.某班10名学生体育测试的成绩分别为(单位:分)58,60,59,52,58,55,57,58,49,57(体育测试这次规定满分为60分),你们这组数据的众数,中位数分别是( )
A.58,57.5B.57,57.5C.58,58D.58,57
A.16.7×106B.1.68×107C.1.678×107D.1.678×108
3.某班10名学生体育测试的成绩分别为(单位:分)58,60,59,52,58,55,57,58,49,57(体育测试这次规定满分为60分),你们这组数据的众数,中位数分别是( )
A.58,57.5B.57,57.5C.58,58D.58,57
A.120°B.90°C.60°D.30°
【考点】旋转的性质.
【分析】利用旋转的性质计算.
【解答】解:∵∠ABC=60°,
∴旋转角∠CBC1=180°﹣60°=120°.
∴这个旋转角度等于120°.
故选:A.
10.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是( )
五、解答题(三)(本大题3小题,每小题9分,共27分)
23.为促进资源节约型和环境友好型社会建设,根据国家发改委实施“阶梯电价”的有关文件要求,广州市决定从2020年7月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准(非夏季标准)见下表:
一户居民一个月用电量的范围
电费价格(单位:元/千瓦时)
D、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x= = = <0,则对称轴应在y轴左侧,与图象相符,故D选项正确;
解法二:系统分析
当二次函数开口向下时,﹣m<0,m>0,
一次函数图象过一、二、三象限.
当二次函数开口向上时,﹣m>0,m<0,
对称轴x= <0,
1.﹣2的倒数是( )
A.2B.﹣2C. D.﹣
【考点】倒数.
【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.
【解答】解:∵﹣2×( )=1,
∴﹣2的倒数是﹣ .
故选D.
2.我国建造的长江三峡水电站,估计总装机容量达16780000千瓦,16780000用科学记数法表示为( )
这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过4次旋转而得到,
每次旋转的度数为360°除以5,为72度.
故答案为:4;72.
13Fra Baidu bibliotek分解因式:2ax﹣6ay=2a(x﹣3y).
【考点】因式分解-提公因式法.
【分析】直接提取公因式2a,得出答案即可.
【解答】解:2ax﹣6ay=2a(x﹣3y).
4.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的度数等于( )
A.140°B.130°C.120°D.110°
5.下列图形中,是轴对称图形但不是中心对称图形的是( )
A.正三角形B.菱形C.平行四边形D.正六边形
6.计算:(﹣2x)3=( )
A.6x3B.﹣6x3C.﹣8x3D.8x3
21.如图.在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F,点E是AB的中点,连接EF.
(1)求证:EF∥BC;
(2)若四边形BDFE的面积为6,求△ABD的面积.
22.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的 倍,购进数量比第一次少了30支.求第一次每支铅笔的进价是多少元?
(1)用尺规作图作线段AC的垂直平分线l(保留作图痕迹,不要求写作法、证明);
(2)若直线l与AB、AC分别相交于D、E两点,求DE的长度.
四、解答题(二)(本大题3小题,每小题7分,共21分)
20.某商场在今年“六•一”儿童节举行了购物摸奖活动.摸奖箱里有四个标号分别为1,2,3,4的质地、大小都相同的小球,任意摸出一个小球,记下小球的标号后,放回箱里并摇匀,再摸出一个小球,又记下小球的标号.商场规定:两次摸出的小球的标号之和为“8”或“6”时才算中奖.请结合“树状图法”或“列表法”,求出顾客小彦参加此次摸奖活动时中奖的概率.
24.如图,已知等边△ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.
(1)求证:DF是⊙O的切线;
(2)求FG的长;
(3)求tan∠FGD的值.
25.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.
【解答】解:(﹣2x)3=﹣8x3.
故选:C.
7.数据2、﹣1、0、5、 中,比0小的数是( )
A.2B.﹣1C. D.5
【考点】有理数大小比较.
【分析】根据正数大于负数,两个负数比较大小,绝对值大的负数反而小,可得答案.
【解答】解:∵﹣1<0< <2<5,
∴比0小的数是﹣1,
故选:B.
8.如果关于x的一元二次方程x2﹣6x+2k=0有两个实数根,那么实数k的取值范围是( )
不超过200千瓦时的部分
0.61
超过200千瓦时,但不超过400千瓦时的部分
0.66
超过400千瓦时的部分
0.91
(1)如果小明家3月用电120度,则需交电费多少元?
(2)求“超过200千瓦时,但不超过400千瓦时的部分”每月电费y(元)与用电量x(千瓦时)之间的函数关系式;
(3)试行“阶梯电价”收费以后,小明家用电量多少千瓦时,其当月的平均电价每千瓦时不超过0.71元?
12.如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过次旋转而得到,每一次旋转度.
13.分解因式:2ax﹣6ay=.
14.如果两个相似三角形的一组对应边分别为3cm和5cm,且较小三角形的周长为15cm,则较大三角形周长为cm.
15.已知反比例函数 的图象在第二、四象限,则m的取值范围是.
A、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;
B、由函数y=mx+m的图象可知m<0,对称轴为x= = = <0,则对称轴应在y轴左侧,与图象不符,故B选项错误;
C、由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;
2020年广东省惠州市惠东县中考数学模拟试卷
一、选择题(本大题5小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.
1.﹣2的倒数是( )
A.2B.﹣2C. D.﹣
2.我国建造的长江三峡水电站,估计总装机容量达16780000千瓦,16780000用科学记数法表示为( )
16.如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有个,第n幅图中共有个.
三、解答题(一)(本大题3小题,每小题6分,共18分)
17.计算:( ﹣2)0+( )﹣1+4cos30°﹣|﹣ |.
18.先化简,再求值: ,其中 .
19.如图,Rt△ABC的斜边AB=5,AC=3.
A.120°B.90°C.60°D.30°
10.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是( )
A. B. C. D.
二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.
11.正五边形的外角和等于(度).
【考点】众数;中位数.
【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
【解答】解:数据58出现了3次,出现次数最多,故这组数据的众数是58;
将这组数据从小到大的顺序排列49,52,55,57,57,58,58,58,59,60,
所以中位数是(57+58)÷2=57.5.
故选A.
4.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的度数等于( )
A.140°B.130°C.120°D.110°
【考点】圆周角定理.
【分析】欲求∠AOC,又已知一圆周角,可利用圆周角与圆心角的关系求解.
【解答】解:∵∠AOC和∠ABC是同弧所对的圆心角和圆周角,
7.数据2、﹣1、0、5、 中,比0小的数是( )
A.2B.﹣1C. D.5
8.如果关于x的一元二次方程x2﹣6x+2k=0有两个实数根,那么实数k的取值范围是( )
A. B. C. D.
9.如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于( )
(1)求抛物线的解析式;
(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.
2020年广东省惠州市惠东县中考数学模拟试卷
参考答案与试题解析
一、选择题(本大题5小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.
A. B. C. D.
【考点】根的判别式;解一元一次不等式.
【分析】由方程有两个实数根结合根的判别式,得出关于k的一元一次不等式,解不等式即可得出结论.
【解答】解:∵关于x的一元二次方程x2﹣6x+2k=0有两个实数根,
∴△=(﹣6)2﹣4×1×2k=36﹣8k≥0,
解得:k≤ .
故选A.
9.如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于( )
A. B. C. D.
【考点】二次函数的图象;一次函数的图象.
【分析】本题主要考查一次函数和二次函数的图象所经过的象限的问题,关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x= ,与y轴的交点坐标为(0,c).
【解答】解:解法一:逐项分析
B、是轴对称图形,又是中心对称图形,故此选项错误;
C、不是轴对称图形,是中心对称图形,故此选项错误;
D、是轴对称图形,又是中心对称图形,故此选项错误.
故选:A.
6.计算:(﹣2x)3=( )
A.6x3B.﹣6x3C.﹣8x3D.8x3
【考点】幂的乘方与积的乘方.
【分析】直接利用积的乘方运算法则化简求出答案.
A.16.7×106B.1.68×107C.1.678×107D.1.678×108
【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
故答案为:360°.
12.如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过4次旋转而得到,每一次旋转72度.
【考点】旋转的性质.
【分析】根据题意,五角星的五个角全等,根据图形间的关系可得答案.
【解答】解:根据题意,五角星的顶点是一个正五边形的五个顶点,
这时二次函数图象的对称轴在y轴左侧,
一次函数图象过二、三、四象限.
故选:D.
二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.
11.正五边形的外角和等于360(度).
【考点】多边形内角与外角.
【分析】根据多边形的外角和等于360°,即可求解.
【解答】解:任意多边形的外角和都是360°,故正五边形的外角和为360°.