人教版九年级数学上册教案-24.1.2 垂直于弦的直径2带教学反思

合集下载

人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计

人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计

人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计一. 教材分析人教版数学九年级上册24.1.2《垂直于弦的直径》是圆的一部分性质的教学内容。

本节课主要让学生了解并掌握垂直于弦的直径的性质,能灵活运用这一性质解决相关问题。

教材通过实例引导学生探究,培养学生的观察、思考和动手能力,为后续圆的弦和圆弧的学习打下基础。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和定理有一定的理解。

但垂直于弦的直径这一性质较为抽象,学生可能难以理解。

因此,在教学过程中,要注重引导学生通过观察、操作、思考、讨论等方式,逐步掌握性质,提高学生的空间想象和逻辑思维能力。

三. 教学目标1.了解垂直于弦的直径的性质,能证明并运用这一性质解决相关问题。

2.培养学生的观察、思考、动手和合作能力。

3.提高学生对圆的一部分性质的兴趣,为后续圆的学习打下基础。

四. 教学重难点1.垂直于弦的直径的性质及其证明。

2.灵活运用垂直于弦的直径的性质解决实际问题。

五. 教学方法1.情境教学法:通过实例引导学生观察、思考,激发学生的学习兴趣。

2.问题驱动法:提出问题,引导学生探究,培养学生的解决问题能力。

3.合作学习法:分组讨论,共同完成任务,提高学生的团队协作能力。

4.实践操作法:让学生动手操作,加深对性质的理解。

六. 教学准备1.教学课件:制作课件,展示实例和动画,辅助教学。

2.教学素材:准备相关的几何图形,便于学生观察和操作。

3.教学设备:投影仪、计算机、黑板、粉笔等。

七. 教学过程1.导入(5分钟)利用实例引入课题,展示垂直于弦的直径的性质,激发学生的兴趣。

2.呈现(10分钟)展示垂直于弦的直径的性质,引导学生观察、思考,并提出问题。

3.操练(10分钟)分组讨论,让学生动手操作,证明垂直于弦的直径的性质。

4.巩固(10分钟)出示练习题,让学生独立解答,巩固所学知识。

5.拓展(10分钟)出示一些实际问题,让学生运用垂直于弦的直径的性质解决,提高学生的应用能力。

人教版九年级上册24.1.2垂直于弦的直径24.1.2垂直于弦的直径教学设计

人教版九年级上册24.1.2垂直于弦的直径24.1.2垂直于弦的直径教学设计

人教版九年级上册24.1.2垂直于弦的直径教学设计一、教学目标1.理解垂线、垂足、垂直平分线、相交于垂足的两条线段互为垂直。

2.掌握垂直平分线的性质和应用。

3.学会用垂直平分线求直径。

二、教学重难点1.理解垂线、垂足、垂直平分线的定义和性质。

2.通过垂直平分线求直径,需要掌握数学计算方法。

三、教学过程1. 导入让学生在纸上画一个圆并标记圆心、半径,引出“弦”的概念。

通过学生们的互动,让他们理解弦是圆上任意两点之间的线段。

2. 自主学习让学生自己研究什么是垂直平分线,特别是24.1.2题目中所述的垂直于弦的直径是如何求得的。

学生可以结合自己的理解和常识,得出一些初步的结论。

3. 合作探究将学生分成若干小组,每组成员之间相互讨论,举一反三,尝试解决一些类似的问题。

为了使学生更好地理解,可以在板书上示意图,或在黑板上画出一幅图形,引导学生进行讨论。

4. 指导讲解在学生讨论之后,老师进行正式的讲解,着重讲解垂足、垂线和垂直平分线的性质,并解释直径是如何通过垂直平分线来求得的。

5. 练习巩固让学生进行巩固训练,可以把一些类似的题目给学生进行练习,根据不同程度的学生做出相应的安排和调整,以及针对学生的问题进行讲解和指导;也可以让学生在课堂上完成这些题目,检验学生的掌握程度。

例如:已知圆O的直径AB,通过直线CD(平行于AB)构造两条弦EF、GH,其中EF=9cm,GH=7.5cm,请问EF和GH的中垂线上的某点到圆心的距离是多少?6. 总结归纳在巩固训练之后,对项目进行总结归纳,在课堂上梳理本课内容,使学生对本课内容有一个深入的理解。

此外,还要通过本教学的方式来告诉学生,数学并不是枯燥无味的,也充满了趣味和乐趣。

四、教学评价教学方法:•通过讨论和示例引导学生,促进他们的思维和创造力。

•通过现代媒介如电子白板和计算机等来优化整个教学流程。

教学效果:•从学生的态度和反应来看,这种教学方式能够轻松使学生更好地理解课程内容。

人教版九年级数学上册说课稿:24.1.2垂直于弦的直径

人教版九年级数学上册说课稿:24.1.2垂直于弦的直径
人教版九年级数学上册说课稿:24.1.2垂直于弦的直径
一、教材分析
(一)内容概述
本节课选自人教版九年级数学上册第24章1.2节,主题为“垂直于弦的直径”。这一节内容在整个课程体系中具有重要地位,它既是圆的相关知识的延伸,也是培养学生空间想象能力和推理能力的重要环节。在之前的课程中,学生已经学习了圆的基本概念、圆的性质以及圆的方程等知识。在此基础上,本节课将引导学生探索垂直于弦的直径的性质,进一步理解圆的相关定理。
二、学情分析导
(一)学生特点
本节课面向的是九年级的学生,这个年龄段的学生正处于青春期,思维活跃,具有一定的独立思考和自主学习能力。他们在认知水平上,已经具备了基本的几何知识和一定的逻辑推理能力,能够理解并运用圆的相关性质。此外,学生对新鲜事物充满好奇,对数学学科的兴趣也日益浓厚,但学习习惯尚需进一步培养。
2.教学难点:理解并证明垂直于弦的直径平分弦,并且平分弦所对的两条弧。
对于教学重点,教师要引导学生通过观察、思考、实践等方法,掌握垂直于弦的直径的基本概念和性质。对于教学难点,教师要提供适当的引导和提示,帮助学生理解并证明这一性质,从而培养学生的推理能力。同时,教师还要注意关注学生的学习过程,鼓励学生积极参与,提高他们的空间想象能力和解决问题的能力。
(二)学习障碍
在学习本节课之前,学生已经掌握了圆的基本概念、圆的性质以及圆的方程等前置知识。然而,他们在学习过程中可能存在以下障碍:1.对垂直于弦的直径的概念理解不够深刻,容易与其他概念混淆;2.在证明垂直于弦的直径平分弦以及平分弦所对的两条弧的过程中,可能缺乏严密的推理能力;3.在实际问题中,学生可能难以将所学知识灵活运用。
作业的目的是让学生通过练习,进一步巩固所学知识,提高解决问题的能力,培养数学素养。同时,关注学生的个体差异,使每个学生都能在作业中得到有效的提升。

24.1.2垂直于弦的直径教案 2022-2023学年人教版九年级上册数学

24.1.2垂直于弦的直径教案 2022-2023学年人教版九年级上册数学

24.1.2 垂直于弦的直径教案2022-2023学年人教版九年级上册数学本教案旨在帮助学生理解并掌握垂直于弦的直径概念,并通过实例让学生能够运用所学知识解决相关问题。

通过本教案的学习,学生将能够更深入地理解圆的性质与特点,提高数学解题能力。

一、教学目标1.理解并掌握垂直于弦的直径的概念。

2.掌握相关综合运用题的解题方法。

3.培养学生的逻辑思维能力和问题解决能力。

二、教学重点和难点1.教学重点:垂直于弦的直径的概念及应用。

2.教学难点:综合运用题的解题方法。

三、教学准备1.教师准备:–教材:人教版九年级上册数学教材。

–备课笔记和教案。

–相关教学资源。

2.学生准备:–学习用具:课本、笔、纸等。

四、教学过程1. 导入通过提问和讨论,回顾圆的相关概念,如半径、直径、弧等,引导学生思考并复习相关知识。

2. 概念讲解•引入垂直于弦的直径概念,解释其定义和性质。

•强调垂直于弦的直径的特点,即垂直于弦的直径恰好经过弦的中点。

•通过实例和图示让学生更好地理解和记忆该概念。

3. 示例分析通过具体的例题,引导学生运用垂直于弦的直径的性质进行解题。

教师可以选择简单的例题进行分析,逐步引导学生掌握解题方法。

示例题1:在一个圆上,弦AB的长度为6cm,弦AB的中点O到圆心的距离为4cm,求圆的半径。

解题思路:根据垂直于弦的直径的性质,弦AB的中点O到圆心的距离等于圆的半径。

所以,圆的半径为4cm。

4. 综合运用题训练设计一些综合运用题,让学生将所学知识应用到更具挑战性的问题中。

逐步提高学生的解题能力和逻辑思维能力。

练习题1:已知圆上弦CD的长度为10cm,且CD垂直于弦AB,弦AB的长度为8cm。

求圆的半径。

解题思路:根据垂直于弦的直径的性质,弦CD垂直于弦AB,且AB的长度为8cm,那么AB就是CD的直径。

所以,圆的半径为4cm。

5. 总结和归纳对本节课所学的知识进行总结和归纳,提醒学生关注垂直于弦的直径的特点和解题方法,加深对相关概念的理解。

人教版数学九年级初三上册 24.1.2垂直于弦的直径 名师教学教案 教学设计反思

人教版数学九年级初三上册 24.1.2垂直于弦的直径 名师教学教案 教学设计反思

24.1.2垂直于弦的直径敎學目标知识与技能:1.通过观察实验,使学生理解圆的轴对称性.2.掌握垂径定理及过程与方法:通过探索垂径定理的过程,进一步体会和理解研究几何图形的各种方法.情感态度:1.结合本课特点,向学生进行爱国主义教育和美育渗透.2.激发学生探究、发现数学问题的兴趣和欲望.敎學重点:垂径定理,会运用垂径定理等结论解决一些有关证明,计算和作图问题.敎學难点:垂径定理.敎學过程一、情境导入,初步认识你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中心点到弦的距离)为7.2m.你能求出主桥拱的半径吗?(图:课本第82页图24.1-7)敎學说明:赵州桥问题充分体现了数学与应用数学的关系,了解我国古代人民的勤劳与智慧,要解决此问题需要用到这节课的知识,这样较好地调动了学生的积极性,开启了学生的思维,成功地引入新课.二、思考探究,获取新知1.圆的轴对称性问题1用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?敎學说明:学生通过自己动手操作,归纳出圆是轴对称图形,任何一条直径所在直线都是它的对称轴.证明:连结OA、OB.则OA=OB.又∵CD⊥AB∴直径CD所在的直线是AB的垂直平分线∴对于圆上任意一点,在圆上都有关于直线CD的对称点,即⊙O关于直线CD对称.圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.CD是直径,AB是弦,CD⊥AB所以:AE=BEAC=BCAD=BD垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.三、师生互动,课堂小结1.你能说说物体的三视图与投影之间有什么联系吗?2.画一个几何体的三视图时应注意哪些问题?3.你在画图过程中出现过哪些问题?与同伴交流.敎學说明:师生共同回顾,教师在听取学生的看法后,作必要的总结,加深学生对本节知识的理解.。

人教版数学九年级上册教学设计24.1.2《垂直于弦的直径》

人教版数学九年级上册教学设计24.1.2《垂直于弦的直径》

人教版数学九年级上册教学设计24.1.2《垂直于弦的直径》一. 教材分析《垂直于弦的直径》是人教版数学九年级上册第24章《圆》的一部分。

本节课主要内容是让学生掌握垂径定理,理解并证明圆中的一些特殊性质。

通过学习,学生能够运用垂径定理解决实际问题,提高解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的性质、圆的周长和面积等知识。

但部分学生对圆的性质理解不够深入,对圆中特殊位置关系的判断和证明能力较弱。

因此,在教学过程中,要注重引导学生发现圆中的垂直关系,培养学生动手操作和解决问题的能力。

三. 教学目标1.知识与技能:让学生掌握垂径定理,学会运用垂径定理解决圆中的问题。

2.过程与方法:培养学生观察、分析、归纳、推理的能力,提高动手操作和解决问题的能力。

3.情感态度与价值观:激发学生学习圆的性质的兴趣,培养学生团队协作和积极参与的精神。

四. 教学重难点1.重点:垂径定理的理解和运用。

2.难点:圆中特殊位置关系的判断和证明。

五. 教学方法1.情境教学法:通过实物演示、图形展示等手段,引导学生发现圆中的垂直关系。

2.问题驱动法:设计一系列问题,引导学生思考和探究,激发学生的学习兴趣。

3.合作学习法:学生进行小组讨论和探究,培养学生的团队协作能力。

4.讲授法:教师讲解垂径定理及相关性质,引导学生理解和掌握。

六. 教学准备1.准备相关图形和实物,如圆、弦、直径等。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备练习题和测试题,用于巩固和检验学生的学习效果。

七. 教学过程1.导入(5分钟)利用实物或图形,展示圆中的垂直关系,引导学生关注垂直于弦的直径。

提问:你们发现了吗?垂直于弦的直径有什么特殊的性质吗?2.呈现(10分钟)介绍垂径定理的内容,并用多媒体展示垂径定理的证明过程。

让学生理解并掌握垂径定理。

3.操练(10分钟)设计一系列练习题,让学生运用垂径定理解决问题。

教师引导学生思考和探究,解答学生的疑问。

人教版数学九年级上册24.1.2垂直于弦的直径(教案)

人教版数学九年级上册24.1.2垂直于弦的直径(教案)
在总结回顾环节,我询问学生们是否有疑问,很高兴看到他们能够提出一些深入的问题,这表明他们在课堂上进行了思考。但我也意识到,可能有些学生因为害羞或是不确定自己的疑问是否有价值而没有提问。我应该在课堂上创造一个更加开放和包容的氛围,让每位学生都感到自己的疑问是被欢迎的。
3.重点难点解析:在讲授过程中,我会特别强调垂直于弦的直径性质以及它在解决问题中的应用。对于难点部分,我会通过图示和实际操作来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与垂直于弦的直径相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示垂直于弦的直径如何平分弦及所对的两条弧。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便习,我们了解了垂直于弦的直径的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这一性质的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“垂直于弦的直径在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-将垂直于弦的直径性质与已学的圆的其他性质(如圆周角定理、弦切角定理)结合使用。
举例解释:
-对于“平分”概念,通过动态演示或实物操作,让学生直观感受直径对弦及所对弧的平分作用;

人教版九年级数学24.1.2:垂径定理优秀教学案例

人教版九年级数学24.1.2:垂径定理优秀教学案例
3.教学反馈:根据学生的课堂表现、作业完成情况及评价结果,教师应及时给予反馈,针对性地指导学生改进学习方法,提高学习效率。
4.成长记录:鼓励学生建立数学学习成长记录,记录学习过程中的点滴进步,培养他们的自主学习能力和反思能力。
四、教学内容与过程
(一)导入新课
1.引入:通过展示一幅圆形花园的图片,提问:“同学们,你们知道圆形花园中隐藏的数学秘密吗?”激发学生的好奇心。
三、教学策略
(一)情景创设
为了让学生更好地理解垂径定理,我们将从生活实际出发,创设富有启发性的教学情境。通过展示实际生活中含有垂径定理元素的场景,如古建筑中的拱桥、圆形花园的布局等,引导学生感受数学与生活的紧密联系。同时,利用多媒体手段,如动画、图片等,形象地呈现垂径定理的基本原理,激发学生的学习兴趣和探究欲望。
1.教学反思:在教学过程中,教师需密切关注学生的学习状态,及时发现并解决学生在学习过程中遇到的问题。课后,教师应认真反思教学设计、教学方法和教学效果,不断调整教学策略,以提高教学质量和效果。
2.学生评价:采用多元化的评价方式,包括自评、互评、小组评价和教师评价。评价内容涵盖知识掌握、技能运用、合作态度等方面。通过评价,激发学生的学习积极性,培养他们的自信心和自我认知能力。
3.小组交流:各小组分享自己的探究过程和结果,互相学习、借鉴,提高解决问题的能力。
(四)总结归纳
1.教师总结:对本节课的重点知识进行梳理,强调垂径定理的原理、证明方法及其应用。
2.学生总结:鼓励学生发表自己对垂径定理的理解和感悟,提高他们的概括和表达能力。
3.知识体系:将垂径定理与圆的其他性质相结合,构建完整的知识体系,为后续学习打下基础。
人教版九年级数学24.1.2:垂径定理优秀教学案例

《24.1.2 垂直于弦的直径》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册

《24.1.2 垂直于弦的直径》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册

《垂直于弦的直径》教学设计方案(第一课时)一、教学目标:1. 理解垂径定理,掌握垂径定理的推论;2. 能够运用垂径定理解决一些简单问题。

二、教学重难点:教学重点:理解垂径定理,掌握垂径定理的推论在实际问题中的应用。

教学难点:能够灵活运用垂径定理解决一些实际问题。

三、教学准备:1. 准备教具:几何图形、尺规、圆规等;2. 收集相关垂直于弦的直径的实例图片和视频;3. 设计相关问题,引导学生思考和探究。

四、教学过程:本节课是《垂直于弦的直径》教学设计的第一课时,主要分为以下几个环节:1. 创设情境,引入新课利用生活中的实际例子,如圆形水杯盖、碗等,让学生观察这些物体上的弦的特征,引入垂直于弦的直径的概念。

2. 探究新知,构建知识通过动手操作、观察、思考等环节,让学生了解垂直于弦的直径的性质和推导过程。

教师可以引导学生思考:为什么会有这样的性质?如何证明这个结论?3. 合作交流,展示成果将学生分成小组,让他们交流讨论,展示自己的研究成果。

教师可以鼓励学生用不同的方法证明垂直于弦的直径的性质。

4. 精讲点拨,突破难点针对学生在探究过程中可能遇到的难点和疑惑,进行精讲点拨。

例如,如何理解“直径垂直于弦,并且平分弦所对的两条弧”这个结论?如何用图形语言和文字语言描述这个结论?5. 课堂小结,反思提升让学生总结本节课的主要内容,包括垂直于弦的直径的性质、推导过程和应用等。

同时,引导学生思考:通过本节课的学习,你有什么收获和体会?有哪些地方需要改进和提高?6. 布置作业,巩固提高根据学生的实际情况,布置适量的作业,包括基础题和提高题。

这些题目可以帮助学生巩固所学知识,提高解题能力。

教学设计方案(第二课时)一、教学目标1. 学生能够理解垂直于弦的直径的性质,并能够运用该性质解决相关问题。

2. 学生能够掌握垂径定理,并能够运用该定理解决相关问题。

3. 培养学生的观察、分析和解决问题的能力。

二、教学重难点1. 教学重点:理解和运用垂直于弦的直径的性质和垂径定理。

人教版九年级上册第24章圆24.1.2垂直于弦的直径教学设计和课后反思

人教版九年级上册第24章圆24.1.2垂直于弦的直径教学设计和课后反思

人教版九年级上册第24章圆24.1.2垂直于弦的直径教学设计和课后反思教材分析垂直于弦的直径是在学生学习了轴对称图形、直角三角形和圆的有关概念的基础上进行的。

在进行本节之前已通过折纸、对称、平移、旋转推理证明等方式认识了许多图形的性质,积累了一定的空间与图形的经验。

垂径定理是圆的一个重要的性质定理,它对线段的计算、证明线段相等、弧相等等问题提供了十分简便的方法。

同时通过“实验—观察—猜想—证明”的途径,培养学生的动手能力,分析、联想能力,利用圆的轴对称性,还可以对学生进行数学美的教育。

因此,本节课无论从知识上还是从学生能力的培养及情感教育方面都起着重要的作用。

学情分析学生在生活中经常遇到圆方面的图形,对本节课会比较有兴趣,并且前面已学过轴对称图形相关知识。

同时九年级的同学是比较好奇、好动、好表现的。

在本节课通过动手实验学习不难。

由于垂径定理的题设与结论比较复杂,学生容易混淆遗漏,并且对定理的证明方法“叠合法”学生不常用到,所以本节课学生的学习障碍在于对垂径定理的题设与结论的区分及证明方法的理解。

教学目标1.知识目标:①通过观察实验,使学生理解圆的轴对称性;②掌握垂径定理,理解其证明,并会用它解决有关的证明与计算问题;③掌握辅助线的作法——作弦心距。

2.能力目标:①通过定理探究,培养学生观察、分析、逻辑思维和归纳概括能力;②向学生渗透“由特殊到一般”的基本思想方法。

3.情感目标:①通过探究垂径定理的活动,激发学生探究、发现数学问题的兴趣,培养学生大胆猜想、乐于探究的良好品质;②培养学生观察能力,激发学生的好奇心和求知欲,并从数学学习活动中获得成功的体验。

教学重点和难点教学重点:垂径定理及其应用教学难点:对垂径定理题设与结论的区分及定理的证明方法演示动画:将一等腰三角形对折,启发学生共同回忆等腰三角形是轴对称图形,复习轴对称图形的概念,并提出问题:如果以这个等腰三角形的顶点为圆心,腰长为半径作圆,得到的圆是否是轴对称图形呢?轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这样的图形叫做轴对称图形通过情境设置,吸引学生的注意力,激发学生兴趣和主动学习的欲望,营造一个让学生主动思考、探索的氛围。

2024年人教版九年级数学上册教案及教学反思第24章24.1.2 垂直于弦的直径

2024年人教版九年级数学上册教案及教学反思第24章24.1.2 垂直于弦的直径

24.1 圆的有关性质24.1.2 垂直于弦的直径一、教学目标【知识与技能】1.通过观察实验,使学生理解圆的轴对称性.2.掌握垂径定理及其推论.理解其证明,并会用它解决有关的证明与计算问题.【过程与方法】通过探索垂径定理及其推论的过程,进一步体会和理解研究几何图形的各种方法.【情感态度与价值观】1.结合本课特点,向学生进行爱国主义教育和美育渗透.2.激发学生探究、发现数学问题的兴趣和欲望.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】垂径定理及其推论,会运用垂径定理等结论解决一些有关证明,计算和作图问题.【教学难点】垂径定理及其推论.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课你知道赵州桥吗?它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗?(出示课件2)(二)探索新知探究一圆的轴对称性教师问:把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?(出示课件4)学生通过自己动手操作,归纳出结论:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.出示课件5:教师问:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?学生答:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.思考:如何来证明圆是轴对称图形呢?出示课件6:已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.教师问:此图是轴对称图形吗?学生答:是轴对称图形.教师问:满足什么条件才能证明圆是轴对称图形呢?师生共同解答如下:(出示课件7)证明:连结OA、OB.则OA=OB.又∵CD⊥AB,∴直径CD所在的直线是AB的垂直平分线.∴对于圆上任意一点,在圆上都有关于直线CD的对称点,即⊙O关于直线CD对称.师生进一步认知:圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.探究二垂径定理及其推论出示课件8:如图,AB是⊙O的一条弦, 直径CD⊥AB, 垂足为E.你能发现图中有哪些相等的线段和劣弧?为什么?学生独立思考后口答:线段:AE=BE弧:AC⌒=BC⌒,AD⌒=BD⌒学生简述理由:把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A 与点B重合,AE与BE重合,重合.教师总结归纳:(出示课件9)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推导格式:∵CD是直径,CD⊥AB,∴AE=BE, AC⌒=BC⌒,AD⌒=BD⌒教师强调:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.想一想:下列图形是否具备垂径定理的条件?如果不是,请说明为什么?(出示课件10)学生独立思考后口答:1图是;2图不是,因为没有垂直;3图是;4图不是,因为CD没有过圆心.教师强调:垂径定理的几个基本图形:(出示课件11)出示课件12:如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗?①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.上述五个条件中的任何两个条件都可以推出其他三个结论吗?学生思考后教师总结:深化认知:(出示课件13)如图,①CD是直径;②CD⊥AB,垂足为E;③AE=BE;④AC⌒=BC⌒;⑤AD⌒=BD⌒.举例证明其中一种组合方法.学生思考后独立解决,并加以交流,教师加以指导,并举例.(出示课件14)如图,AB是⊙O的一条弦,作直径CD,使AE=BE.(1)CD⊥AB吗?为什么?⑵AC⌒与BC⌒相等吗?AD⌒与BD⌒相等吗?为什么?证明:⑴连接AO,BO,则AO=BO,又AE=BE,OE=OE∴△AOE≌△BOE(SSS),∴∠AEO=∠BEO=90°,∴CD⊥AB.(2)由垂径定理可得AC⌒=BC⌒,AD⌒=BD⌒教师归纳总结:(出示课件15)垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.思考:“不是直径”这个条件能去掉吗?如不能,请举出反例.教师强调:圆的两条直径是互相平分的.出示课件16:例1 如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB=cm.学生思考后师生共同解答:连接OA,∵OE⊥AB,巩固练习:(出示课件17)如图,⊙O的弦AB=8cm,直径CE⊥AB于D,DC=2cm,求半径OC的长.学生自主思考后,独立解答如下:解:连接OA,∵CE⊥AB于D,,∴设OC=xcm,则OD=x-2,根据勾股定理,得x2=42+(x-2)2,∴22221068AE OA OE=-=-=cm.1184(cm)22AD AB==⨯=解得x=5,即半径OC的长为5cm.出示课件18:例2 已知:⊙O中弦AB∥CD,求证:学生思考后师生共同解答.证明:作直径MN⊥AB.∵AB∥CD,∴MN⊥CD.则(垂直于弦的直径平分弦所对的弧)教师强调:平行弦夹的弧相等.师生共同归纳总结:(出示课件19)解决有关弦的问题,经常是过圆心作弦的弦心距(垂线段),或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件.巩固练习:(出示课件20)如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证: 四边形ADOE是正方形.学生独立解答,一生板演.证明:∵OE⊥AC,OD⊥AB,AB⊥AC,∴∠OEA=∠EAD=∠ODA=90°.∴四边形ADOE为矩形,AE=12AC,AD=12AB.又∵AC=AB,∴AE=AD.∴四边形ADOE为正方形.出示课件21:例3 根据刚刚所学,你能利用垂径定理求出导入中赵州桥主桥拱半径的问题吗?教师引导学生分析题意,先把实际问题转化为数学问题,然后画出图形进行解答.解:如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C 是弧AB的中点,CD就是拱高.∴AB=37m,CD=7.23m.AB=18.5m,OD=OC-CD=R-7.23.∴AD=12OA2=AD2+OD2,R2=18.52+(R-7.23)2,解得R≈27.3.即主桥拱半径约为27.3m.巩固练习:(出示课件23)如图a、b,一弓形弦长为,弓形所在的圆的半径为7cm,则弓形的高为_______.学生独立思考后解答:如图,分两种情况,弓形的高为5cm或12cm.教师归纳:1.涉及垂径定理时辅助线的添加方法(出示课件24)在圆中有关弦长a,半径r, 弦心距d(圆心到弦的距离),弓形高h的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.2.弓形中重要数量关系弦a,弦心距d,弓形高h,半径r之间有以下关系:⑴d+h=r;⑵2 222ar d⎛⎫=+ ⎪⎝⎭.(三)课堂练习(出示课件25-29)1.2.已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为.3.⊙O的直径AB=20cm, ∠BAC=30°则弦AC= .4.(分类讨论题)已知⊙O的半径为10cm,弦MN∥EF,且MN=12cm,EF=16cm,则弦MN和EF之间的距离为.5.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.你认为AC和BD有什么关系?为什么?6.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.参考答案:1.C2.5cm3.4.14cm或2cm5.证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE.∴AE-CE=BE-DE.即AC=BD.6.解:连接OC.设这段弯路的半径为Rm,则OF=(R-90)m.,OE CD ⊥11600300(m)22CF CD ∴==⨯=,根据勾股定理,得222,OC CF OF =+ ()22230090.R R =+- 解得R=545.∴这段弯路的半径约为545m.(四)课堂小结通过这节课的学习,你有哪些收获和体会?(五)课前预习预习下节课(24.1.3)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.这节课的教学从利用垂径定理来解决赵州桥桥拱半径问题开始,引入课题从实验入手,得到圆的轴对称性,进而推出垂径定理及推论.教学设计中,从具体、简单、特殊到抽象、复杂、一般,层层递进,以利于提高学生的数学思维能力,同时,注意加强对学生的启发和引导,培养学生们大胆猜想,小心求证的科学研究素质.2.本课的教学方法是将垂径定理和勾股定理有机结合,将圆的问题转化为直角三角形,常作的辅助线是半径或垂直于弦的直径.。

2021年人教版数学九年级上册24 垂直于弦的直径(第2课时)教案与反思

2021年人教版数学九年级上册24  垂直于弦的直径(第2课时)教案与反思

24.1.2 垂直于弦的直径(第2课时)前事不忘,后事之师。

《战国策·赵策》圣哲学校蔡雨欣一、基本目标【知识与技能】1.理解与掌握圆的对称性、垂径定理及其推论.2.运用垂径定理及其推论解决一些有关证明、计算和作图问题.【过程与方法】经历探索发现圆的对称性,证明垂径定理及其推论的过程,获得几何学习的一些常用方法:合情推理、证明、抽象概括等.【情感态度与价值观】通过观察、操作、变换和研究的过程,进一步培养学生的思维能力、创新意识和良好的运用数学的习惯和意识.二、重难点目标【教学重点】垂径定理及其推论.【教学难点】垂径定理及其推论的运用.环节1 自学提纲,生成问题【5 min阅读】阅读教材P81~P83的内容,完成下面练习.【3 min反馈】1.圆是__轴对称__图形,任何一条直径所在直线都是圆的__对称轴__.2.垂径定理:垂直于弦的直径__平分__弦,并且__平分__弦所对的两条弧.即一条直线如果满足:①CD经过圆心O且与圆交于C、D两点;②AB⊥CD交CD于M;那么可以推出:③__AM_=_BM__ ,④__AC=BC__,⑤__AD=BD.3.垂径定理的推论:__平分__弦(不是直径)的直径垂直于弦,并且__平分__弦所对的两条弧.环节2 合作探究,解决问题【活动1】小组讨论(师生互学)【例1】一根横截面为圆形的下水管道的直径为1米,管内有少量的污水(如图),此时的水面宽AB为0.6米,求此时的水深(即阴影部分的弓形高).【互动探索】(引发学生思考)要求此时的水深,即阴影部分的弓形高,结合垂径定理,考虑怎样作辅助线才能得到水深?【解答】如图,过点O 作OD ⊥AB 于点C ,交⊙O 于点D ,连结OB .根据垂径定理,得C 是AB 的中点,D 是AB ︵ 的中点,CD 就是水深,则BC =AB =0.3米.由题意知,OD =OB =0.5米,在Rt △OBC 中,由勾股定理,得OC =OB 2-BC 2=0.4米, 所以CD =OD -OC =0.1米,即此时的水深为0.1米.【互动总结】(学生总结,老师点评)在圆中求半径、弦等线段的长时,常常借助垂径定理构造直角三角形,再在直角三角形中运用勾股定理来解决.【活动2】 巩固练习(学生独学)1.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C ,且CD =1,则弦AB 的长是多少?解:连结AO .由题意可知,OA =OC =5,则OD =OC -CD =5-1=4.∵OC ⊥AB ,∴∠ODA =90°,∴AD =OA 2-OD 2=3.又∵AB 为⊙O 的弦,∴AB =2AD =6.2.一条排水管的截面如图所示.已知排水管的半径OB =10 cm ,水面宽AB =16 cm.求截面圆心O 到水面的距离.解:过点O 作OC ⊥AB 于点C .∵OC ⊥AB ,AB =16 cm ,∴∠OCB=90°,BC=错误!未定义书签。

24.1.2 垂直于弦的直径教案

24.1.2 垂直于弦的直径教案

24.1.2 垂直于弦的直径教案一、【教材分析】教学目标知识技能1.使学生理解圆的轴对称性 .2.掌握垂径定理及其推论,学会运用垂径定理及其推论解决有关的证明、计算问题.过程方法1.经历利用圆的轴对称性对垂径定理的探索和证明过程,通过观察、动手操作培养学生发现问题、分析问题、解决问题的能力.2.在研究过程中,进一步体验“实验——归纳——猜测——证明”的方法,锻炼学生的逻辑思维能力,体验数学来源于生活又用于生活.情感态度让学生积极投入到圆的轴对称性的研究中,体验到垂径定理是圆的轴对称性质的重要体现.教学重点垂径定理、推论及它们的应用.教学难点对垂径定理的探索和证明,并能应用垂径定理进行简单计算或证明.二、【教学流程】教学环节问题设计师生活动二次备课情景创设请大家观察教材上的图片并思考问题:你知道赵州桥吗?你能给大家介绍一下有关它的历史及构造吗?创设问题情境,开展学习活动,引起学生学习的兴趣了解我国古代人民的勤劳与智慧.自主探究问题一用纸剪一个圆,将圆对折、打开,再重复做几次,你发现了什么?由此你能得到什么结论?让学生动手操作,观察、思考、交流,归纳得出圆的特性:圆是轴对称图形,任何一条直径所在(或过培养学生动手、动脑、动口探究问题的能力问题二1、观察、思考并回答:(1)在含有一条直径AB的圆上再增加一条直径CD,两条直径的位置关系怎样?(2)把直径AB向下平移,变成非直径的弦,弦AB是否一定被直径CD平分?(3)猜想:弦AB在怎样情况下会被直径CD平分?(4)思考:直径CD两侧相邻的两条弧是否也相等?如何证明?2、你能给上题中这条特殊的直径命名吗?这条特殊的直径有哪些性质?请用一句话概括出来.垂径定理:如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,且平分这条弦所对的两条弧.例1 看下列图形,是否能使用垂径定理?平分弦(不是直径)的直径一定垂直于这条弦,并且平分这条弦所对的两条弧.问题三圆心)的直线都是它的对称轴,圆的对称轴有无数条.教师提出问题,学生画图、思考,并回答提出的问题.教师参与小组活动,指导帮助学生,鼓励学生大胆试验、猜想,并共同给出验证过程.小组交流,根据直径的特征,容易给出直径的名字——垂直于弦的直径,师生共同归纳出特殊直径的性质,并给出教师出示图形,学生思考、解答,说出哪些图形能使用垂径定理?教师出示题目,学让学生积极参与探究知识的整个过程,更有利于对知识点的理解与掌握.给学生足够的发挥空间,利用反例、变式图形对定理进一步引申,揭示定理的本质属性,以加深学生对定理的本质了解.强化结论的命题“平分弦的直径一定垂直于这条弦,并且平分这条弦所对的两条弧.”这个命题正确吗?画图说明.如果不正确,错在哪里?你认为应该怎样修改?生画图探究说明命题不正确,通过交流、修改,进一步得出垂径定理的推论.使用条件:平分非直径弦的直径.尝试应用1、如图,已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求⊙O的半径.2、已知:如图1,若以O为圆心作一个⊙O的同心圆,交大圆的弦AB于C,D两点.求证:AC=BD.变式1:隐去(图1)中的大圆,连接OA,OB,设OA=OB,求证:AC=BD.变式2:再添加一个同心圆,得(图2)则AC BD(写出答案,不证明)3、请用所学知识解决求赵州桥拱半径的问教师出示题目,学生思考、解答学生解答完毕后,小组交流后以小组为单位展示小组的成果.教师巡视,帮助学习有困难的学生,并适时指导、点拨,不断提升、总结.学生交流,师生互动.对于第2题的解答,要求学生一题多解:法1:连接OA、OB、OC、OD,证△OAC≌△OBD法2:作OE⊥CD,垂足为E,利用垂径定理证明.要求:(1)正确画通过问题的训练,加深学生对垂径定理的理解及应用,同时强调辅助线的作法的重要性.经过一题多解、变式训练,锻炼学生发散思维及举一反三、触类旁通解决问题的能力.题.出图形,连接半径,构造直角三角形;(2)利用垂径定理的知识解决问题.补偿提高1、已知⊙O的半径为13,弦AB=24,P是弦AB上任意一点,求OP的取值范围.2、见教材第90页习题24.1第9题教师出示题目,学生练习时,教师巡视、辅导,进一步了解学生的掌握情况.学有余力的学生选做,达到培优的目的.小结与作业小结:通过这节课的学习,你有什么收获?作业:1、必做题教材第83页练习1,2题2、选做题教材第90页习题24.1第10题教师提出问题,学生回答,教师在学生总结后进行补充,并根据学生的回答,结合结构图总结本节知识.教师布置作业,动员分层要求.学生按要求课外完成,通过课后作业巩固本节知识.供学生课后探讨、研究.使学生能够回顾、总结、梳理所学知识.三、【板书设计】24.1.2 垂直于弦的直径四、【教后反思】本节课从介绍赵州桥的历史及构造入手,引起学生的学习兴趣和本课主题.再结合折纸、观察圆的对称性、利用对称性质验证一系列的过程,形象直观地抓住了定理,降低了单纯介绍定理的难度,同时让学生经历观察、思考、探索、交流、归纳的全过程,感受成功的喜悦.然后让学生通过对命题“平分弦的直径一定垂直于这条弦,并且平分这条弦所对的两条弧.”的判断与修改,进一步得出垂径定理的推论,并强化结论的使用条件,为推论的正确理解和应用打好基础,锻炼了学生的思维的严密性和逻辑思维能力.最后让学生就赵州桥的半径计算问题,建立数学模型,添加辅助线构造直角三角形,利用垂径定理进行计算,真正让学生体会到学会数学的重要性.。

人教版数学九年级上册教案:24.1.2 垂直于弦的直径

人教版数学九年级上册教案:24.1.2 垂直于弦的直径

24.1.2 垂直于弦的直径教案一、【教材分析】教学目标知识技能1.使学生理解圆的轴对称性 .2.掌握垂径定理及其推论,学会运用垂径定理及其推论解决有关的证明、计算问题.过程方法1.经历利用圆的轴对称性对垂径定理的探索和证明过程,通过观察、动手操作培养学生发现问题、分析问题、解决问题的能力.2.在研究过程中,进一步体验“实验——归纳——猜测——证明”的方法,锻炼学生的逻辑思维能力,体验数学来源于生活又用于生活.情感态度让学生积极投入到圆的轴对称性的研究中,体验到垂径定理是圆的轴对称性质的重要体现.教学重点垂径定理、推论及它们的应用.教学难点对垂径定理的探索和证明,并能应用垂径定理进行简单计算或证明.二、【教学流程】教学环节问题设计师生活动二次备课情景创设请大家观察教材上的图片并思考问题:你知道赵州桥吗?你能给大家介绍一下有关它的历史及构造吗?创设问题情境,开展学习活动,引起学生学习的兴趣了解我国古代人民的勤劳与智慧.自主探究问题一用纸剪一个圆,将圆对折、打开,再重复做几次,你发现了什么?由此你能得到什么结论?让学生动手操作,观察、思考、交流,归纳得出圆的特性:圆是轴对称图形,任何一条直径所在(或过培养学生动手、动脑、动口探究问题的能力问题二1、观察、思考并回答:(1)在含有一条直径AB的圆上再增加一条直径CD,两条直径的位置关系怎样?(2)把直径AB向下平移,变成非直径的弦,弦AB是否一定被直径CD平分?(3)猜想:弦AB在怎样情况下会被直径CD平分?(4)思考:直径CD两侧相邻的两条弧是否也相等?如何证明?2、你能给上题中这条特殊的直径命名吗?这条特殊的直径有哪些性质?请用一句话概括出来.垂径定理:如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,且平分这条弦所对的两条弧.例1 看下列图形,是否能使用垂径定理?平分弦(不是直径)的直径一定垂直于这条弦,并且平分这条弦所对的两条弧.问题三圆心)的直线都是它的对称轴,圆的对称轴有无数条.教师提出问题,学生画图、思考,并回答提出的问题.教师参与小组活动,指导帮助学生,鼓励学生大胆试验、猜想,并共同给出验证过程.小组交流,根据直径的特征,容易给出直径的名字——垂直于弦的直径,师生共同归纳出特殊直径的性质,并给出教师出示图形,学生独立思考、解答,说出哪些图形能使用垂径定理?教师出示题目,学让学生积极参与探究知识的整个过程,更有利于对知识点的理解与掌握.给学生足够的发挥空间,利用反例、变式图形对定理进一步引申,揭示定理的本质属性,以加深学生对定理的本质了解.强化结论的命题“平分弦的直径一定垂直于这条弦,并且平分这条弦所对的两条弧.”这个命题正确吗?画图说明.如果不正确,错在哪里?你认为应该怎样修改?生画图探究说明命题不正确,通过交流、修改,进一步得出垂径定理的推论.使用条件:平分非直径弦的直径.尝试应用1、如图,已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求⊙O的半径.2、已知:如图1,若以O为圆心作一个⊙O的同心圆,交大圆的弦AB于C,D两点.求证:AC=BD.变式1:隐去(图1)中的大圆,连接OA,OB,设OA=OB,求证:AC=BD.变式2:再添加一个同心圆,得(图2)则AC BD(写出答案,不证明)3、请用所学知识解决求赵州桥拱半径的问教师出示题目,学生独立思考、解答学生解答完毕后,小组交流后以小组为单位展示小组的成果.教师巡视,帮助学习有困难的学生,并适时指导、点拨,不断提升、总结.学生交流,师生互动.对于第2题的解答,要求学生一题多解:法1:连接OA、OB、OC、OD,证△OAC≌△OBD法2:作OE⊥CD,垂足为E,利用垂径定理证明.要求:(1)正确画通过问题的训练,加深学生对垂径定理的理解及应用,同时强调辅助线的作法的重要性.经过一题多解、变式训练,锻炼学生发散思维及举一反三、触类旁通解决问题的能力.题.出图形,连接半径,构造直角三角形;(2)利用垂径定理的知识解决问题.补偿提高1、已知⊙O的半径为13,弦AB=24,P是弦AB上任意一点,求OP的取值范围.2、见教材第90页习题24.1第9题教师出示题目,学生练习时,教师巡视、辅导,进一步了解学生的掌握情况.学有余力的学生选做,达到培优的目的.小结与作业小结:通过这节课的学习,你有什么收获?作业:1、必做题教材第83页练习1,2题2、选做题教材第90页习题24.1第10题教师提出问题,学生独立回答,教师在学生总结后进行补充,并根据学生的回答,结合结构图总结本节知识.教师布置作业,动员分层要求.学生按要求课外完成,通过课后作业巩固本节知识.供学生课后探讨、研究.使学生能够回顾、总结、梳理所学知识.三、【板书设计】24.1.2 垂直于弦的直径四、【教后反思】本节课从介绍赵州桥的历史及构造入手,引起学生的学习兴趣和本课主题.再结合折纸、观察圆的对称性、利用对称性质验证一系列的过程,形象直观地抓住了定理,降低了单纯介绍定理的难度,同时让学生经历观察、思考、探索、交流、归纳的全过程,感受成功的喜悦.然后让学生通过对命题“平分弦的直径一定垂直于这条弦,并且平分这条弦所对的两条弧.”的判断与修改,进一步得出垂径定理的推论,并强化结论的使用条件,为推论的正确理解和应用打好基础,锻炼了学生的思维的严密性和逻辑思维能力.最后让学生就赵州桥的半径计算问题,建立数学模型,添加辅助线构造直角三角形,利用垂径定理进行计算,真正让学生体会到学会数学的重要性.。

最新人教版数学九年级上教案24.1.2 垂直于弦的直径2

最新人教版数学九年级上教案24.1.2  垂直于弦的直径2

24.1.2 垂直于弦得直径教学目标1、知识目标:(1)充分认识圆得轴对称性。

(2)利用轴对称探索垂直于弦得直径得有关性质,掌握垂径定理。

(3)运用垂径定理进行简单得证明、计算和作图。

2、能力目标:让学生经历“实验—观察—猜想—验证—归纳”得研究过程,培养学生动手实践、观察分析、归纳问题和解决问题得能力。

让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。

3、情感目标:通过实验操作探索数学规律,激发学生得好奇心和求知欲,同时培养学生勇于探索得精神。

教学重点垂直于弦得直径得性质及其应用。

教学难点1、垂径定理得证明。

2、垂径定理得题设与结论得区分。

教学辅助多媒体、可折叠得圆形纸板。

教学方法本节课采用得教学方法是“主体探究式”。

整堂课充分发挥教师得主导作用和学生得主体作用,注重学生探究能力得培养,鼓励学生认真观察、大胆猜想、小心求证。

令学生参与到“实验--观察--猜想--验证--归纳”得活动中,与教师共同探究新知识最后得出定理。

学生不再是知识得接受者,而是知识得发现者,是学习得主人。

教学过程新问题揭示课题揭示课题电脑上用几何画板上作图:(1)做一圆(2) 在圆上任意作一条弦 AB;(3) 过圆心作AB得垂线得直径CD且交AB于E。

(板书课题:垂直于弦得直径)在圆形纸片上作一条弦AB,过圆心作AB得垂线得直径CD且交AB于E师生互动师生互动运用几何画板展示直径与弦垂直相交时圆得翻折动画让学生观察,讨论(1)图中圆可能会有哪些等量关系?(2)弦AB与直径CD除垂直外还有什么性质?实验:将圆沿直径CD对折观察:图形重合部分,思考图中得等量关系猜想: AE=EB、弧AC=弧CB、弧AD=弧DB(电脑显示))垂直于弦得直径平分弦,并且平分弦所对得两条弧?引导学生通过“实验--观察--猜想”,获得感性认识,猜测出垂直于弦得直OEDCBA质拓展升华如果把垂径定理(垂直于弦得直径平分弦,并且平分弦所对得两条弧)结论与题设交换或交换一条,命题是真命题吗?(1)过圆心(2)垂直于弦(3)平分弦(4)平分弦所对得优弧(5)平分弦所对得劣弧上述五个条件中得任何两个条件都可以推出其他三个结论学生自主探证通过问题,引导学生拓展思维,发现新目标归纳小结归纳小结由学生小结,电脑显示知识总结:这节课我们主要学习了两个问题:一是圆得轴对称性(学生回答),它是理解和证明定理得关键;二是垂径定理(学生回答),它是这节课得重点要求大家分清楚定理得条件和结论,并熟练掌握定理得简单应用,还推知它得里定理。

九年级数学《垂直于弦的直径》教学反思

九年级数学《垂直于弦的直径》教学反思

九年级数学《垂直于弦的直径》教学反思九年级数学《垂直于弦的直径》教学反思1选用引导发现法和直观演示法。

让学生在课堂上多活动、多观察、多合作、多交流,主动参与到整个教学活动中来,组织学生参与“实验---观察---猜想---证明”的活动,最后得出定理,这符合新课程理念下的“要把学生学习知识当作认识事物的过程来进行教学”的观点,也符合教师的主导作用与学生的主体地位相统一的原则。

同时,在教学中,我充分利用教具和投影仪,提高教学效果,在实验,演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生[此文转于初中化学资源网]直觉思维能力,这符合新课程理念下的直观性与可接受性原则。

另外,教学中我还注重用不同图片的颜色对比来启发学生。

(1)对于圆的轴对称性及垂径定理的发现、证明,采用师生共同演示的方法。

(2)例1讲完后总结出辅助线作法,得直角三角形中三边的关系式,注意前后知识的链接,将例2作为例1的延伸,并动态演示弦AB的位置变化,结合学生实际情况作适当的拓广。

练习题要求学生课堂完成。

设计的特色:为了给学生营造一个民主、平等而又富有诗意的课堂,我以新数学课程标准下的基本理念和总体目标为指导思想在教学过程中始终面向全体学生,依据学生的实际水平,选择适当的'教学起点和教学方法,充分让学生参与教学,在合作交流的过程中,获得良好的情感体验。

通过“实验--观察--猜想--证明”的思想,让每个学生都有所得,我注意前后知识的链接,进行各学科间的整合,为学生提供了广阔的思考空间,同时辅以相应的音乐,为学生创设轻松、愉快、高雅的学习氛围,在学习中感悟生活中的数学美。

九年级数学《垂直于弦的直径》教学反思2本节课是__的一个重点内容,为达到良好的教学效果,我采用多媒体辅助教学,这样能使知识点更直观形象的展示,让学生的积极、主动的参与课堂,提高课堂效率。

首先,我以求赵州桥主桥拱的半径引入课题,以展示本节内容的实用性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.1.2 垂直于弦的直径
教学目标
1、知识目标:
(1)充分认识圆的轴对称性。

(2)利用轴对称探索垂直于弦的直径的有关性质,掌握垂径定理。

(3)运用垂径定理进行简单的证明、计算和作图。

2、能力目标:
让学生经历“实验—观察—猜想—验证—归纳”的研究过程,培养学生动
手实践、观察分析、归纳问题和解决问题的能力。

让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。

3、情感目标:
通过实验操作探索数学规律,激发学生的好奇心和求知欲,同时
培养学生勇于探索的精神。

教学重点
垂直于弦的直径的性质及其应用。

教学难点
1、垂径定理的证明。

2、垂径定理的题设与结论的区分。

教学辅助
多媒体、可折叠的圆形纸板。

教学方法
本节课采用的教学方法是“主体探究式”。

整堂课充分发挥教师的主导作用和学生的主体作用,注重学生探究能力的培养,鼓励学生认真观察、大胆猜想、小心求证。

令学生参与到“实验--观察--猜想--验证--归纳”的活动中,与教师共同探究新知识最后得出定理。

学生不再是知识的接受者,而是知识的发现者,是学习的主人。

教学过程
引入新课引入新课
问:(1)我们所学的圆是不是轴对称图形?
(2)如果是,它的对称轴是什么?
拿出一张圆形纸片,沿着圆的任意一条直径对折,
重复做几次,你发现了什么?由此你能得到什么结
论?:
(1)圆是轴对称图形。

(2)对称轴是过圆点的直线(或任何一条直径所
在的直线)
(3)圆的对称轴有无穷多条
实验:把圆形纸片沿着圆的
任意一条直径对
折,重复做几次
观察:两部分重合,发现得
出圆的对称性的结

培养学生
的动手能
力,观察能
力,通过比
较,运用旧
知识探索
新问题
揭示课题揭示课题
电脑上用几何画板上作图:
(1)做一圆
(2) 在圆上任意作一条弦 AB;
(3) 过圆心作AB的垂线的直径CD且交AB于E。

(板书课题:垂直于弦的直径)
在圆形纸片上作一条弦AB,
过圆心作AB的垂线的直径
CD且交AB于E
师生互动师生互动
运用几何画板展示直径与弦垂直相交时圆的翻折动
画让学生观察,讨论
(1)图中圆可能会有哪些等量关系?
(2)弦AB与直径CD除垂直外还有什么性质?
实验:将圆沿直径CD对折
观察:图形重合部分,思考
图中的等量关系
猜想: AE=EB、
弧AC=弧CB、
弧AD=弧DB
(电脑显示))垂直于弦的直
径平分弦,并且平分弦所对
的两条弧?
引导学生
通过“实验
--观察--
猜想”,获
得感性认
识,猜测出
垂直于弦
的直径的
性质
O
E
D
C
B
A
拓展升华
如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换或交换一条,命题是真命题吗?
(1)过圆心(2)垂直于弦(3)平分弦
(4)平分弦所对的优弧(5)平分弦所对的劣弧上述五个条件中的任何两个条件都可以推出其他三个结论学生自主探证通过问题,
引导学生
拓展思维,
发现新目

归纳小结归纳小结
由学生小结,电脑显示
知识总结:
这节课我们主要学习了两个问题:一是圆的轴对称性
(学生回答),它是理解和证明定理的关键;二是垂
径定理(学生回答),它是这节课的重点要求大家分
清楚定理的条件和结论,并熟练掌握定理的简单应
用,还推知它的里定理。

另外它的其他推论级应用我
们下节课探讨。

讲评总结:
1学习垂径定理后,你认为应该注意哪些问题?
2应用垂径定理如何添辅助线?垂径定理有哪些应用
3这节课的学习你有什么疑问?
4这节课的学习方式拟喜欢吗?你有什么好的建议?
讲评回答回顾这节
课的内容,
加深学生
对知识的
印象,反馈
学生这节
课收获节
疑问,使教
学效果得
到提高
分层作业分层作业
1、必做题:习题24.1—1,9
2、选做题:习题24.1—12
九、板书设计
~。

相关文档
最新文档